Articles | Volume 14, issue 4
https://doi.org/10.5194/cp-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera
Bryan C. Lougheed
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Villavägen 16,
75236 Uppsala, Sweden
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
Brett Metcalfe
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
Department of Earth Sciences, Faculty of Sciences, Vrije Universiteit
Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
Ulysses S. Ninnemann
Department of Earth Science, University of Bergen, Allégaten 41,
5007 Bergen, Norway
Lukas Wacker
Laboratory for Ion Beam Physics, ETH Zürich, Otto-Stern-Weg 5,
8093 Zürich, Switzerland
Related authors
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Bryan C. Lougheed
Geosci. Model Dev., 13, 155–168, https://doi.org/10.5194/gmd-13-155-2020, https://doi.org/10.5194/gmd-13-155-2020, 2020
Short summary
Short summary
Deep-sea sediment archives are made up of the calcareous tests of foraminifera, small sea dwelling organisms that record the Earth's past climate. Sediment cores retrieved from the sea floor contain sediment that is systematically bioturbated (mixed). The SEAMUS model of single foraminifera sedimentation and bioturbation allows users to quantify the error of bioturbation upon their foraminifera-derived climate reconstructions and radiocarbon dates.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Michelle J. Curran, Christophe Colin, Megan Murphy O’Connor, Ulysses S. Ninnemann, and Audrey Morley
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-101, https://doi.org/10.5194/cp-2023-101, 2024
Revised manuscript under review for CP
Short summary
Short summary
Our multi-proxy examination of an abrupt climate event during peak MIS11 reveals new evidence that the reorganisation of Polar and Atlantic Waters at subpolar latitudes is central mechanistically for the stability of North Atlantic Deep Water formation. We conclude that high-magnitude AMOC variability is possible without the addition of freshwater or Icebergs to deep water formation regions challenging established knowledge of AMOC sensitivity and stability during warm climates.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Bryan C. Lougheed
Geosci. Model Dev., 13, 155–168, https://doi.org/10.5194/gmd-13-155-2020, https://doi.org/10.5194/gmd-13-155-2020, 2020
Short summary
Short summary
Deep-sea sediment archives are made up of the calcareous tests of foraminifera, small sea dwelling organisms that record the Earth's past climate. Sediment cores retrieved from the sea floor contain sediment that is systematically bioturbated (mixed). The SEAMUS model of single foraminifera sedimentation and bioturbation allows users to quantify the error of bioturbation upon their foraminifera-derived climate reconstructions and radiocarbon dates.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Augustin Kessler, Eirik Vinje Galaasen, Ulysses Silas Ninnemann, and Jerry Tjiputra
Clim. Past, 14, 1961–1976, https://doi.org/10.5194/cp-14-1961-2018, https://doi.org/10.5194/cp-14-1961-2018, 2018
Short summary
Short summary
We analyze the changes in oceanic carbon dynamics, using a state-of-the-art Earth system model, by comparing two quasi-equilibrium states: the early, warm Eemian (125 ka) versus the cooler, late Eemian (115 ka). Our results suggest a considerably weaker ocean dissolved inorganic carbon storage at 125 ka, an alteration of the deep-water geometry and ventilation in the South Atlantic, and heterogeneous changes in phosphate availability and carbon export between the Pacific and Atlantic basins.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Ulrike Dusek, Regina Hitzenberger, Anne Kasper-Giebl, Magdalena Kistler, Harro A. J. Meijer, Sönke Szidat, Lukas Wacker, Rupert Holzinger, and Thomas Röckmann
Atmos. Chem. Phys., 17, 3233–3251, https://doi.org/10.5194/acp-17-3233-2017, https://doi.org/10.5194/acp-17-3233-2017, 2017
Short summary
Short summary
Measurements of the radioactive carbon isotope 14C allow to identify the sources of aerosol carbon. We report an extensive 14C source apportionment record in the Netherlands with samples covering a whole year. We discovered that long-range transport has a large influence on aerosol carbon levels. Fossil fuel carbon is least influenced by long-range transport and more regional in origin. Biomass burning seems to be a minor source of aerosol carbon in the Netherlands.
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pleistocene
Testing the reliability of global surface temperature reconstructions of the last glacial cycle
Monsoon-driven changes in aeolian and fluvial sediment input to the central Red Sea recorded throughout the last 200 000 years
Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy
Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP)
Contrasting late-glacial paleoceanographic evolution between the upper and lower continental slope of the western South Atlantic
Modal shift in North Atlantic seasonality during the last deglaciation
Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data
Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions
Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels
Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core
A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka)
Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary
Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II
Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dakota E. Holmes, Tali L. Babila, Ulysses Ninnemann, Gordon Bromley, Shane Tyrrell, Greig A. Paterson, Michelle J. Curran, and Audrey Morley
Clim. Past, 18, 989–1009, https://doi.org/10.5194/cp-18-989-2022, https://doi.org/10.5194/cp-18-989-2022, 2022
Short summary
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Patrick A. Rafter, Juan-Carlos Herguera, and John R. Southon
Clim. Past, 14, 1977–1989, https://doi.org/10.5194/cp-14-1977-2018, https://doi.org/10.5194/cp-14-1977-2018, 2018
Short summary
Short summary
Carbon’s radioactive isotope (radiocarbon) is a useful tool for oceanographers investigating carbon cycling in the modern ocean and ice age oceans (using foraminifera microfossils). Here we used sediment cores with excellent age constraints and abundant foraminifera microfossils to examine interspecies radiocarbon differences. All species demonstrate the same extreme radiocarbon depletion, and we argue that these observations represent important changes in seawater carbon chemistry.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Cited articles
Ascough, P. L.: Interactive comment on “Moving beyond the age-depth model paradigm in deep sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera” by Bryan C. Lougheed et al., Clim. Past Discuss., https://doi.org/10.5194/cp-2017-119-RC1, 2017.
Bard, E.: Paleoceanographic implications of the difference in deep-sea sediment mixing between large and fine particles, Paleoceanography, 16, 235–239, 2001.
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, https://doi.org/10.1038/nature14330, 2015.
Berger, W. H.: Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera, Nature, 269, 301–304, 1977.
Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sediments, J. Mar. Res., 26, 134–143, 1968.
Berger, W. H. and Johnson, R. F.: On the thickness and the 14C age of the mixed layer in deep-sea carbonates, Earth Planet. Sc. Lett., 41, 223–227, 1978.
Berger, W. H. and Killingley, J. S.: Box cores from the equatorial Pacific: 14C sedimentation rates and benthic mixing, Mar. Geol., 45, 93–125, https://doi.org/10.1016/0025-3227(82)90182-7, 1982.
Blaauw, M.: Out of tune: the dangers of aligning proxy archives, Quaternary Sci. Rev., 36, 38–49, https://doi.org/10.1016/j.quascirev.2010.11.012, 2012.
Blaauw, M. and Christen, J. A.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, 2008.
Caley, T., Giraudeau, J., Malaizé, B., Rossignol, L., and Pierre, C.: Agulhas leakage as a key process in the modes of Quaternary climate changes, P. Natl. Acad. Sci. USA, 109, 6835–6839, 2012.
Emiliani, C.: Pleistocene temperatures, J. Geol., 63, 538–578, 1955.
Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C.: Carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 62, 417–426, 1951.
Feldmeijer, W., Metcalfe, B., Brummer, G.-J. A., and Ganssen, G. M.: Reconstructing the depth of the permanent thermocline through the morphology and geochemistry of the deep dwelling planktonic foraminifer Globorotalia truncatulinoides, Paleoceanography, 30, 1–22, https://doi.org/10.1002/2014PA002687, 2015.
General Bathymetric Chart of the Oceans: GECBO_2014 Grid, version 20150318, available at: www.gebco.net, 2015.
Guinasso, N. L. and Schink, D. R.: Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res., 80, 3032–3043, https://doi.org/10.1029/JC080i021p03032, 1975.
Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R., Jiménez-Espejo, F., Skinner, L., Tzedakis, P. C., and Shackleton Site Project Members: A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin, Global Planet. Change, 133, 49–64, https://doi.org/10.1016/j.gloplacha.2015.07.002, 2015.
Hughen, K., Southon, J., Lehman, S., Bertrand, C., and Turnbull, J.: Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin, Quaternary Sci. Rev., 25, 3216–3227, https://doi.org/10.1016/j.quascirev.2006.03.014, 2006.
Keigwin, L. and Gagnon, A.: Comparison of Large and Ultra-Small Δ14C Measurements in Core Top Benthic Foraminifera from the Okhotsk Sea, Radiocarbon, 57, 123–128, https://doi.org/10.2458/azu_rc.57.18153, 2015.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lougheed, B. C. and Obrochta, S. P.: MatCal: Open Source Bayesian 14C Age Calibration in Matlab, J. Open Res. Softw., 4, e42, https://doi.org/10.5334/jors.130, 2016.
Lougheed, B. C., Snowball, I., Moros, M., Kabel, K., Muscheler, R., Virtasalo, J. J., and Wacker, L.: Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age, Quaternary Sci. Rev., 42, 43–58, 2012.
Löwemark, L. and Grootes, P. M.: Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation, Paleoceanography, 19, PA2001, https://doi.org/10.1029/2003PA000949, 2004.
Löwemark, L. and Schäfer, P.: Ethological implications from a detailed X-ray radiograph and 14C study of the modern deep-sea Zoophycos, Palaeogeogr. Palaeocl., 192, 101–121, https://doi.org/10.1016/S0031-0182(02)00681-8, 2003.
Löwemark, L. and Werner, F.: Dating errors in high-resolution stratigraphy: a detailed X-ray radiograph and AMS-14C study of Zoophycos burrows, Mar. Geol., 177, 191–198, 2001.
Löwemark, L., Konstantinou, K. I., and Steinke, S.: Bias in foraminiferal multispecies reconstructions of paleohydrographic conditions caused by foraminiferal abundance variations and bioturbational mixing: A model approach, Mar. Geol., 256, 101–106, https://doi.org/10.1016/j.margeo.2008.10.005, 2008.
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C., and Shackleton, N. J.: Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy, Quaternary Res., 27, 1–29, 1987.
Metcalfe, B.: Planktonic Foraminifera: From production to preservation of the oceanographic signal, PhD Thesis Vrije Univ. Amst., chap. 8, 253–274, 2013.
Metcalfe, B., Feldmeijer, W., de Vringer-Picon, M., Brummer, G.-J. A., Peeters, F. J. C., and Ganssen, G. M.: Late Pleistocene glacial–interglacial shell-size-isotope variability in planktonic foraminifera as a function of local hydrography, Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, 2015.
Olson, P., Reynolds, E., Hinnov, L., and Goswami, A.: Variation of ocean sediment thickness with crustal age, Geochem. Geophy. Geosy, 17, 1349–1369, https://doi.org/10.1002/2015GC006143, 2016.
Peng, T.-H. and Broecker, W. S.: The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments, Nucl. Instrum. Meth. B, 5, 346–352, 1984.
Peng, T.-H., Broecker, W. S., and Berger, W. H.: Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, Quaternary Res., 11, 141–149, 1979.
Pisias, N. G.: Geologic time series from deep-sea sediments: Time scales and distortion by bioturbation, Mar. Geol., 51, 99–113, 1983.
Pisias, N. G., Martinson, D. G., Moore, T. C., Shackleton, N. J., Prell, W., Hays, J., and Boden, G.: High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years, Mar. Geol., 56, 119–136, 1984.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Repschläger, J., Weinelt, M., Andersen, N., Garbe-Schönberg, D., and Schneider, R.: Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin, Earth Planet. Sc. Lett., 425, 256–267, https://doi.org/10.1016/j.epsl.2015.05.009, 2015.
Ruddiman, W. F. and Glover, L. K.: Vertical mixing of ice-rafted volcanic ash in North Atlantic sediments, Geol. Soc. Am. Bull., 83, 2817–2836, 1972.
Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M.: Planktic and Benthic 14C Reservoir Ages for Three Ocean Basins, Calibrated by a Suite of 14C Plateaus in the Glacial-to-Deglacial Suigetsu Atmospheric 14C Record, Radiocarbon, 57, 129–151, https://doi.org/10.2458/azu_rc.57.17916, 2015.
Schwab, C., Kinkel, H., Weinelt, M., and Repschläger, J.: Coccolithophore paleoproductivity and ecology response to deglacial and Holocene changes in the Azores Current System, Paleoceanography, 27, PA3210, https://doi.org/10.1029/2012PA002281, 2012.
Shackleton, N. J.: Oxygen isotope analyses and Pleistocene temperatures re-assessed, Nature, 215, 15–17, 1967.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between millennial-scale events 64,000–24,000 years ago, Paleoceanography, 15, 565–569, 2000.
Shuxi, C. and Shackleton, N. J.: New technique for study on isotopic fractionation between sea water and foraminiferal growing processes, Chin. J. Oceanol. Limnol., 8, 299, https://doi.org/10.1007/BF02849675, 1990.
Simon, M. H., Ziegler, M., Bosmans, J., Barker, S., Reason, C. J. C., and Hall, I. R.: Eastern South African hydroclimate over the past 270,000 years, Sci. Rep., 5, 18153, https://doi.org/10.1038/srep18153, 2016.
Spero, H. J. and Lea, D. W.: Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments, Mar. Micropaleontol., 22, 221–234, https://doi.org/10.1016/0377-8398(93)90045-Y, 1993.
Stuiver, M. and Polach, H. A.: Discussion: Reporting of 14C data, Radiocarbon, 19, 355–363, 1977.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon AMS system, Nucl. Instrum. Meth. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Takagi, H., Moriya, K., Ishimura, T., Suzuki, A., Kawahata, H., and Hirano, H.: Exploring photosymbiotic ecology of planktic foraminifers from chamber-by-chamber isotopic history of individual foraminifers, Paleobiology, 41, 108–121, https://doi.org/10.1017/pab.2014.7, 2015.
Takagi, H., Moriya, K., Ishimura, T., Suzuki, A., Kawahata, H., and Hirano, H.: Individual Migration Pathways of Modern Planktic Foraminifers: Chamber-by-Chamber Assessment of Stable Isotopes, Paleontol. Res., 20, 268–284, https://doi.org/10.2517/2015PR036, 2016.
Trauth, M. H., Sarnthein, M., and Arnold, M.: Bioturbational mixing depth and carbon flux at the seafloor, Paleoceanography, 12, 517–526, 1997.
Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem. Soc., 562–581, https://doi.org/10.1039/JR9470000562, 1947.
Vautravers, M. J. and Shackleton, N. J.: Centennial-scale surface hydrology off Portugal during marine isotope stage 3: Insights from planktonic foraminiferal fauna variability, Paleoceanography, 21, PA3004, https://doi.org/10.1029/2005PA001144, 2006.
Wacker, L., Christl, M., and Synal, H.-A.: Bats: A new tool for AMS data reduction, Nucl. Instrum. Meth. B, 268, 976–979, https://doi.org/10.1016/j.nimb.2009.10.078, 2010.
Wacker, L., Fülöp, R.-H., Hajdas, I., Molnár, M., and Rethemeyer, J.: A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas, Nucl. Instrum. Meth. B, 294, 214–217, https://doi.org/10.1016/j.nimb.2012.08.030, 2013a.
Wacker, L., Fahrni, S. M., Hajdas, I., Molnar, M., Synal, H.-A., Szidat, S., and Zhang, Y. L.: A versatile gas interface for routine radiocarbon analysis with a gas ion source, Nucl. Instrum. Meth. B, 294, 315–319, https://doi.org/10.1016/j.nimb.2012.02.009, 2013b.
Wacker, L., Lippold, J., Molnár, M., and Schulz, H.: Towards radiocarbon dating of single foraminifera with a gas ion source, Nucl. Instrum. Meth. B, 294, 307–310, https://doi.org/10.1016/j.nimb.2012.08.038, 2013c.
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., and Duprat, J.: The timing of the last deglaciation in North Atlantic climate records, Nature, 412, 724–727, 2001.
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo, E.: A global compilation of late Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O, Quaternary Sci. Rev., 24, 853–868, https://doi.org/10.1016/j.quascirev.2003.10.014, 2005.
Wetzel, A. and Werner, F.: Morphology and ecological significance of Zoophycos in deep-sea sediments off NW Africa, Palaeogeogr. Palaeocl., 32, 185–212, https://doi.org/10.1016/0031-0182(80)90040-1, 1980.
Wheatcroft, R. A.: Experimental tests for particle size-dependent bioturbation in the deep ocean, Limnol. Oceanogr., 37, 90–104, 1992.
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past...