Articles | Volume 14, issue 1
https://doi.org/10.5194/cp-14-39-2018
https://doi.org/10.5194/cp-14-39-2018
Research article
 | 
15 Jan 2018
Research article |  | 15 Jan 2018

Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs

Related authors

Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas R. Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2023-36,https://doi.org/10.5194/egusphere-2023-36, 2023
Short summary
Single-species dinoflagellate cyst carbon isotope fractionation in from coretop sediments: environmental controls, CO2-dependency and proxy potential
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-118,https://doi.org/10.5194/bg-2022-118, 2022
Revised manuscript under review for BG
Short summary
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Peter K. Bijl, Joost Frieling, Margot J. Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021,https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020,https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020,https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022,https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019,https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019,https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018,https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016,https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary

Cited articles

Abdul Aziz, H., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., and Gingerich, P. D.: Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming, Geology, 36, 531–534, https://doi.org/10.1130/G24734A.1, 2008.
Algeo, T. J. and Ingall, E.: Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeocl., 256, 130–155, https://doi.org/10.1016/j.palaeo.2007.02.029, 2007.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Early Paleogene dinoflagellate cysts from ODP Hole 959D, Côte d'Ivoire-Ghana Transform Margin, West Africa: New species, biostratigraphy and paleoenvironmental implications, J. Afr. Earth Sci., 123, 123–144, https://doi.org/10.1016/j.jafrearsci.2016.07.014, 2016.
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen, A. S., and Foster, G. L.: Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum, Geology, 42, 739–742, https://doi.org/10.1130/G35637.1, 2014.
Barke, J., Abels, H. A., Sangiorgi, F., Greenwood, D. R., Sweet, A. R., Donders, T., Reichart, G.-J., Lotter, A. F., and Brinkhuis, H.: Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: Clues from palynology, Geology, 39, 427–430, https://doi.org/10.1130/G31640.1, 2011.
Download
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.