Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Volume 7, issue 3
Clim. Past, 7, 831–846, 2011
https://doi.org/10.5194/cp-7-831-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Clim. Past, 7, 831–846, 2011
https://doi.org/10.5194/cp-7-831-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Aug 2011

Research article | 05 Aug 2011

Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events

G. R. Dickens1,2 G. R. Dickens
  • 1Department of Geological Sciences, Stockholm University, Stockholm, Sweden
  • 2Department of Earth Sciences, Rice University, Houston, USA

Abstract. Enormous amounts of 13C-depleted carbon rapidly entered the exogenic carbon cycle during the onset of the Paleocene-Eocene thermal maximum (PETM), as attested to by a prominent negative carbon isotope (δ13C) excursion and deep-sea carbonate dissolution. A widely cited explanation for this carbon input has been thermal dissociation of gas hydrate on continental slopes, followed by release of CH4 from the seafloor and its subsequent oxidation to CO2 in the ocean or atmosphere. Increasingly, papers have argued against this mechanism, but without fully considering existing ideas and available data. Moreover, other explanations have been presented as plausible alternatives, even though they conflict with geological observations, they raise major conceptual problems, or both. Methane release from gas hydrates remains a congruous explanation for the δ13C excursion across the PETM, although it requires an unconventional framework for global carbon and sulfur cycling, and it lacks proof. These issues are addressed here in the hope that they will prompt appropriate discussions regarding the extraordinary carbon injection at the start of the PETM and during other events in Earth's history.

Publications Copernicus
Download
Citation