Articles | Volume 13, issue 7
https://doi.org/10.5194/cp-13-833-2017
https://doi.org/10.5194/cp-13-833-2017
Research article
 | 
13 Jul 2017
Research article |  | 13 Jul 2017

Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

Camille Bréant, Patricia Martinerie, Anaïs Orsi, Laurent Arnaud, and Amaëlle Landais

Related authors

High-precision oxygen isotope (δ18O) measurements of atmospheric dioxygen using optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS)
Clément Piel, Daniele Romanini, Morgane Farradèche, Justin Chaillot, Clémence Paul, Nicolas Bienville, Thomas Lauwers, Joana Sauze, Kévin Jaulin, Frédéric Prié, and Amaëlle Landais
Atmos. Meas. Tech., 17, 6647–6658, https://doi.org/10.5194/amt-17-6647-2024,https://doi.org/10.5194/amt-17-6647-2024, 2024
Short summary
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores – results from the EastGRIP region
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024,https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024,https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024,https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
OF-CEAS laser spectroscopy to measure water isotopes in dry environments: example of application in Antarctica
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2149,https://doi.org/10.5194/egusphere-2024-2149, 2024
Short summary

Related subject area

Subject: Ice Dynamics | Archive: Ice Cores | Timescale: Milankovitch
The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023,https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016,https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr
S. Fujita, F. Parrenin, M. Severi, H. Motoyama, and E. W. Wolff
Clim. Past, 11, 1395–1416, https://doi.org/10.5194/cp-11-1395-2015,https://doi.org/10.5194/cp-11-1395-2015, 2015
Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013,https://doi.org/10.5194/cp-9-2489-2013, 2013
An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013,https://doi.org/10.5194/cp-9-1715-2013, 2013

Cited articles

Alley, R. B.: Firn densification by grain-boundary sliding: a first model, J. Phys. Colloq., 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987.
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015.
Anderson, D. L. and Benson, C. S.: The densification and diagenesis of snow, in Ice and Snow: Properties, Processes and Applications, pp. 391–411, MIT Press., 1963.
Arnaud, L.: Modélisation de la transformation de la neige en glace à la surface des calottes polaires; Etude du transport des gaz dans ces milieux poreux, PhD Thesis, Université Joseph Fournier – Grenoble 1, 294 pp., 1997.
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in, Phys. Ice Core Rec., 26, 39–44, 2000.
Download
Short summary
All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica, to the LGGE firn densification model.