Articles | Volume 13, issue 7
https://doi.org/10.5194/cp-13-819-2017
https://doi.org/10.5194/cp-13-819-2017
Research article
 | 
07 Jul 2017
Research article |  | 07 Jul 2017

Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach

Eva Bauer and Andrey Ganopolski

Related authors

Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles
E. Bauer and A. Ganopolski
Clim. Past, 10, 1333–1348, https://doi.org/10.5194/cp-10-1333-2014,https://doi.org/10.5194/cp-10-1333-2014, 2014

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Antarctic climate response in Last Interglacial simulations using the Community Earth System Model (CESM2)
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past, 20, 2349–2371, https://doi.org/10.5194/cp-20-2349-2024,https://doi.org/10.5194/cp-20-2349-2024, 2024
Short summary
Large-ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation–ice sheet model
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024,https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
New estimation of critical insolation–CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024,https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Toward generalized Milankovitch theory (GMT)
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024,https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary

Cited articles

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007.
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011.
Bauer, E. and Ganopolski, A.: Aeolian dust modeling over the past four glacial cycles with CLIMBER-2, Global Planet. Change, 74, 49–60, 2010.
Bauer, E. and Ganopolski, A.: Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles, Clim. Past, 10, 1333–1348, https://doi.org/10.5194/cp-10-1333-2014, 2014.
Beghin, P., Charbit, S., Dumas, C., Kageyama, M., Roche, D. M., and Ritz, C.: Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of at- mospheric circulation, Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, 2014.
Download
Short summary
Transient glacial cycle simulations with an EMIC and the PDD method require smaller melt factors for inception than for termination and larger factors for American than European ice sheets. The PDD online method with standard values simulates a sea level drop of 250 m at the LGM. The PDD online run reproducing the LGM ice volume has deficient ablation for reversing from glacial to interglacial climate, so termination is delayed. The SEB method with dust impact on snow albedo is seen as superior.