Articles | Volume 12, issue 5
https://doi.org/10.5194/cp-12-1165-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1165-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Karsten Schittek
CORRESPONDING AUTHOR
Geographical Institute, University of Heidelberg, Heidelberg,
Germany
Institute of Geography Education, University of Cologne, Cologne,
Germany
Sebastian T. Kock
Geographical Institute, University of Heidelberg, Heidelberg,
Germany
Institute of Bio- and Geosciences, IGB-3: Agrosphere,
Research Center Jülich, Jülich, Germany
Andreas Lücke
Institute of Bio- and Geosciences, IGB-3: Agrosphere,
Research Center Jülich, Jülich, Germany
Jonathan Hense
Nees Institute, Department of Biology, University of Bonn, Bonn,
Germany
Christian Ohlendorf
GEOPOLAR, Institute of Geography, University of Bremen, Bremen,
Germany
Julio J. Kulemeyer
Centro de Investigación y Transferencia de Jujuy
(CIT-Jujuy), CONICET/National University of Jujuy, Jujuy, Argentina
Liliana C. Lupo
Centro de Investigación y Transferencia de Jujuy
(CIT-Jujuy), CONICET/National University of Jujuy, Jujuy, Argentina
Frank Schäbitz
Institute of Geography Education, University of Cologne, Cologne,
Germany
Related authors
No articles found.
Heye Reemt Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-185, https://doi.org/10.5194/essd-2025-185, 2025
Preprint under review for ESSD
Short summary
Short summary
The Wüstebach catchment in Germany’s TERENO network underwent partial deforestation in 2013 to support natural regrowth in Eifel National Park. This data paper presents 16 years (2010–2024) of estimated hourly stream-water flux data for nine macro- and micronutrients, dissolved ionic aluminum, and dissolved organic carbon, along with measured solute concentrations and discharge rates from two stations—one affected by clear-cutting and one unaffected.
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Cited articles
Abbott, M. B., Seltzer, G. O., Kelts, K. R., and Southon, J.: Holocene paleohydrology of the tropical Andes from lake records, Quaternary Res., 47, 70–80, https://doi.org/10.1006/qres.1996.1874, 1997.
Aldous, A. R.: Nitrogen retention by Sphagnum mosses: responses to atmospheric nitrogen deposition and drought, Can. J. Bot., 80, 721–731, https://doi.org/10.1139/b02-054, 2002.
Asada, T., Warner, B. G., and Aravena, R.: Nitrogen isotope signature variability in plant species from open peatland, Aquat. Bot., 83, 297–307, https://doi.org/10.1016/j.aquabot.2005.05.005, 2005.
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.: The history of South American tropical precipitation for the past 25 000 years, Science, 291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001.
Binford, M. W., Kolata, A. L., Brenner, M., Janusek, J. W., Seddon, M. T., Abbott, M., and Curtis, J. H.: Climate variation and the rise and fall of an Andean civilization, Quaternary Res., 47, 235–248, https://doi.org/10.1006/qres.1997.1882, 1997.
Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., and Rosenmeier, M. F.: A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes, P. Natl. Acad. Sci. USA, 21, 8583–8588, https://doi.org/10.1073/pnas.1003719108, 2011.
Boyle, J. F.: Inorganic geochemical methods in palaeolimnology, in: Tracking Environmental Changes Using Lake Sediments – Physical and Geochemical Methods, edited by: Last, W. M. and Smol, J. P., Kluwer Academic Publishers, Dordrecht, Netherlands, Vol. 2, 83–141, 2001.
Bragazza, L., Limpens, J., Gerdol, R., Grosvernier, P., Hajek, M., Hajek, T., Hajkova, P., Hansen, I., Iacumin, P., Kutnar, L., Rydin, H., and Tahvanainen, T.: Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe, Glob. Change Biol., 11, 106–114, https://doi.org/10.1111/j.1365-2486.2004.00886.x, 2005.
Braun Wilke, R. H., Picchetti, L. P. E., and Villafañe, B. S.: Pasturas montanas de Jujuy, Universidad Nacional de Jujuy, San Salvador de Jujuy, 1999.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Cabrera, A. L.: La vegetación de la Puna Argentina, Revista de Investigaciones Agricolas, 11, 317–412, 1957.
Calaway, M. J.: Ice-cores, sediments and civilisation collapse: a cautionary tale from Lake Titicaca, Antiquity, 79, 778–790, https://doi.org/10.1017/S0003598X00114929, 2005.
Chepstow-Lusty, A., Frogley, M. R., Bauer, B. S., Bush, M., and Herrera, A. T.: A late Holocene record of arid events from the Cuzco region, Peru, J. Quaternary Sci., 18, 491–502, https://doi.org/10.1002/jqs.770, 2003.
Coira, B. and Kay, S. M.: Implications of Quaternary volcanism at the Cerro Tuzgle for crustal and mantle evolution of the Puna Plateau, Central Andes, Argentina, Contrib. Mineral. Petr., 113, 40–58, 1993.
Coronel, J. S., Declerck, S., Maldonado, M., Ollevier, F., and Brendonck, L.: Temporary shallow pools in the high-Andes “bofedal” peatlands: a limnological characterization at different spatial scales, Arch. Sci., 57, 85–96, 2004.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and evaluation of a new multi-function X-ray core scanner, Geol. Soc. Spec. Publ., 267, 51–63, https://doi.org/10.1144/GSL.SP.2006.267.01.04, 2006.
Damman, A. W. H.: Distribution and movement of elements in ombrotrophic peat bogs, Oikos 30, 480–495, 1978.
Damman, A. W. H., Tolonen, K., and Sallantaus, T.: Element retention and removal in ombotrophic peat of Hadetkeidas, a boreal Finnish peat bog, Suo, 43, 137–145, 1992.
Earle, L. R., Warner, B. G., and Aravena, R.: Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano, Quaternary Res., 59, 2–11, https://doi.org/10.1016/S0033-5894(02)00011-X, 2003.
Engel, E., Skrzypek, G., Chuman, T., Šefrna, L., and Mihaljevič, M.: Climate in the Western Cordillera of the Central Andes over the last 4300 years, Quaternary Sci. Rev., 99, 60–77, https://doi.org/10.1016/j.quascirev.2014.06.019, 2014.
Evans, R. D., Bloom, A. J., Surkapana, S., and Ehleringer, J. R.: Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. Cv. T-5) grown under ammonium or nitrate nutrition, Plant Cell Environ., 19, 1317–1323, https://doi.org/10.1111/j.1365-3040.1996.tb00010.x, 1996.
Faegri, K., Kaland P. E., and Krzywinski, K. (Eds.): Textbook of pollen analysis, 4th edition, The Blackburn Press, New Jersey, USA, 1989.
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121–137, https://doi.org/10.1071/PP9820121, 1982.
Flantua, S. G. A., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J. F., Gosling, W. D., Hoyos, I., Ledru, M. P., Montoya, E., Mayle, F., Maldonado, A., Rull, V., Tonello, M. S., Whitney, B. S., and González-Arango, C.: Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records, Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, 2016.
Garreaud, R. D.: Intraseasonal variability of moisture and rainfall over the South American Altiplano, Mon. Weather Rev., 128, 3337–3346, 2000.
Garreaud, R. D. and Aceituno, P.: Interannual rainfall variability over the South American Altiplano, J. Climate, 14, 2779–2789, 2001.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Giordano, G., Pinton, A., Cianfarra, P.,Baez, W., Chiodi, A., Viramonte, J., Norini, G., and Groppelli, G.: Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina), J. Volcanol. Geoth. Res., 249, 77–94, https://doi.org/10.1016/j.jvolgeores.2012.09.009, 2013.
Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P., and Mélières, M.-A.: High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif), Quaternary Sci. Rev., 26, 2644–2660, https://doi.org/10.1016/j.quascirev.2007.07.007, 2007.
Hammer, Ø., Harper, D. A. T., and Paul D. R.: Past: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica, 4, 9 pp., available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 20 April 2015), 2001.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U.: Southward migration of the intertropical convergence zone through the Holocene, Science, 293, 1304–1308, https://doi.org/10.1126/science.1059725, 2001.
Heusser, C. J.: Pollen and spores of Chile, University of Arizona Press, Tucson, USA, 167 pp., 1971.
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Sheng Hu, F., and Brown, T. A.: Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska, Ecol. Monogr., 79, 201–219, https://doi.org/10.1890/07-2019.1, 2009.
Jomelli, V., Favier, V., Rabatel, A., Brunstein, D., Hoffmann, G., and Francou, B.: Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review, Palaeogeogr. Palaeocl., 281, 269–282, https://doi.org/10.1016/j.palaeo.2008.10.033, 2009.
Kabata-Pendias, A.: Trace elements in soils and plants, 4th Edn., CRC press, Boca Raton, USA, 2010.
Kelman Wieder, R. and Lang, G. E.: Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulphur input, Water Air Soil Poll., 29, 309–320, 1986.
Kendall, C.: Tracing nitrogen sources and cycling in catchments, in: Isotope tracers in catchment hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier, Amsterdam, Netherlands, 519–576, 1998.
Kennett, D. J., Breitenbach, S. F., Aquino, V. V., Asmerom, Y., Awe, J., Baldini, J. U., Bartlein, P., Culleton, B. J., Ebert, C., Jazwa, C., Macri, M. J., Marwan, N., Polyak, V., Prufer, K. M., Ridley, H. E., Sodemann, H., Winterhalder, B., and Haug, G. H.: Development and disintegration of Maya political systems in response to climate change, Science, 338, 788–791, https://doi.org/10.1126/science.1226299, 2012.
Krauskopf, K. B.: Separation of manganese from iron in sedimentary processes, Geochim. Cosmochim. Ac., 12, 61–84, https://doi.org/10.1016/0016-7037(57)90018-2, 1957.
Kuentz, A., Ledru, M. P., and Thouret, J. C.: Environmental changes in the highlands of the western Andean Cordillera, southern Peru, during the Holocene, Holocene, 22, 1215–1226, https://doi.org/10.1177/0959683611409772, 2011.
Kulemeyer, J. J.: Holozäne Landschaftsentwicklung im Einzugsgebiet des Río Yavi (Jujuy, Argentinien), Dissertation, University of Bayreuth, Germany, 2005.
Ledru M.-P., Jomelli, V., Bremond L., Cruz, P., Ortuño, T., Bentaleb, I., Sylvestre, F., Kuentz, A., Beck, S., Martin, C., Paillès, C., and Subitani, S.: Evidence for moisture niches in the Bolivian Andes during the mid-Holocene arid period, Holocene, 23, 1545–1557, https://doi.org/10.1177/0959683613496288, 2013.
Lenters, J. D. and Cook, K. H.: On the origin of the Bolivian High and related circulation features of the South Amercan climate, J. Atmos. Sci., 54, 656–677, 1997.
Leonie, J. B. and Acuto, F. A.: Social landscapes in pre-Inca northwestern Argentina, in: Handbook of South American Archaeology, edited by: Silverman, H. and Isbell, W. H., Springer, Berlin, Germany, 587–603, 2008.
Licciardi, J. M., Schaefer, J. M., Taggart, J. R., and Lund, D. C.: Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages, Science, 325, 1677–1679, https://doi.org/10.1126/science.1175010, 2009.
Lopez, P., Navarro, E., Marce, R., Ordoñez, Caputo, L., and Armengol, J.: Elemental ratios in sediments as indicators of ecological processes in Spanish reservoirs, Limnetica, 25, 499–512, 2006.
Margalef, O., Cañellas-Boltà, N., Pla-Rabes, S., Giralt, S., Puevo, J. J., Joosten, H., Rull, V., Buchaca, T., Hernández, A., Valero-Garcés, B. L., Moreno, A., and Sáez, A.: A 70 000 year multiproxy record of climatic and environmental change from Rano Aroi peatland (Easter Island), Global Planet. Change, 108, 72–84, https://doi.org/10.1016/j.gloplacha.2013.05.016, 2013.
Markgraf, V.: Paleoenvironmental history of the last 10 000 years in northwestern Argentina, Zbl. Geo. Pal., 1, 1739–1749, 1985.
Markgraf, V. and D'Antoni, H. L.: Pollen flora of Argentina, University of Arizona Press, Tucson, USA, 208 pp., 1978.
Marshall, J. D., Brooks, J. R., and Lajtha, K: Sources of variation in the stable isotopic composition of plants, in: Stable isotopes in ecology and environmental science, edited by: Michener, R. and Lajtha, K., Blackwell, Oxford, UK, 22–60, 2007.
McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., and Reimer, P. J.: SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP, Radiocarbon, 46, 1087–1092, 2004.
Megonigal, J. P., Hines, M. E., and Vischer, P. T.: Anaerobic metabolism: Linkages to trace gases and aerobic processes, in: Treatise on Geochemistry, Vol. 8 Biogeochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier, Amsterdam, 317–442, 2003.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: High variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, https://doi.org/10.1038/nature03265, 2005.
Montoya, E., Rull, V., and van Geel, B.: Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes, Palaeogeogr. Palaeocl., 297, 169–183, https://doi.org/10.1016/j.palaeo.2010.07.026, 2010.
Montoya, E., Rull, V., and Vegas-Vilarrúbia, T.: Non-pollen palynomorph studies in the Neotropics: The case of Venezuela, Rev. Palaeobot. Palyno., 186, 102–130, https://doi.org/10.1016/j.revpalbo.2012.06.008, 2012.
Morales, M. S., Barberena, A., Belardi, J. B., Borrero, L., Cortegoso, V., Durán, V., Guerci, A., Goñi, R., Gil, A., Neme, G., Yacobacchio, H., and Zarate, M.: Reviewing human-environment interactions in arid regions of southern South America during the past 3000 years, Palaeogeogr. Palaeocl., 281, 283–295, https://doi.org/10.1016/j.palaeo.2008.09.019, 2009.
Morales, M. S., Christie, D. A., Villalba, R., Argollo, J., Pacajes, J., Silva, J. S., Alvarez, C. A., Llancabure, J. C., and Soliz Gamboa, C. C.: Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings, Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012, 2012.
Mujica, M. I., Latorre, C., Maldonado, A., González-Silvestre, L., Pinto, R., Pol-Holz, R., and Santoro, C. M.: Late Quaternary climate change, relict populations and present-day refugia in the northern Atacama Desert: a case study from Quebrada La Higuera (18° S), J. Biogeogr., 42, 76–88, https://doi.org/10.1111/jbi.12383, 2015.
Muller, J., Wüst, R. A. J., Weiss, D., and Hu, Y.: Geochemical and stratigraphic evidence of environmental change at Lynch's Crater, Queensland, Australia, Global Planet. Change, 53, 269–277, https://doi.org/10.1016/j.gloplacha.2006.03.009, 2006.
Muller, J., Kylander, M., Wüst, R. A. J., Weiss, D., Martinez Cortizas, A., LeGrande, A. N., Jennerjahn, T., Behling, H., Anderson, W. T., and Jacobson, G.: Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynch's Crater deposit, Quaternary Sci. Rev., 27, 468–475, https://doi.org/10.1016/j.quascirev.2007.11.006, 2008.
NOAA: National Centers for Environmental Information, available at: https://www.ncdc.noaa.gov/, last access: 9 March 2016.
Norini, G., Cogliati, S., Baez, W., Arnosio, M., Bustos, E., Viramonte, J., and Groppelli, G.: The geological and structural evolution of the Cerro Tuzgle Quaternary stratovolcano in the back-arc region of the Central Andes, Argentina, J. Volcanol. Geoth. Res., 285, 214–228, https://doi.org/10.1016/j.jvolgeores.2014.08.023, 2014.
Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., Mayr, C., Oehlerich, M., Ramón Mercau, J., Wille, M., Corbella, G., St-Onge, G., Schäbitz, F., and Zolitschka, B.: Late Holocene hydrology inferred from lacustrine sediments of Laguna Cháltel (southeastern Argentina), Palaeogeogr., Palaeocl., 411, 229–248, https://doi.org/10.1016/j.palaeo.2014.06.030, 2014.
Olivera, D. E., Tchilinguirian, P., and Grana, L.: Paleoambiente y arqueología en la Puna Meridional argentina: archivos ambientales, escalas de análisis y registro arqueológico, Relaciones de la Sociedad Argentina de Antropología, 29, 229–247, 2004.
Pinto Mendieta, J.: Invertebrados acuaticos, in: Historia natural de un valle en los Andes: La Paz, edited by: Forno, E. and Baudoin, M., Universidad Mayor de San Andrés, La Paz, Bolivia, 521–544, 1991.
Prohaska, F.: The climate of Argentina, Paraguay and Uruguay, in: Climate of Central and South America, edited by: Schwerdtfeger, E., World Survey of Climatology, Elsevier, Amsterdam, Netherlands, 57–69, 1976.
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series, Nonlin. Processes Geophys., 18, 389–404, https://doi.org/10.5194/npg-18-389-2011, 2011.
Reimer, P. J., Bard, E., Bayliss, A., Beck J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: INTCAL13 and MARINE13 radiocarbon age calibration curves 0–50 000 years cal BP, Radiocarbon 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reinhard, M., Müller, B., Gächter, R., and Wehrli, B.: Nitrogen removal in a small constructed wetland: An isotope mass balance approach, Environ. Sci. Technol., 40, 3313–3319, https://doi.org/10.1021/es052393d, 2006.
Rivolta, M. C.: Abandono y reutilización de sitios. La problemática de los contextos habitacionales en quebrada de Humahuaca, Estud. Atacameños, 34, 31–49, https://doi.org/10.4067/S0718-10432007000200003, 2007.
Rothwell, R. G., Hoogakker, B., Thomson, J., Croudace, I. W., and Frenz, M.: Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis, Geol. Soc. Spec. Publ., 267, 79–98, https://doi.org/10.1144/GSL.SP.2006.267.01.06, 2006.
Rull, V. and Vegas-Vailarrúbia, T.: Surface Palynology of a Small Coastal Basin from Venezuela and Potential Paleoecological Applications, Micropaleontology, 45, 365–393, 1999.
Ruthsatz, B.: Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens, Dissertationes Botanicae, 39 pp., 1977.
Ruthsatz, B.: Der Einfluß des Menschen auf die Vegetation und Standorte arider tropischer Hochgebirge am Beispiel der Hochanden, Ber. Deut. Bot. Ges., 96, 535–576, 1983.
Ruthsatz, B.: Flora and ecological conditions of high Andean peatlands of Chile between 18°00′ (Arica) and 40°30′ (Osorno) south latitude, Phytocoenologia, 25, 185–234, 1993.
Ruthsatz, B.: Hartpolstermoore der Hochanden NW-Argentiniens als Indikatoren für Klimagradienten, in: Flora, Vegetation und Naturschutz zwischen Schleswig-Holstein und Südamerika, Festschrift für Klaus Dierßen zum 60. Geburtstag, edited by: Dengler, J., Dolnik, C., and Trempel, M., Mitteilungen der Arbeitsgemeinschaft für Geobotanik in Schleswig-Holstein und Hamburg, 65, 209–238, 2008.
Schäbitz, F., Lupo, L. C., Kulemeyer, J. A., and Kulemeyer, J. J.: Variaciones en la vegetación, el clima y la presencia humana en los últimos 15 000 años en el borde oriental de la Puna, provincias de Jujuy y Salta, noroeste argentino, Asoc. Pal. Argent. Publ., 8, 155–162, 2001.
Schittek, K.: Cushion peatlands in the high Andes of northwest Argentina as archives for palaeoenvironmental research, Dissertationes Botanicae, 412, 2014.
Schittek, K., Forbriger, M., Schäbitz, F., and Eitel, B.: Cushion Peatlands – Fragile Water Resources in the High Andes of Southern Peru, in: Water – Contributions to Sustainable Supply and Use, Landscape and Sustainable Development, edited by: Weingartner, H., Blumenstein, O., and Vavelidis, M., Workinggroup Landscape and Sustainable Development, Salzburg, Austria, 63–84, 2012.
Schittek, K., Forbriger, M., Mächtle, B., Schäbitz, F., Wennrich, V., Reindel, M., and Eitel, B.: Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their impact on pre-Columbian cultures, Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, 2015.
Shotyk, W.: Review of the inorganic geochemistry of peats and peatland waters, Earth-Sci. Rev., 25, 95–176, https://doi.org/10.1016/0012-8252(88)90067-0, 1988.
Skrzypek, G., Engel, Z., Chuman, T., and Šefrna, L.: Distichia peat – A new stable isotope paleoclimate proxy for the Andes, Earth Planet. Sc. Lett., 307, 298–308, https://doi.org/10.1016/j.epsl.2011.05.002, 2011.
Squeo, F. A., Warner, B. G., Aravena, R., and Espinoza, D.: Bofedales: high altitude peatlands of the central Andes, Rev. Chil. Hist. Nat., 79, 245–255, https://doi.org/10.4067/S0716-078X2006000200010, 2006.
Stoffer, D.: astsa: Applied Statistical Time Series Analysis, R package version 1.3, available at: http://CRAN.R-project.org/package=astsa (last access: 2 March 2016), 2014.
Stroup, J. S., Kelly, M. A., Lowell, T. V., Applegate, P. J., and Howley, J. A.: Late Holocene fluctuations of Qori Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes, Geology, 42, 347–350, https://doi.org/10.1130/G35245.1, 2014.
Tebo, B. M., Bargar, J. R., Clement, B. C., Dick, G. J., Murray, K. J., Parker, D., Verity, R., and Webb, S. M.: Biogenic manganese oxides: properties and mechanisms of formation, Annu. Rev. Earth Planet. Sci. 32, 287–328, https://doi.org/10.1146/annurev.earth.32.101802.120213, 2004.
Thomson, J., Croudace, I. W., and Rothwell, R. G.: A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units, Geol. Soc. Spec. Publ., 267, 65–77, https://doi.org/10.1144/GSL.SP.2006.267.01.05, 2006.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: Late Glacial Stage and Holocene Tropical Ice Core Records from Huascarán, Peru, Science, 269, 46–50, https://doi.org/10.1126/science.269.5220.46, 1995.
Torres, G. R., Lupo, L. C., Sánchez, A. C., and Schittek, K.: Aportes a la flora polínica de turberas altoandinas, Provincia de Jujuy, noroeste argentine, Gayana Bot., 69, 30–36, https://doi.org/10.4067/S0717-66432012000100004, 2012.
Troll, C.: The cordilleras of the tropical Andes. Aspects of climatic, phytogeographical and agrarian ecology, in: Geo-Ecology of the mountainous regions of the tropical Americas, edited by: Troll, C., Colloquium Geographicum, 9, Bonn, 1968.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J., Silva Dias, P. L., and Zhang, C.: Toward a unified view of the American Monsoon systems, J. Climate, 19, 4977–5000, https://doi.org/10.1175/JCLI3896.1, 2006.
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., and Novello, V. F.: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, 2012.
Werner, D. J.: Landschaftsökologische Untersuchungen in der argentinischen Puna, in: conference proceedings and scientific disquisition, edited by: Rathjens, C. and Born, M., Deutscher Geographentag Kassel, Germany, 508–529, 1974.
Werner, D. J.: Höhenstufen als Gesellschaftskomplexe, ihre pflanzensoziologische Abgrenzung und Kartierung am Ostrande der argentinischen Puna, in: Assoziationskomplexe (Sigmeten) und ihre praktische Anwendung, edited by: Tüxen, R., Berichte der Internationalen Symposien der Internationalen Vereinigung für Vegetationskunde, 223–239, 1978.
Wright Jr., H. E.: Late Glacial and late Holocene moraines in the Cerros Cuchpanga, central Peru, Quaternary Res., 21, 275–285, https://doi.org/10.1016/0033-5894(84)90068-1, 1984.
Zeileis, A. and Grothendieck, G.: zoo: S3 infrastructure for regular and irregular time series, J. Stat. Softw., 14, 1–27, https://doi.org/10.18637/jss.v014.i06, 2005.
Zhou, J. and Lau, K. M.: Does a Monsoon Climate Exist over South America?, J. Climate, 11, 1020–1040, 1998.
Zipprich, M., Reizner, B., Zech, W., Stingl, H., and Veit, H.: Upper Quaternary landscape and climate evolution in the Sierra de Santa Victoria (north-western Argentina) deduced from geomorphologic and pedogenetic evidence, Zbl. Geo. Pal., 1, 997–1011, 2000.
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Cushion peatlands are versatile climate archives for the study of past environmental changes. We...