Research article 03 Apr 2012
Research article | 03 Apr 2012
Monsoonal response to mid-holocene orbital forcing in a high resolution GCM
J. H. C. Bosmans et al.
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
Technical Note: Characterising and comparing different palaeoclimates with dynamical systems theory
CMIP6/PMIP4 simulations of the mid-Holocene and Last Interglacial using HadGEM3: comparison to the pre-industrial era, previous model versions and proxy data
Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM
Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation
Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations
Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations
Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation
Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene
Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions
Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations
Modeling precipitation δ18O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales
Mid-to-late Holocene temperature evolution and atmospheric dynamics over Europe in regional model simulations
Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere
The biogeophysical climatic impacts of anthropogenic land use change during the Holocene
The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle
Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
The impact of Sahara desertification on Arctic cooling during the Holocene
Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model
Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon
Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration
Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations
Mid-Holocene ocean and vegetation feedbacks over East Asia
A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation
Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum
Can an Earth System Model simulate better climate change at mid-Holocene than an AOGCM? A comparison study of MIROC-ESM and MIROC3
Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity
The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations
Model sensitivity to North Atlantic freshwater forcing at 8.2 ka
Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP
Last interglacial temperature evolution – a model inter-comparison
The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations
Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium
Comparison of 20th century and pre-industrial climate over South America in regional model simulations
Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation changes
Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models
Using synoptic type analysis to understand New Zealand climate during the Mid-Holocene
Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice
Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum – a model study
Strength of forest-albedo feedback in mid-Holocene climate simulations
A regional climate simulation over the Iberian Peninsula for the last millennium
Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene
The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene
Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium
Climate change between the mid and late Holocene in northern high latitudes – Part 2: Model-data comparisons
The Southern Hemisphere semiannual oscillation and circulation variability during the Mid-Holocene
Investigating the impact of Lake Agassiz drainage routes on the 8.2 ka cold event with a climate model
Sources of Holocene variability of oxygen isotopes in paleoclimate archives
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Gabriele Messori and Davide Faranda
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-103, https://doi.org/10.5194/cp-2020-103, 2020
Revised manuscript accepted for CP
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here we present a seemingly very abstract analysis approach that may be easily applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics, and is thus suited to face the above challenges.
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019, https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Short summary
Using the global aerosol–climate model ECHAM-HAM-SALSA, the effect of humans on European climate in the Roman Empire was quantified. Both land use and novel estimates of anthropogenic aerosol emissions were considered. We conducted simulations with fixed sea-surface temperatures to gain a first impression about the anthropogenic impact. While land use effects induced a regional warming for one of the reconstructions, aerosol emissions led to a cooling associated with aerosol–cloud interactions.
Pascale Braconnot, Dan Zhu, Olivier Marti, and Jérôme Servonnat
Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, https://doi.org/10.5194/cp-15-997-2019, 2019
Short summary
Short summary
This study discusses a simulation of the last 6000 years realized with a climate model in which the vegetation and carbon cycle are fully interactive. The long-term southward shift in Northern Hemisphere tree line and Afro-Asian monsoon rain are reproduced. The results show substantial change in tree composition with time over Eurasia and the role of trace gases in the recent past. They highlight the limitations due to model setup and multiple preindustrial vegetation states.
Mi Yan and Jian Liu
Clim. Past, 15, 265–277, https://doi.org/10.5194/cp-15-265-2019, https://doi.org/10.5194/cp-15-265-2019, 2019
Liang Ning, Jian Liu, Raymond S. Bradley, and Mi Yan
Clim. Past, 15, 41–52, https://doi.org/10.5194/cp-15-41-2019, https://doi.org/10.5194/cp-15-41-2019, 2019
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018, https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary
Short summary
We find a rapid increase in simulated dust deposition between 6 and
4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Xinyu Wen, Zhengyu Liu, Zhongxiao Chen, Esther Brady, David Noone, Qingzhao Zhu, and Jian Guan
Clim. Past, 12, 2077–2085, https://doi.org/10.5194/cp-12-2077-2016, https://doi.org/10.5194/cp-12-2077-2016, 2016
Short summary
Short summary
In this paper, we challenge the usefulness of temperature effect and amount effect, the basic assumptions in past climate reconstruction using a stable water isotope proxy, in East Asia on multiple timescales. By modeling several time slices in the past 22 000 years using an isotope-enabled general circulation model, we suggest great caution when interpreting δ18O records in this area as indicators of surface temperature and/or local monsoonal precipitation, especially on a millennial timescale.
Emmanuele Russo and Ulrich Cubasch
Clim. Past, 12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, https://doi.org/10.5194/cp-12-1645-2016, 2016
Short summary
Short summary
In this study we use a RCM for three different goals.
Proposing a model configuration suitable for paleoclimate studies; evaluating the added value of a regional climate model for paleoclimate studies; investigating temperature evolution of the European continent during mid-to-late Holocene.
Results suggest that the RCM seems to produce results in better agreement with reconstructions than its driving GCM. Simulated temperature evolution seems to be too sensitive to changes in insolation.
Yurui Zhang, Hans Renssen, and Heikki Seppä
Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, https://doi.org/10.5194/cp-12-1119-2016, 2016
Short summary
Short summary
We explore how forcings contributed to climate change during the early Holocene that marked the final transition to the warm and stable stage. Our results indicate that 1) temperature at the Holocene onset was lower than in the preindustrial over the northern extratropics with the exception in Alaska, and the magnitude of this cooling varies regionally as a response to varying climate forcings and diverse mechanisms, and 2) the rate of the early Holocene warming was also spatially heterogeneous.
M. Clare Smith, Joy S. Singarayer, Paul J. Valdes, Jed O. Kaplan, and Nicholas P. Branch
Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, https://doi.org/10.5194/cp-12-923-2016, 2016
Short summary
Short summary
We used climate modelling to estimate the biogeophysical impacts of agriculture on the climate over the last 8000 years of the Holocene. Our results show statistically significant surface temperature changes (mainly cooling) from as early as 7000 BP in the JJA season and throughout the entire annual cycle by 2–3000 BP. The changes were greatest in the areas of land use change but were also seen in other areas. Precipitation was also affected, particularly in Europe, India, and the ITCZ region.
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.
S. C. Lewis and A. N. LeGrande
Clim. Past, 11, 1347–1360, https://doi.org/10.5194/cp-11-1347-2015, https://doi.org/10.5194/cp-11-1347-2015, 2015
P. J. Bartlein, M. E. Edwards, S. W. Hostetler, S. L. Shafer, P. M. Anderson, L. B. Brubaker, and A. V. Lozhkin
Clim. Past, 11, 1197–1222, https://doi.org/10.5194/cp-11-1197-2015, https://doi.org/10.5194/cp-11-1197-2015, 2015
Short summary
Short summary
The ongoing warming of the Arctic is producing changes in vegetation and hydrology that, coupled with rising sea level, could mediate global changes. We explored this possibility using regional climate model simulations of a past interval of warming in Beringia and found that the regional-scale changes do strongly mediate the responses to global changes, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in climate change.
F. J. Davies, H. Renssen, M. Blaschek, and F. Muschitiello
Clim. Past, 11, 571–586, https://doi.org/10.5194/cp-11-571-2015, https://doi.org/10.5194/cp-11-571-2015, 2015
J. R. Alder and S. W. Hostetler
Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, https://doi.org/10.5194/cp-11-449-2015, 2015
G.-S. Chen, Z. Liu, and J. E. Kutzbach
Clim. Past, 10, 1269–1275, https://doi.org/10.5194/cp-10-1269-2014, https://doi.org/10.5194/cp-10-1269-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
A. Perez-Sanz, G. Li, P. González-Sampériz, and S. P. Harrison
Clim. Past, 10, 551–568, https://doi.org/10.5194/cp-10-551-2014, https://doi.org/10.5194/cp-10-551-2014, 2014
Z. Tian and D. Jiang
Clim. Past, 9, 2153–2171, https://doi.org/10.5194/cp-9-2153-2013, https://doi.org/10.5194/cp-9-2153-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
R. O'ishi and A. Abe-Ouchi
Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, https://doi.org/10.5194/cp-9-1571-2013, 2013
R. Ohgaito, T. Sueyoshi, A. Abe-Ouchi, T. Hajima, S. Watanabe, H.-J. Kim, A. Yamamoto, and M. Kawamiya
Clim. Past, 9, 1519–1542, https://doi.org/10.5194/cp-9-1519-2013, https://doi.org/10.5194/cp-9-1519-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
M. Berger, J. Brandefelt, and J. Nilsson
Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, https://doi.org/10.5194/cp-9-969-2013, 2013
C. Morrill, A. N. LeGrande, H. Renssen, P. Bakker, and B. L. Otto-Bliesner
Clim. Past, 9, 955–968, https://doi.org/10.5194/cp-9-955-2013, https://doi.org/10.5194/cp-9-955-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
W. Zheng, B. Wu, J. He, and Y. Yu
Clim. Past, 9, 453–466, https://doi.org/10.5194/cp-9-453-2013, https://doi.org/10.5194/cp-9-453-2013, 2013
L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita
Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, https://doi.org/10.5194/cp-9-393-2013, 2013
S. Wagner, I. Fast, and F. Kaspar
Clim. Past, 8, 1599–1620, https://doi.org/10.5194/cp-8-1599-2012, https://doi.org/10.5194/cp-8-1599-2012, 2012
Y. Luan, P. Braconnot, Y. Yu, W. Zheng, and O. Marti
Clim. Past, 8, 1093–1108, https://doi.org/10.5194/cp-8-1093-2012, https://doi.org/10.5194/cp-8-1093-2012, 2012
V. Varma, M. Prange, U. Merkel, T. Kleinen, G. Lohmann, M. Pfeiffer, H. Renssen, A. Wagner, S. Wagner, and M. Schulz
Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, https://doi.org/10.5194/cp-8-391-2012, 2012
D. Ackerley, A. Lorrey, J. A. Renwick, S. J. Phipps, S. Wagner, S. Dean, J. Singarayer, P. Valdes, A. Abe-Ouchi, R. Ohgaito, and J. M. Jones
Clim. Past, 7, 1189–1207, https://doi.org/10.5194/cp-7-1189-2011, https://doi.org/10.5194/cp-7-1189-2011, 2011
N. Fischer and J. H. Jungclaus
Clim. Past, 7, 1139–1148, https://doi.org/10.5194/cp-7-1139-2011, https://doi.org/10.5194/cp-7-1139-2011, 2011
F. Adloff, U. Mikolajewicz, M. Kučera, R. Grimm, E. Maier-Reimer, G. Schmiedl, and K.-C. Emeis
Clim. Past, 7, 1103–1122, https://doi.org/10.5194/cp-7-1103-2011, https://doi.org/10.5194/cp-7-1103-2011, 2011
J. Otto, T. Raddatz, and M. Claussen
Clim. Past, 7, 1027–1039, https://doi.org/10.5194/cp-7-1027-2011, https://doi.org/10.5194/cp-7-1027-2011, 2011
J. J. Gómez-Navarro, J. P. Montávez, S. Jerez, P. Jiménez-Guerrero, R. Lorente-Plazas, J. F. González-Rouco, and E. Zorita
Clim. Past, 7, 451–472, https://doi.org/10.5194/cp-7-451-2011, https://doi.org/10.5194/cp-7-451-2011, 2011
V. Varma, M. Prange, F. Lamy, U. Merkel, and M. Schulz
Clim. Past, 7, 339–347, https://doi.org/10.5194/cp-7-339-2011, https://doi.org/10.5194/cp-7-339-2011, 2011
F. S. E. Vamborg, V. Brovkin, and M. Claussen
Clim. Past, 7, 117–131, https://doi.org/10.5194/cp-7-117-2011, https://doi.org/10.5194/cp-7-117-2011, 2011
D. Hofer, C. C. Raible, and T. F. Stocker
Clim. Past, 7, 133–150, https://doi.org/10.5194/cp-7-133-2011, https://doi.org/10.5194/cp-7-133-2011, 2011
Q. Zhang, H. S. Sundqvist, A. Moberg, H. Körnich, J. Nilsson, and K. Holmgren
Clim. Past, 6, 609–626, https://doi.org/10.5194/cp-6-609-2010, https://doi.org/10.5194/cp-6-609-2010, 2010
D. Ackerley and J. A. Renwick
Clim. Past, 6, 415–430, https://doi.org/10.5194/cp-6-415-2010, https://doi.org/10.5194/cp-6-415-2010, 2010
Y.-X. Li, H. Renssen, A. P. Wiersma, and T. E. Törnqvist
Clim. Past, 5, 471–480, https://doi.org/10.5194/cp-5-471-2009, https://doi.org/10.5194/cp-5-471-2009, 2009
A. N. LeGrande and G. A. Schmidt
Clim. Past, 5, 441–455, https://doi.org/10.5194/cp-5-441-2009, https://doi.org/10.5194/cp-5-441-2009, 2009
Cited articles
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.: The History of South American Tropical Precipitation for the Past 25,000 Years, Science, 291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001.
Balsamo, G., Viterbo, P., Beljaars, A., Hurk, B. V. D., Hirschi, M., Betts, A. K., and Scipal, K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppa, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Bechtold, P. K. M., Jung, T., Doblas-reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteorol. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008.
Behling, H.: South and southeast Brazilian grasslands during Late Quaternary times: a synthesis, Palaeogeogr. Palaeoclimatol., 177, 19–27, 2002.
Berger, A. L.: Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Bonfils, C., de Noblet-Ducoudre, N., Braconnot, P., and Joussaume, S.: Hot Desert Albedo and Climate Change: Mid-Holocene Monsoon in North Africa, J. Climate, 14, 3724–3737, 2001.
Braconnot, P., Joussaume, S., Noblet, N. D., and Ramstein, G.: Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project, Global Planet. Change, 26, 51–66, 2000.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^{i}né, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007a.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget, Clim. Past, 3, 279–296, https://doi.org/10.5194/cp-3-279-2007, 2007b.
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Cook, K. H.: Generation of the African Easterly Jet and Its Role in Determining West African Precipitation, J. Climate, 12, 1165–1184, 1999.
Dallmeyer, A., Claussen, M., and Otto, J.: Contribution of oceanic and vegetation feedbacks to Holocene climate change in monsoonal Asia, Clim. Past, 6, 195–218, https://doi.org/10.5194/cp-6-195-2010, 2010.
Dias De Melo, M. L. and Marengo, J. A.: The Holocene simulation of climate during the mid Holocene The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: simulation of climate during the mid Holocene, Holocene, 18, 501–516, https://doi.org/10.1177/0959683608089205, 2008.
Gao, X., Xu, Y., Zhao, Z., Pal, J. S., and Giorgi, F.: On the role of resolution and topography in the simulation of East Asia precipitation, Theor. Appl. Climatol., 86, 173–185, https://doi.org/10.1007/s00704-005-0214-4, 2006.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.
Hales, K., Neelin, J. D., and Zeng, N.: Interaction of Vegetation and Atmospheric Dynamical Mechanisms in the Mid-Holocene African Monsoon, J. Climate, 19, 4105–4120, 2006.
Hastenrath, S.: Regional Circulation Systems, Kluwer Academic Publishers, 1991.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U.: Southward Migration of the Intertropical Convergence Zone Through the Holocene Southward Migration of the Intertropical Convergence Zone Through the Holocene, Science, 293, 1304–1308, https://doi.org/10.1126/science.1059725, 2001.
Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S., Wyser, K., Wang, X., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M., Christensen, J. H., Hurk, B. V. D., Jimenez, P., Jones, C., Kallberg, P., Koenigk, T., McGrath, R., Miranda, P., Noije, T. V., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willen, U.: EC-Earth: A Seamless Earth System Prediction Approach in Action, B. Am. Meteorol. Soc., 91, 1357–1363, 2010.
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang, W., Hurk, B. v. d., Noije, T. v., Linden, E. v. d., and Wiel, K. v. d.: EC-Earth V2: description and validation of a new seamless Earth system prediction mode, Clim. Dynam., https://doi.org/10.1007/s00382-011-1228-5, in press, 2011.
Hsu, Y.-H., Chou, C., and Wei, K.-Y.: Land-Ocean Asymmetry of Tropical Precipitation Changes in the Mid-Holocene, J. Climate, 23, 4133–4151, https://doi.org/10.1175/2010JCLI3392.1, 2010.
Jolly, D., Prentice, I. C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchet, G., Burney, D., Cazet, J.-P., Cheddadi, R., Edorh, T., Elenga, H., Elmoutaki, S., Guiot, J., Laarif, F., Lamb, H., Lezine, M., Maley, J., Mbenza, M., Peyron, O., Reille, M., Reynaud, I., Riollet, G., Ritchie, J. C., Roche, E., Scott, L., Ssemmanda, I., Straka, H., Umer, M., Van Campo, E., Vilimumbalo, S., Vincens, A., and Waller, M.: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years, J. Biogeogr., 25, 1007–1027, 1998.
Joussaume, S. and Braconnot, P.: Sensitivity of paleoclimate simulation results to season definitions, J. Geophys. Res., 102, 1943–1956, 1997.
Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, F. B., Kutzbach, E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAvaney, B., McFarlane, N., Noblet, N. D., Peltier, W. R., Peterschmitt, J. Y., Pollard, I. D., Rind, D., Royer, F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U.: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP), Geophys. Res. Lett., 26, 859–862, 1999.
Kitoh, A. and Murakami, S.: Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean-atmosphere general circulation model, Paleoceanography, 17, 1–13, https://doi.org/10.1029/2001PA000724, 2002.
Kobayashi, C. and Sugi, M.: Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model, Clim. Dynam., 93, 165–176, https://doi.org/10.1007/s00382-004-0427-8, 2004.
Kohfeld, K. E. and Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets, Quaternary Sci. Rev., 19, 321–345, 2000.
Kutzbach, J. E. and Guetter, P. J.: The Influence of Changing Orbital Parameters and Surface Boundary Conditions on Climate Simulations for the Past 18000 years, J. Atmos. Sci., 43, 1726–1759, 1986.
Kutzbach, J. E. and Otto-Bliesner, B. L.: The Sensitivity of the African-Asian Monsoonal Climate to Orbital Parameter Changes for 9000 Years B.P. in a Low-Resolution General Circulation Model, J. Atmos. Sci., 39, 1177–1188, 1982.
Kutzbach, J. E., Bonan, G. B., Foley, J., and Harrison, S. P.: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene, Nature, 384, 623–626, 1996.
Lal, M., Cubasch, U., Perlwitz, J., and Waszkewitz, J.: Simulation of the Indian monsoon climatology in ECHAM3 climate model: sensitivity to horizontal resolution, Int. J. Climatol., 17, 847–858, 1997.
Levis, B. S., Bonan, G. B., and Bonfils, C.: Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model, Clim. Dynam., 23, 791–802, https://doi.org/10.1007/s00382-004-0477-y, 2004.
Liu, Z., Harrison, S. P., Kutzbach, J., and Otto-Bliesner, B.: Global monsoons in the mid-Holocene and oceanic feedback, Clim. Dynam., 22, 157–182, https://doi.org/10.1007/s00382-003-0372-y, 2004.
Madec, G: NEMO ocean engine, Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris, France, No 27, ISSN~No 1288-1618, 2008.
Marchant, R., Cleef, A., Harrison, S. P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., Almeida, L., Anderson, R., Baied, C., Behling, H., Berrio, J. C., Burbridge, R., Björck, S., Byrne, R., Bush, M., Duivenvoorden, J., Flenley, J., De Oliveira, P., van Geel, B., Graf, K., Gosling, W. D., Harbele, S., van der Hammen, T., Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-Garc\'{i}a, S., Melief, A. M., Moreno, P., Moar, N. T., Prieto, A., van Reenen, G., Salgado-Labouriau, M., Schäbitz, F., Schreve-Brinkman, E. J., and Wille, M.: Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago, Clim. Past, 5, 725–767, https://doi.org/10.5194/cp-5-725-2009, 2009.
Markgraf, V.: Climatic History of Central and South America since 18,000 yr B.P.: Comparison of Pollen Records and Model Simulations, University of Minnesota Press, available at: http://books.google.nl/books?id=c93dGzg8vM8C (last access: July 2011), 1993.
Marzin, C. and Braconnot, P.: Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP, Clim. Dynam., 33, 215–231, https://doi.org/10.1007/s00382-009-0538-3, 2009a.
Marzin, C. and Braconnot, P.: The role of the ocean feedback on Asian and African monsoon variations at 6 kyr and 9.5 kyr BP, Geoscience, 341, 643–655, https://doi.org/10.1016/j.crte.2009.09.001, 2009b.
Masson, V. and Joussaume, S. J.: Energetics of the 6000-yr BP Atmospheric Circulation in Boreal Summer , from Large-Scale to Monsoon Areas: A Study with Two Versions of the LMD AGCM, J. Climate, 10, 2888–2903, 1997.
Mayle, F. E., Burbridge, R., and Killeen, T. J.: Millennial-Scale Dynamics of Southern Amazonian Rain Forests, Science, 290, 2291–2294, https://doi.org/10.1126/science.290.5500.2291, 2000.
Ohgaito, R. and Abe-Ouchi, A.: The role of ocean thermodynamics and dynamics in Asian summer monsoon changes during the mid-Holocene, Clim. Dynam., 29, 39–50, https://doi.org/10.1007/s00382-006-0217-6, 2007.
Patricola, C. M. and Cook, K. H.: Dynamics of the West African Monsoon under Mid-Holocene Precessional Forcing: Regional Climate Model Simulations, J. Climate, 20, 694–716, https://doi.org/10.1175/JCLI4013.1, 2007.
Ruddiman, W. F.: Earth's Climate: Past and Future, W. H. Freeman, http://books.google.nl/books?id=Mpj_GwAACAAJ (last access: June 2011), 2007.
Schmidt, G., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto, V., Cheng, Y., Del Genio, A., Faluvegi, G., Friend, A. D., Hall, T. M., Hu, Y., Kelley, M., Kiang, N. Y., Koch, D., Lacis, A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russel, G. L., Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D., and Yao, M.-S.: Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data, J. Climate, 19, 153–192, 2006.
Shukla, J.: Interannual Variability of Monsoons, Wiley Interscience, 1987.
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubie, F., Campello Cordeira, R., and Suguio, K.: Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years, Palaeogeogr. Palaeocl., 168, 221–235, 2001.
Sperber, K. R., Hameed, S., Potter, G. L., and Boyle, J. S.: Simulation of the Northern Summer Monsoon in the ECMWF Model: Sensitivity to Horizontal Resolution, Mon. Weather Rev., 122, 2461–2481, 1994.
Sterl, A., Bintanja, R., Brodeau, L., Gleeson, E., Koenigk, T., Schmidt, T., Semmler, T., Severijns, C., Wyser, K., and Yang, S.: A look at the ocean in the EC-Earth climate model, Clim. Dynam., accepted, https://doi.org/10.1007/s00382-011-1239-2, in press, 2011.
Street-Perrott, F. A. and Perrot, R. A.: Holocene Vegetation, Lake Levels, and Climate of Africa, University of Minnesota Press, available at: http://books.google.nl/books?id=c93dGzg8vM8C (last access: July 2011), 1993.
Su, H. and Neelin, J. D.: Dynamical mechanisms for African monsoon changes during the mid-Holocene, J. Geophys. Res., 110, D19105, https://doi.org/10.1029/2005JD005806, 2005.
Texier, D., Noblet, N. D., and Braconnot, P.: Sensitivity of the African and Asian Monsoons to Mid-Holocene Insolation and Data-Inferred Surface Changes, J. Climate, 13, 164–181, 2000.
Turcq, B., Albuquerque, A. L. S., Cordeiro, R. C., Sifeddine, A., Simoes Filho, F. F. L., Souza, A. G., Abrao, J. J., Oliveira, F. B. L., Silva, A. O., and Capita, J.: Accumulation of organic carbon in five Brazilian lakes during the Holocene, Sediment. Geol., 148, 319–342, 2002.
Valcke, S.: OASIS3 user guide, PRISM Tech. Rep. 3, 68 pp., available online at http://www.prism/enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf (last access: March 2012), 2006.
Valdes, P. J.: South American palaeoclimate model simulations: how reliable are the models?, J. Quaternary Sci., 15, 357–368, 2000.
Vamborg, F. S. E., Brovkin, V., and Claussen, M.: The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene, Clim. Past, 7, 117–131, https://doi.org/10.5194/cp-7-117-2011, 2011.
Wang, Y., Notaro, M., Liu, Z., Gallimore, R., Levis, S., and Kutzbach, J. E.: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models, Clim. Past, 4, 59–67, https://doi.org/10.5194/cp-4-59-2008, 2008.
Wang, T., Wang, H. J., and Jiang, D.: Mid-Holocene East Asian summer climate as simulated by the PMIP2 models, Palaeogeogr. Palaeocl., 288, 93–102, https://doi.org/10.1016/j.palaeo.2010.01.034, 2010.
Webster, P. J.: The Elementary Monsoon, Wiley Interscience, 1987a.
Webster, P. J.: The Variable and Interactive Monsoon, Wiley Interscience, 1987b.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the prospects for prediction 2 . Description of the Monsoons, J. Geophys. Res., 103, 451–510, 1998.
Winkler, M. G. and Wang, P. K.: The Late-Quaternary Vegetation and Climate of China, University of Minnesota Press, available at: http://books.google.nl/books?id=c93dGzg8vM8C (last access: July 2011), 1993.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling, Clim. Dynam., 29, 211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007.
Xie, P. and Arkin, P. A.: Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Yu, G. and Harrison, S. P.: An evaluation of the simulated water balance of Eurasia and northern Africa at 6000 y BP using lake status data, Clim. Dynam., 12, 723–735, 1996.
Yu, G., Prentice, I. C., Harrison, S. P., and Sun, X.: Pollen-based biome reconstructions for China at 0 and 6000 years, J. Biogeogr., 25, 1055–1069, 1998.
Zhao, Y. and Harrison, S. P.: Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks, Clim. Dynam., 1–31, https://doi.org/10.1007/s00382-011-1193-z, in press, 2011.
Zhao, Y., Braconnot, P., Marti, O., Harrison, S. P., Hewitt, C., Kitoh, A., Liu, A., Mikolajewicz, U., Otto-Bliesner, B., and Weber, S. L.: A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene, Clim. Dynam., 25, 777–800, https://doi.org/10.1007/s00382-005-0075-7, 2005.
Zhou, T. J. and Li, Z. X.: Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM, Clim. Dynam., 19, 167–180, https://doi.org/10.1007/s00382-001-0214-8, 2002.