Articles | Volume 7, issue 2
https://doi.org/10.5194/cp-7-635-2011
https://doi.org/10.5194/cp-7-635-2011
Research article
 | 
17 Jun 2011
Research article |  | 17 Jun 2011

Methane variations on orbital timescales: a transient modeling experiment

T. Y. M. Konijnendijk, S. L. Weber, E. Tuenter, and M. van Weele

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Deglacial climate changes as forced by ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurelien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2022-993,https://doi.org/10.5194/egusphere-2022-993, 2022
Short summary
An energy budget approach to understand the Arctic warming during the Last Interglacial
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022,https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
The first 250 years of the Heinrich 11 iceberg discharge: Last Interglacial HadGEM3-GC3.1 simulations for CMIP6-PMIP4
Maria Vittoria Guarino, Louise Sime, David Schroeder, and Jeff Ridley
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-187,https://doi.org/10.5194/cp-2021-187, 2022
Revised manuscript accepted for CP
Short summary
Milankovitch, the father of paleoclimate modeling
Andre Berger
Clim. Past, 17, 1727–1733, https://doi.org/10.5194/cp-17-1727-2021,https://doi.org/10.5194/cp-17-1727-2021, 2021
Short summary
Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores
Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier
Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021,https://doi.org/10.5194/cp-17-317-2021, 2021
Short summary

Cited articles

Bintanja, R., van de Wal, R. S. W., and Oerlemans, J.: Modelled atmospheric temperatures and global sea levels over the past million years, Nature, 437, 125–128, 2005.
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D.: Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46-49, 1995.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^iné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum –- Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Model, 101, 251–261, 1997.
Cao, M., Marshall, S., and Gregson, K.: Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 14399–14414, 1996.
Download