Articles | Volume 21, issue 5
https://doi.org/10.5194/cp-21-877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal conditions on the coast of Labrador during the late 18th century
Garima Singh
CORRESPONDING AUTHOR
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Rajmund Przybylak
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Przemysław Wyszyński
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Andrzej Araźny
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Konrad Chmist
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Related authors
Rajmund Przybylak, Andrzej Araźny, Przemysław Wyszyński, Garima Singh, and Konrad Chmist
EGUsphere, https://doi.org/10.5194/egusphere-2025-4313, https://doi.org/10.5194/egusphere-2025-4313, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents and analyses a newly discovered unique series of meteorological measurements from Greenland, covering the period 1806–1813. This record, the longest instrumental dataset from the Arctic before 1840, provides valuable information for improving knowledge about the climate of that period. The analysis shows that it was one of the coldest intervals in the past two millennia. Intense volcanic activity and low solar activity are proposed as the main reasons for this cold period.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Rajmund Przybylak, Andrzej Araźny, Przemysław Wyszyński, Garima Singh, and Konrad Chmist
EGUsphere, https://doi.org/10.5194/egusphere-2025-4313, https://doi.org/10.5194/egusphere-2025-4313, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents and analyses a newly discovered unique series of meteorological measurements from Greenland, covering the period 1806–1813. This record, the longest instrumental dataset from the Arctic before 1840, provides valuable information for improving knowledge about the climate of that period. The analysis shows that it was one of the coldest intervals in the past two millennia. Intense volcanic activity and low solar activity are proposed as the main reasons for this cold period.
Rajmund Przybylak, Andrzej Araźny, Janusz Filipiak, Piotr Oliński, Przemysław Wyszyński, and Artur Szwaba
Clim. Past, 21, 1501–1519, https://doi.org/10.5194/cp-21-1501-2025, https://doi.org/10.5194/cp-21-1501-2025, 2025
Short summary
Short summary
A comprehensive database of strong winds up until AD 1600 was created based on documentary evidence for the area within the modern-day borders of Poland. Three types of documentary sources were used: handwritten and unpublished, published, and “secondary” literature. The database contains detailed information about occurrences of strong wind (the location, time, duration and indexation for intensity, extent and character of damage) and the exact textual content of the original weather note.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Elżbieta Szychowska-Krąpiec, Marek Krąpiec, Aleksandra Pospieszyńska, and Radosław Puchałka
Clim. Past, 19, 2389–2408, https://doi.org/10.5194/cp-19-2389-2023, https://doi.org/10.5194/cp-19-2389-2023, 2023
Short summary
Short summary
The present paper upgrades our knowledge of Poland’s climate in the period 1001–1500 using multiproxy data. Four new climate reconstructions have been constructed – three based on dendrochronological data (since the 12th century) and one on documentary evidence (since the 15th century). The results should help improve the knowledge of climate change in Europe, particularly in central Europe.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Cited articles
Alonso-Garcia, M., Kleiven, H. (. F., McManus, J. F., Moffa-Sanchez, P., Broecker, W. S., and Flower, B. P.: Freshening of the Labrador Sea as a trigger for Little Ice Age development, Clim. Past, 13, 317–331, https://doi.org/10.5194/cp-13-317-2017, 2017.
Barry, R. G.: A synoptic climatology for Labrador-Ungava, Scientific Report No. 4, McGill Sub-Arctic Research Papers No. 8, Arctic Meteorology Research Group, Publication in Meteorology No. 17, Montreal, 168 pp., 1959.
Black, H. D., Gebel, G., and Newton, R. R.: The centenary of the Prime Meridian and of International Standard Time, John Hopkins APL Technical Digest, 5, 381–389, 1984.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar Influence on North Atlantic Climate During the Holocene, Science, 294, 2130–2136, 2001.
Borm, J., Kodzik, J., and Charbit, S.: Producing and communicating natural history in the long 18th century: Moravian observations concerning Greenland's climate in unpublished sources, Polar Rec., 57, 1–10, https://doi.org/10.1017/S0032247421000218, 2021.
Bradley, R. S., Briffa, K. R., Cole, J., Hughes, M. K., and Osborn, T. J.: The climate of the last millennium, in: Paleoclimate, global change and the future, Springer, 105–141 pp., https://doi.org/10.1007/978-3-642-55828-3_6, 2003.
Canadian Centre for Climate Services: Historical Data, Government of Canada, https://climate.weather.gc.ca/historical_data/search_historic_data_e.html, last access: 15 May 2024.
Cook, E., Esper, J., and D'Arrigo, R. D.: Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years, Quaternary Sci. Rev., 23, 2063–2074, https://doi.org/10.1016/j.quascirev.2004.08.013, 2004.
D'Arrigo, R, Buckley, B, Kaplan, S., and Woollett, J.: Interannual to multidecadal modes of Labrador climate variability inferred from tree rings, Clim. Dynam. 20, 219–228, https://link.springer.com/article/10.1007/s00382-002-0275-3, 2003.
Demarée, G. R. and Ogilvie, A. E. J.: Climate-related Information in Labrador/Nunatsiavut: Evidence from Moravian Missionary Journals, Bull. Séanc. Acad. R. Sci. Outre-Mer, Meded. Zitt. K. Acad. Overzeese Wet., 57, 391–408, 2011.
Demarée, G. R., Ogilvie, A. E. J., and Mailier, P.: Early meteorological observations in Greenland and Labrador in the 18th century: a contribution of the Moravian Brethren in: Proceedings of the 35th International Symposium on the Okhotsk Sea and Polar Oceans (2020), Mombetsu-2020 Symposium, 16–19 February 2020, OSPORA – Okhotsk Sea and Polar Oceans Research Association, Mombetsu, Hokkaido, Japan, 35–38 p., 2020.
Demarée, G. R. and Ogilvie, A. E. J.: The Moravian missionaries at the Labrador coast and their centuries-long contribution to instrumental meteorological observations, Clim. Change, 91, 423–450, https://doi.org/10.1007/s10584-008-9420-2, 2008.
Demarée, G. R. and Ogilvie, A. E. J.: Early Meteorological Observations in Greenland: The Contributions of David Cranz, Christian Gottlieb Kratzenstein and Christopher Brasen, in: Christianities in the Trans-Atlantic World, Palgrave Macmillan, 141–164, https://doi.org/10.1007/978-3-030-63998-3_7, 2021.
Demarée, G. R. und Ogilvie, A. E. J.: Frühe meteorologische Beobachtungen in Grönland: Die Beiträge von David Cranz, Christian Gottlieb Kratzenstein und Christopher Brasen, in: Vermächtnisse von David Cranz, edited by: Jensz, F. and Petterson, C., Historie von Grönland, Springer, 149–172, https://doi.org/10.1007/978-3-031-43822-6_7, 2024.
Durkalec, A., Furgal, C., Skinner, M. W., and Sheldon, T.: Investigating environmental determinants of injury and trauma in the Canadian north, Int. J. Env. Res. Pub. He., 11, 1536–1548, https://doi.org/10.3390/ijerph110201536, 2014.
Döll, L.: Klima und Wetter an der Küste von Labrador, Aus dem Archiv der Deutschen Seeawarte, 57, 1–21, 1937.
Environment and Climate Change Canada: Climate normals 1991–2020 station data, Government of Canada, https://climate.weather.gc.ca/climate_normals/, last access: 15 May 2024.
Ewert, A.: About calculating thermic continentality of climate, Przegląd, Geograficzny, 44, 273–328, 1972 (in Polish).
Hann, J.: Übersicht über die mittlere Temperatur und den jährlichen Wärmegang an der Küste von Labrador, Meteorol. Z., 13, 422–423, 1896.
Hanhijärvi, S., Tingley, M. P., and Korhola, A.: Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2000 years, Clim. Dynam., 41, 2039–2060, https://doi.org/10.1007/s00382-013-1701-4, 2013.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon, J., and Zorita, E.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, https://doi.org/10.1175/JCLI4011.1, 2007.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, 2017.
Hörhold, M., Münch, T., Weißbach, S., Kipfstuhl, S., Freitag, J., Sasgen, I., Lohmann, G., Vinther, B., and Laepple, T.: Modern temperatures in central–north Greenland warmest in past millennium, Nature, 613, 503–507, https://doi.org/10.1038/s41586-022-05517-z, 2023.
Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (Eds.): Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, 365 pp., ISBN 0 521 40360 X, 1990.
Houghton, J. T., Callander, B. A., and Varney, S. K. (Eds.): Climate Change: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, 200 pp., ISBN 0 521 43829, 1992.
Houghton, J. T., Meila Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (Eds.): Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, 572 pp., ISBN 0 521 56433 6, 1996.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Jeffries, M. O., Overland, J. E., and Perovich, D. K.: The Arctic shifts to a new normal, Phys. Today, 66, 35–40, https://doi.org/10.1063/PT.3.2147, 2013.
Karl, T. R., Knight, R. W., and Plummer, N.: Trends in high-frequency climate variability in the twentieth century, Nature, 377, 217–220, https://doi.org/10.1038/377217a0, 1995.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., and Vinther, B. M.: Arctic Lakes 2k Project Members: Recent warming reverses long-term arctic cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983, 2009.
Kobashi, T., P. Severinghaus, J., Barnola, J-M, Kawamura, K., Carter, T., and Nakaegawa, T.: Persistent multi-decadal Greenland temperature fluctuation through the last millennium, Clim. Change, 100, 733–756, https://doi.org/10.1007/s10584-009-9689-9, 2010.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia, Geogr. Ann. A, 92, 339–351, 2010.
Lüdecke, C.: East Meets West: Meteorological observations of the Moravians in Greenland and Labrador since the 18th century, in: History of Meteorology, Vol. 2, Springer Nature Switzerland, 123–132 pp., 2005.
McKay, N. P. and Kaufman, D. S.: An extended Arctic proxy temperature database for the past 2,000 years, Sci. Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26, 2014.
Mearns, L. O., Giorgi, F., McDaniel, L., and Shields, C.: Analysis of variability and diurnal range of daily temperature in a nested regional climate model: comparison with observations and doubled CO2 results, Clim. Dynam., 11, 193–209, https://doi.org/10.1007/BF00215007, 1995.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Moberg, A., Jones, P. D., Barriendos, M., Bergström, H., Camuffo, D., Cocheo, C., Davies, T. D., Demarée, G., Martin-Vide, J., Maugeri, M., Rodriguez, R., and Verhoeve, T.: Day-to-day variability trends in 160- to 275-year-long European instrumental records, J. Geophys. Res., 105, 22849–22868, https://doi.org/10.1029/2000JD900300, 2000.
Moberg, A., Sonechki, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, https://doi.org/10.1038/nature03265, 2005.
Nordli, Ø., Wyszyński, P., Gjelten, H. M., Isaksen, K., Łupikasza, E., Niedźwiedź, T., and Przybylak, R.: Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018, Polar Res., 39, 3614, https://doi.org/10.33265/polar.v39.3614, 2020.
Ouellet-Bernier, M.-M., de Vernal, A., Chartier, D., and Boucher, É.: Historical Perspectives on Exceptional Climatic Years at the Labrador/Nunatsiavut Coast 1780 to 1950, Quaternary Res., 101, 114–128, https://doi.org/10.1017/qua.2020.103, 2021.
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: Arctic environmental change of the last four centuries, Science, 278, 1251–1256, https://doi.org/10.1126/science.278.5341.1251, 1997.
Naulier, M., Savard, M. M., Bégin, C., Gennaretti, F., Arseneault, D., Marion, J., Nicault, A., and Bégin, Y.: A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees, Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, 2015.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Przybylak, R.: Poland’s climate in the last millennium, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, Oxford, 36 pp., https://doi.org/10.1093/acrefore/9780190228620.013.2, 2016.
Przybylak, R.: Temporal and spatial variation of air temperature over the period of instrumental observations in the Arctic, Int. J. Climatol., 20, 587–614, https://doi.org/10.1002/(SICI)1097-0088(200005)20:6<587::AID-JOC480>3.0.CO;2-H, 2000.
Przybylak, R. and Vizi, Z.: Air temperature changes in the Canadian Arctic from the early instrumental period to modern times, Int. J. Climatol., 25, 1507–1522, https://doi.org/10.1002/joc.1213, 2005.
Przybylak, R. and Wyszyński, P.: Air temperature in Novaya Zemlya Archipelago and Vaygach Island from 1832 to 1920 in the light of early instrumental data, Int. J. Climatol., 37, 3491–3508, https://doi.org/10.1002/joc.4934, 2017.
Przybylak, R., Vízi, Z., and Wyszyński, P.: Air temperature changes in the arctic from 1801 to 1920, Int. J. Climatol., 30, 791–812, https://doi.org/10.1002/joc.1918, 2010.
Przybylak, R., Wyszyński P., and Woźniak M.: Air temperature conditions in northern Nordaustlandet (NE Svalbard) at the end of World War II, Int. J. Climatol., 38, 2775–2791, https://doi.org/10.1002/joc.5459, 2018.
Przybylak, R., Wyszyński, P., and Araźny, A.: Comparison of Early Twentieth Century Arctic Warming and Contemporary Arctic Warming in the light of daily and sub-daily data, J. Climate, 35, 2269–2290, https://doi.org/10.1175/JCLI-D-21-0162.1, 2022.
Przybylak, R., Singh, G., Wyszyński, P., Araźny, A., and Chmist, K.: Air temperature changes in SW Greenland in the second half of the 18th century, Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, 2024.
Rashid, H., Zhang, Z., Piper, D. J. W., Patro, R., and Xu, Y.: Impact of Medieval Climate Anomaly and Little Ice Age on the Labrador Current flow speed and the AMOC reconstructed by the sediment dynamics and biomarker proxies, Palaeogeogr. Palaeocl., 620, 111558, https://doi.org/10.1016/j.palaeo.2023.111558, 2023.
Richerol, T., Pienitz, R., and Rochon, A.: Recent anthropogenic and climatic history of Nunatsiavut fjords (Labrador, Canada), Paleoceanography, 29, 869–892, https://doi.org/10.1002/2014PA002624, 2014.
Screen, J. A.: Arctic amplification decreases temperature variance in northern mid- to high-latitudes, Nat. Clim. Change, 4, 577–582, 2014.
Singh, G., Chmist, K., Przybylak, R., Wyszyński, P., and Araźny, A.: Air temperature data for the Labrador coast during the late 18th, RepOD [data set], https://doi.org/10.18150/VJJFOE, 2024.
Tamulewicz, J.: Pogoda I klimat Ziemi, in: Wielka Encyklopedia Geografii Świata, vo. 5, Wydawnictwo Kurpisz S.C., Poznań, 359 pp., ISBN 83-86600-37-3, 1997.
Treshnikov, A. F. (Ed.): Atlas Arktiki. Glavnoye Upravlenye Geodeziy i Kartografiy, Moscov, 204 pp., 1985.
Viau, A. E. and Gajewski, K.: Reconstructing Millennial-Scale, Regional Paleoclimates of Boreal Canada during the Holocene, J. Climate, 22, 316–330, https://doi.org/10.1175/2008JCLI2342.1, 2009.
Von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, UK, 484 pp., https://doi.org/10.1017/CBO9780511612336, 1999.
Walsh, J. E., Overland, J. E., Groisman, P. Y., and Rudolf, B.: Ongoing climate change in the arctic, Ambio, 40, 6–16, https://doi.org/10.1007/s13280-011-0211-z, 2011.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, 2011.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate variability and change; a data-based review, J. Geol. Soc., 172, 254–263, 2015.
Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F., Nilsen, T., and Francus, P.: Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia, Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, 2018.
Zwiers, F. W. and Kharin, V. V.: Changes in extremes of the climate simulated by CCC GCM2 under CO2 doubling, J. Climate, 11, 2200–2222, https://doi.org/10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2, 1998.
Short summary
This study aims to determine the nature of the climate in Labrador in historical times (late 18th century), which is crucial to understanding past climate changes in the Arctic and their causes. It is equally important to estimate the range of natural climate variability, which can help in correctly recognizing the causes of present and future climate changes – especially the influence of humans on climate. The analysis shows a significant warming from historical to present times.
This study aims to determine the nature of the climate in Labrador in historical times (late...