Articles | Volume 21, issue 5
https://doi.org/10.5194/cp-21-877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal conditions on the coast of Labrador during the late 18th century
Garima Singh
CORRESPONDING AUTHOR
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Rajmund Przybylak
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Przemysław Wyszyński
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Andrzej Araźny
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Konrad Chmist
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Related authors
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Rajmund Przybylak, Andrzej Araźny, Janusz Filipiak, Piotr Oliński, Przemysław Wyszyński, and Artur Szwaba
EGUsphere, https://doi.org/10.5194/egusphere-2025-1042, https://doi.org/10.5194/egusphere-2025-1042, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
A comprehensive database of strong winds based on documentary evidence was created for Poland until AD 1600. Three types of documentary sources were used: handwritten and unpublished, published, and “secondary” literature. The database contains detailed information about the occurrence of strong winds (the location/region, time, duration and indexation for intensity, extent and character of damage), as well as the exact textual content of the original weather note.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Elżbieta Szychowska-Krąpiec, Marek Krąpiec, Aleksandra Pospieszyńska, and Radosław Puchałka
Clim. Past, 19, 2389–2408, https://doi.org/10.5194/cp-19-2389-2023, https://doi.org/10.5194/cp-19-2389-2023, 2023
Short summary
Short summary
The present paper upgrades our knowledge of Poland’s climate in the period 1001–1500 using multiproxy data. Four new climate reconstructions have been constructed – three based on dendrochronological data (since the 12th century) and one on documentary evidence (since the 15th century). The results should help improve the knowledge of climate change in Europe, particularly in central Europe.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Janusz Filipiak, Aleksandra Pospieszyńska, Waldemar Chorążyczewski, Radosław Puchałka, and Henryk Paweł Dąbrowski
Clim. Past, 16, 627–661, https://doi.org/10.5194/cp-16-627-2020, https://doi.org/10.5194/cp-16-627-2020, 2020
Short summary
Short summary
The paper presents the main features of droughts in Poland in the period 996–2015 based on proxy data (documentary and dendrochronological) and instrumental measurements of precipitation. More than 100 droughts were found in documentary sources from the mid-15th century to the end of the 18th century with a maximum in the second halves of the 17th and, particularly, the 18th century. The long-term frequency of droughts in Poland has been stable for the last two or three centuries.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Decadal-Seasonal
Public granaries as a source of proxy data on grain harvests and weather extremes for historical climatology
Climatic impacts on mortality in pre-industrial Sweden
Documents, reanalysis, and global circulation models: a new method for reconstructing historical climate focusing on present-day inland Tanzania, 1856–1890
Processes, spatial patterns, and impacts of the 1743 extreme-heat event in northern China: from the perspective of historical documents
Weather and climate and their human impacts and responses during the Thirty Years' War in central Europe
A global inventory of quantitative documentary evidence related to climate since the 15th century
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Analysis of early Japanese meteorological data and historical weather documents to reconstruct the winter climate between the 1840s and the early 1850s
Climate indices in historical climate reconstructions: a global state of the art
Could phenological records from Chinese poems of the Tang and Song dynasties (618–1279 CE) be reliable evidence of past climate changes?
Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?
“Everything is scorched by the burning sun”: missionary perspectives and experiences of 19th- and early 20th-century droughts in semi-arid central Namibia
Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910
The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements
The climate in south-east Moravia, Czech Republic, 1803–1830, based on daily weather records kept by the Reverend Šimon Hausner
The climate of Granada (southern Spain) during the first third of the 18th century (1706–1730) according to documentary sources
Extracting weather information from a plantation document
Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years
300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America
Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years
Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands
Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence
Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption?
Documentary-derived chronologies of rainfall variability in Antigua, Lesser Antilles, 1770–1890
An underestimated record breaking event – why summer 1540 was likely warmer than 2003
Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps
Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations
Spring-summer temperatures reconstructed for northern Switzerland and southwestern Germany from winter rye harvest dates, 1454–1970
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past, 21, 547–570, https://doi.org/10.5194/cp-21-547-2025, https://doi.org/10.5194/cp-21-547-2025, 2025
Short summary
Short summary
Public granaries served as key infrastructure to improve food security in agrarian societies. Granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE are used here to identify years with bad and good grain harvests, which have been further analysed using documentary data and climatic reconstructions. The data used represent a new source of proxy data for historical–climatological research.
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past, 21, 185–210, https://doi.org/10.5194/cp-21-185-2025, https://doi.org/10.5194/cp-21-185-2025, 2025
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Philip Gooding, Melissa J. Lazenby, Michael R. Frogley, Cecile Dai, and Wenqi Su
Clim. Past, 20, 2701–2718, https://doi.org/10.5194/cp-20-2701-2024, https://doi.org/10.5194/cp-20-2701-2024, 2024
Short summary
Short summary
This article integrates data from historical documents, climate reanalyses, and global circulation models to make time series of seasonal rainfall variability in nineteenth-century Tanzania. It reconstructs climatic conditions using sources and methods that are rooted in both the humanities and natural sciences. This represents a trans-disciplinary breakthrough in the practice of global climate reconstruction.
Le Tao, Yun Su, Xudong Chen, and Fangyu Tian
Clim. Past, 20, 2455–2471, https://doi.org/10.5194/cp-20-2455-2024, https://doi.org/10.5194/cp-20-2455-2024, 2024
Short summary
Short summary
Our study collected 63 historical documents on the extreme heat of 1743 from three kinds of historical materials. Using text analysis methods, such as keyword extraction, grading, and classification, we reconstructed the 1743 extreme heat event. This heat event developed cumulatively, and the key areas affected are consistent with those impacted in modern times. Timely cooling and reducing exposure have been limited but necessary means of addressing extreme heat in both ancient and modern times.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Angela-Maria Burgdorf
Clim. Past, 18, 1407–1428, https://doi.org/10.5194/cp-18-1407-2022, https://doi.org/10.5194/cp-18-1407-2022, 2022
Short summary
Short summary
This comprehensive inventory of quantitative documentary evidence related to climate extending back to 1400 CE promotes the first ever global perspective on documentary climate records. It lays the foundation for incorporating documentary evidence from archives of societies into global-scale climate reconstructions, complementing (early) instrumental measurements and natural climate proxies. Documentary records are particularly relevant in seasons and regions poorly covered by natural proxies.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Junpei Hirano, Takehiko Mikami, and Masumi Zaiki
Clim. Past, 18, 327–339, https://doi.org/10.5194/cp-18-327-2022, https://doi.org/10.5194/cp-18-327-2022, 2022
Short summary
Short summary
The East Asian winter monsoon causes orographic snowfall over the windward side of the Japanese islands (facing the Sea of Japan and the northwesterly winter monsoon flow) and negative temperature anomalies around Japan. In this study, we reconstruct the outbreak of the winter monsoon around Japan for the winter from the 1840s to the early 1850s by using daily weather information recorded in old Japanese diaries and early daily instrumental temperature data.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Yachen Liu, Xiuqi Fang, Junhu Dai, Huanjiong Wang, and Zexing Tao
Clim. Past, 17, 929–950, https://doi.org/10.5194/cp-17-929-2021, https://doi.org/10.5194/cp-17-929-2021, 2021
Short summary
Short summary
There are controversies about whether poetry can be used as one of the evidence sources for past climate changes. We tried to discuss the reliability and validity of phenological records from poems of the Tang and Song dynasties (618–1279 CE) by analyzing their certainties and uncertainties. A standardized processing method for phenological records from poems is introduced. We hope that this study can provide a reference for the extraction and application of phenological records from poems.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Stefan Grab and Tizian Zumthurm
Clim. Past, 16, 679–697, https://doi.org/10.5194/cp-16-679-2020, https://doi.org/10.5194/cp-16-679-2020, 2020
Short summary
Short summary
Here we describe the unique nature of droughts over semi-arid central Namibia (southern Africa) between 1850 and 1920. We establish temporal shifts in the influence and impact that historical droughts had on society and the environment during this period. The paper demonstrates and argues that human experience and the associated reporting of drought events depend strongly on social, environmental, spatial, and societal developmental situations and perspectives.
Zhixin Hao, Maowei Wu, Jingyun Zheng, Jiewei Chen, Xuezhen Zhang, and Shiwei Luo
Clim. Past, 16, 101–116, https://doi.org/10.5194/cp-16-101-2020, https://doi.org/10.5194/cp-16-101-2020, 2020
Short summary
Short summary
Using reconstructed extreme drought/flood chronologies and grain harvest series derived from historical documents, it is found that the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated with lower reconstructed harvests during 801–1910. The association was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which indicates that a warm climate might weaken the impact of extreme drought on poor harvests.
Rudolf Brázdil, Gaston R. Demarée, Andrea Kiss, Petr Dobrovolný, Kateřina Chromá, Miroslav Trnka, Lukáš Dolák, Ladislava Řezníčková, Pavel Zahradníček, Danuta Limanowka, and Sylvie Jourdain
Clim. Past, 15, 1861–1884, https://doi.org/10.5194/cp-15-1861-2019, https://doi.org/10.5194/cp-15-1861-2019, 2019
Short summary
Short summary
The paper presents analysis of the 1842 drought in Europe (except the Mediterranean) based on documentary data and instrumental records. First the meteorological background of this drought is shown (seasonal distribution of precipitation, annual variation of temperature, precipitation and drought indices, synoptic reasons) and effects of drought on water management, agriculture, and in society are described in detail with particular attention to human responses.
Rudolf Brázdil, Hubert Valášek, Kateřina Chromá, Lukáš Dolák, Ladislava Řezníčková, Monika Bělínová, Adam Valík, and Pavel Zahradníček
Clim. Past, 15, 1205–1222, https://doi.org/10.5194/cp-15-1205-2019, https://doi.org/10.5194/cp-15-1205-2019, 2019
Short summary
Short summary
The paper analyses a weather diary of the Reverend Šimon Hausner from Buchlovice in south-east Moravia, Czech Republic, in the 1803–1831 period. From daily weather records, series of numbers of precipitation days, cloudiness, strong winds, fogs, and thunderstorms were created. These records were further used to interpret weighted temperature and precipitation indices. Records of Šimon Hausner represent an important contribution to the study of climate fluctuations on the central European scale.
Fernando S. Rodrigo
Clim. Past, 15, 647–659, https://doi.org/10.5194/cp-15-647-2019, https://doi.org/10.5194/cp-15-647-2019, 2019
Short summary
Short summary
The climate of Granada (southern Spain) during the first third of the 18th century is reconstructed. Results suggest that climatic conditions were similar to those of the first decades of the 20th century, when the global warming signal was of less importance than today. In addition, the paper presents the instrumental data taken in Granada in 1729, probably the first instrumental meteorological data recorded in Spain. Some extreme events, such as the cold wave of winter 1729, are studied.
Gregory Burris, Jane Washburn, Omar Lasheen, Sophia Dorribo, James B. Elsner, and Ronald E. Doel
Clim. Past, 15, 477–492, https://doi.org/10.5194/cp-15-477-2019, https://doi.org/10.5194/cp-15-477-2019, 2019
Short summary
Short summary
Historical documents are full of untapped data on past climate conditions. Our paper sets out a method for extracting this information into a database that is easily utilized by climate scientists. We apply this method to a document from Shirley Plantation covering the years 1816–1842. We then provide two case studies to demonstrate the validity and utility of the new method and database.
Jingyun Zheng, Yingzhuo Yu, Xuezhen Zhang, and Zhixin Hao
Clim. Past, 14, 1135–1145, https://doi.org/10.5194/cp-14-1135-2018, https://doi.org/10.5194/cp-14-1135-2018, 2018
Short summary
Short summary
We investigated the decadal variations of extreme droughts and floods in North China using a 17-site seasonal precipitation reconstruction from a unique historical archive. Then, the link of extreme droughts and floods with ENSO episodes and large volcanic eruptions was discussed. This study helps us understand whether the recent extreme events observed by instruments exceed the natural variability at a regional scale, which may be useful for adaptation to extremes and disasters in the future.
Alvaro Guevara-Murua, Caroline A. Williams, Erica J. Hendy, and Pablo Imbach
Clim. Past, 14, 175–191, https://doi.org/10.5194/cp-14-175-2018, https://doi.org/10.5194/cp-14-175-2018, 2018
Short summary
Short summary
This study reconstructs a new semi-quantitative rainfall index for the Pacific coast of Central America using documentary sources for the period 1640 to 1945. In addition, we explore the various mechanisms and processes that may explain inter-annual and inter-decadal rainfall variability over the Pacific coast of Central America.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Rudolf Brázdil, Ladislava Řezníčková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 12, 1361–1374, https://doi.org/10.5194/cp-12-1361-2016, https://doi.org/10.5194/cp-12-1361-2016, 2016
Short summary
Short summary
The paper deals with climatic and human impacts of the strong Tambora (Indonesia) volcanic eruption in April 1815 over the Czech Lands territory based on analysis of documentary data and instrumental records. While climatic effects were related particularly to summers 1815 and 1816 (1816 is known as "a Year Without Summer"), quite important were societal impacts represented after bad harvest by steep increase in prices and shortages of food.
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
A. Guevara-Murua, C. A. Williams, E. J. Hendy, A. C. Rust, and K. V. Cashman
Clim. Past, 10, 1707–1722, https://doi.org/10.5194/cp-10-1707-2014, https://doi.org/10.5194/cp-10-1707-2014, 2014
A. J. Berland, S. E. Metcalfe, and G. H. Endfield
Clim. Past, 9, 1331–1343, https://doi.org/10.5194/cp-9-1331-2013, https://doi.org/10.5194/cp-9-1331-2013, 2013
O. Wetter and C. Pfister
Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, https://doi.org/10.5194/cp-9-41-2013, 2013
H. Castebrunet, N. Eckert, and G. Giraud
Clim. Past, 8, 855–875, https://doi.org/10.5194/cp-8-855-2012, https://doi.org/10.5194/cp-8-855-2012, 2012
F. S. Rodrigo, J. J. Gómez-Navarro, and J. P. Montávez Gómez
Clim. Past, 8, 117–133, https://doi.org/10.5194/cp-8-117-2012, https://doi.org/10.5194/cp-8-117-2012, 2012
O. Wetter and C. Pfister
Clim. Past, 7, 1307–1326, https://doi.org/10.5194/cp-7-1307-2011, https://doi.org/10.5194/cp-7-1307-2011, 2011
Cited articles
Alonso-Garcia, M., Kleiven, H. (. F., McManus, J. F., Moffa-Sanchez, P., Broecker, W. S., and Flower, B. P.: Freshening of the Labrador Sea as a trigger for Little Ice Age development, Clim. Past, 13, 317–331, https://doi.org/10.5194/cp-13-317-2017, 2017.
Barry, R. G.: A synoptic climatology for Labrador-Ungava, Scientific Report No. 4, McGill Sub-Arctic Research Papers No. 8, Arctic Meteorology Research Group, Publication in Meteorology No. 17, Montreal, 168 pp., 1959.
Black, H. D., Gebel, G., and Newton, R. R.: The centenary of the Prime Meridian and of International Standard Time, John Hopkins APL Technical Digest, 5, 381–389, 1984.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar Influence on North Atlantic Climate During the Holocene, Science, 294, 2130–2136, 2001.
Borm, J., Kodzik, J., and Charbit, S.: Producing and communicating natural history in the long 18th century: Moravian observations concerning Greenland's climate in unpublished sources, Polar Rec., 57, 1–10, https://doi.org/10.1017/S0032247421000218, 2021.
Bradley, R. S., Briffa, K. R., Cole, J., Hughes, M. K., and Osborn, T. J.: The climate of the last millennium, in: Paleoclimate, global change and the future, Springer, 105–141 pp., https://doi.org/10.1007/978-3-642-55828-3_6, 2003.
Canadian Centre for Climate Services: Historical Data, Government of Canada, https://climate.weather.gc.ca/historical_data/search_historic_data_e.html, last access: 15 May 2024.
Cook, E., Esper, J., and D'Arrigo, R. D.: Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years, Quaternary Sci. Rev., 23, 2063–2074, https://doi.org/10.1016/j.quascirev.2004.08.013, 2004.
D'Arrigo, R, Buckley, B, Kaplan, S., and Woollett, J.: Interannual to multidecadal modes of Labrador climate variability inferred from tree rings, Clim. Dynam. 20, 219–228, https://link.springer.com/article/10.1007/s00382-002-0275-3, 2003.
Demarée, G. R. and Ogilvie, A. E. J.: Climate-related Information in Labrador/Nunatsiavut: Evidence from Moravian Missionary Journals, Bull. Séanc. Acad. R. Sci. Outre-Mer, Meded. Zitt. K. Acad. Overzeese Wet., 57, 391–408, 2011.
Demarée, G. R., Ogilvie, A. E. J., and Mailier, P.: Early meteorological observations in Greenland and Labrador in the 18th century: a contribution of the Moravian Brethren in: Proceedings of the 35th International Symposium on the Okhotsk Sea and Polar Oceans (2020), Mombetsu-2020 Symposium, 16–19 February 2020, OSPORA – Okhotsk Sea and Polar Oceans Research Association, Mombetsu, Hokkaido, Japan, 35–38 p., 2020.
Demarée, G. R. and Ogilvie, A. E. J.: The Moravian missionaries at the Labrador coast and their centuries-long contribution to instrumental meteorological observations, Clim. Change, 91, 423–450, https://doi.org/10.1007/s10584-008-9420-2, 2008.
Demarée, G. R. and Ogilvie, A. E. J.: Early Meteorological Observations in Greenland: The Contributions of David Cranz, Christian Gottlieb Kratzenstein and Christopher Brasen, in: Christianities in the Trans-Atlantic World, Palgrave Macmillan, 141–164, https://doi.org/10.1007/978-3-030-63998-3_7, 2021.
Demarée, G. R. und Ogilvie, A. E. J.: Frühe meteorologische Beobachtungen in Grönland: Die Beiträge von David Cranz, Christian Gottlieb Kratzenstein und Christopher Brasen, in: Vermächtnisse von David Cranz, edited by: Jensz, F. and Petterson, C., Historie von Grönland, Springer, 149–172, https://doi.org/10.1007/978-3-031-43822-6_7, 2024.
Durkalec, A., Furgal, C., Skinner, M. W., and Sheldon, T.: Investigating environmental determinants of injury and trauma in the Canadian north, Int. J. Env. Res. Pub. He., 11, 1536–1548, https://doi.org/10.3390/ijerph110201536, 2014.
Döll, L.: Klima und Wetter an der Küste von Labrador, Aus dem Archiv der Deutschen Seeawarte, 57, 1–21, 1937.
Environment and Climate Change Canada: Climate normals 1991–2020 station data, Government of Canada, https://climate.weather.gc.ca/climate_normals/, last access: 15 May 2024.
Ewert, A.: About calculating thermic continentality of climate, Przegląd, Geograficzny, 44, 273–328, 1972 (in Polish).
Hann, J.: Übersicht über die mittlere Temperatur und den jährlichen Wärmegang an der Küste von Labrador, Meteorol. Z., 13, 422–423, 1896.
Hanhijärvi, S., Tingley, M. P., and Korhola, A.: Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2000 years, Clim. Dynam., 41, 2039–2060, https://doi.org/10.1007/s00382-013-1701-4, 2013.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon, J., and Zorita, E.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, https://doi.org/10.1175/JCLI4011.1, 2007.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, 2017.
Hörhold, M., Münch, T., Weißbach, S., Kipfstuhl, S., Freitag, J., Sasgen, I., Lohmann, G., Vinther, B., and Laepple, T.: Modern temperatures in central–north Greenland warmest in past millennium, Nature, 613, 503–507, https://doi.org/10.1038/s41586-022-05517-z, 2023.
Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (Eds.): Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, 365 pp., ISBN 0 521 40360 X, 1990.
Houghton, J. T., Callander, B. A., and Varney, S. K. (Eds.): Climate Change: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, 200 pp., ISBN 0 521 43829, 1992.
Houghton, J. T., Meila Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (Eds.): Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, 572 pp., ISBN 0 521 56433 6, 1996.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Jeffries, M. O., Overland, J. E., and Perovich, D. K.: The Arctic shifts to a new normal, Phys. Today, 66, 35–40, https://doi.org/10.1063/PT.3.2147, 2013.
Karl, T. R., Knight, R. W., and Plummer, N.: Trends in high-frequency climate variability in the twentieth century, Nature, 377, 217–220, https://doi.org/10.1038/377217a0, 1995.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., and Vinther, B. M.: Arctic Lakes 2k Project Members: Recent warming reverses long-term arctic cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983, 2009.
Kobashi, T., P. Severinghaus, J., Barnola, J-M, Kawamura, K., Carter, T., and Nakaegawa, T.: Persistent multi-decadal Greenland temperature fluctuation through the last millennium, Clim. Change, 100, 733–756, https://doi.org/10.1007/s10584-009-9689-9, 2010.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia, Geogr. Ann. A, 92, 339–351, 2010.
Lüdecke, C.: East Meets West: Meteorological observations of the Moravians in Greenland and Labrador since the 18th century, in: History of Meteorology, Vol. 2, Springer Nature Switzerland, 123–132 pp., 2005.
McKay, N. P. and Kaufman, D. S.: An extended Arctic proxy temperature database for the past 2,000 years, Sci. Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26, 2014.
Mearns, L. O., Giorgi, F., McDaniel, L., and Shields, C.: Analysis of variability and diurnal range of daily temperature in a nested regional climate model: comparison with observations and doubled CO2 results, Clim. Dynam., 11, 193–209, https://doi.org/10.1007/BF00215007, 1995.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Moberg, A., Jones, P. D., Barriendos, M., Bergström, H., Camuffo, D., Cocheo, C., Davies, T. D., Demarée, G., Martin-Vide, J., Maugeri, M., Rodriguez, R., and Verhoeve, T.: Day-to-day variability trends in 160- to 275-year-long European instrumental records, J. Geophys. Res., 105, 22849–22868, https://doi.org/10.1029/2000JD900300, 2000.
Moberg, A., Sonechki, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, https://doi.org/10.1038/nature03265, 2005.
Nordli, Ø., Wyszyński, P., Gjelten, H. M., Isaksen, K., Łupikasza, E., Niedźwiedź, T., and Przybylak, R.: Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018, Polar Res., 39, 3614, https://doi.org/10.33265/polar.v39.3614, 2020.
Ouellet-Bernier, M.-M., de Vernal, A., Chartier, D., and Boucher, É.: Historical Perspectives on Exceptional Climatic Years at the Labrador/Nunatsiavut Coast 1780 to 1950, Quaternary Res., 101, 114–128, https://doi.org/10.1017/qua.2020.103, 2021.
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: Arctic environmental change of the last four centuries, Science, 278, 1251–1256, https://doi.org/10.1126/science.278.5341.1251, 1997.
Naulier, M., Savard, M. M., Bégin, C., Gennaretti, F., Arseneault, D., Marion, J., Nicault, A., and Bégin, Y.: A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees, Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, 2015.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Przybylak, R.: Poland’s climate in the last millennium, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, Oxford, 36 pp., https://doi.org/10.1093/acrefore/9780190228620.013.2, 2016.
Przybylak, R.: Temporal and spatial variation of air temperature over the period of instrumental observations in the Arctic, Int. J. Climatol., 20, 587–614, https://doi.org/10.1002/(SICI)1097-0088(200005)20:6<587::AID-JOC480>3.0.CO;2-H, 2000.
Przybylak, R. and Vizi, Z.: Air temperature changes in the Canadian Arctic from the early instrumental period to modern times, Int. J. Climatol., 25, 1507–1522, https://doi.org/10.1002/joc.1213, 2005.
Przybylak, R. and Wyszyński, P.: Air temperature in Novaya Zemlya Archipelago and Vaygach Island from 1832 to 1920 in the light of early instrumental data, Int. J. Climatol., 37, 3491–3508, https://doi.org/10.1002/joc.4934, 2017.
Przybylak, R., Vízi, Z., and Wyszyński, P.: Air temperature changes in the arctic from 1801 to 1920, Int. J. Climatol., 30, 791–812, https://doi.org/10.1002/joc.1918, 2010.
Przybylak, R., Wyszyński P., and Woźniak M.: Air temperature conditions in northern Nordaustlandet (NE Svalbard) at the end of World War II, Int. J. Climatol., 38, 2775–2791, https://doi.org/10.1002/joc.5459, 2018.
Przybylak, R., Wyszyński, P., and Araźny, A.: Comparison of Early Twentieth Century Arctic Warming and Contemporary Arctic Warming in the light of daily and sub-daily data, J. Climate, 35, 2269–2290, https://doi.org/10.1175/JCLI-D-21-0162.1, 2022.
Przybylak, R., Singh, G., Wyszyński, P., Araźny, A., and Chmist, K.: Air temperature changes in SW Greenland in the second half of the 18th century, Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, 2024.
Rashid, H., Zhang, Z., Piper, D. J. W., Patro, R., and Xu, Y.: Impact of Medieval Climate Anomaly and Little Ice Age on the Labrador Current flow speed and the AMOC reconstructed by the sediment dynamics and biomarker proxies, Palaeogeogr. Palaeocl., 620, 111558, https://doi.org/10.1016/j.palaeo.2023.111558, 2023.
Richerol, T., Pienitz, R., and Rochon, A.: Recent anthropogenic and climatic history of Nunatsiavut fjords (Labrador, Canada), Paleoceanography, 29, 869–892, https://doi.org/10.1002/2014PA002624, 2014.
Screen, J. A.: Arctic amplification decreases temperature variance in northern mid- to high-latitudes, Nat. Clim. Change, 4, 577–582, 2014.
Singh, G., Chmist, K., Przybylak, R., Wyszyński, P., and Araźny, A.: Air temperature data for the Labrador coast during the late 18th, RepOD [data set], https://doi.org/10.18150/VJJFOE, 2024.
Tamulewicz, J.: Pogoda I klimat Ziemi, in: Wielka Encyklopedia Geografii Świata, vo. 5, Wydawnictwo Kurpisz S.C., Poznań, 359 pp., ISBN 83-86600-37-3, 1997.
Treshnikov, A. F. (Ed.): Atlas Arktiki. Glavnoye Upravlenye Geodeziy i Kartografiy, Moscov, 204 pp., 1985.
Viau, A. E. and Gajewski, K.: Reconstructing Millennial-Scale, Regional Paleoclimates of Boreal Canada during the Holocene, J. Climate, 22, 316–330, https://doi.org/10.1175/2008JCLI2342.1, 2009.
Von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, UK, 484 pp., https://doi.org/10.1017/CBO9780511612336, 1999.
Walsh, J. E., Overland, J. E., Groisman, P. Y., and Rudolf, B.: Ongoing climate change in the arctic, Ambio, 40, 6–16, https://doi.org/10.1007/s13280-011-0211-z, 2011.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, 2011.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate variability and change; a data-based review, J. Geol. Soc., 172, 254–263, 2015.
Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F., Nilsen, T., and Francus, P.: Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia, Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, 2018.
Zwiers, F. W. and Kharin, V. V.: Changes in extremes of the climate simulated by CCC GCM2 under CO2 doubling, J. Climate, 11, 2200–2222, https://doi.org/10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2, 1998.
Short summary
This study aims to determine the nature of the climate in Labrador in historical times (late 18th century), which is crucial to understanding past climate changes in the Arctic and their causes. It is equally important to estimate the range of natural climate variability, which can help in correctly recognizing the causes of present and future climate changes – especially the influence of humans on climate. The analysis shows a significant warming from historical to present times.
This study aims to determine the nature of the climate in Labrador in historical times (late...