Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic impacts on mortality in pre-industrial Sweden
Tzu Tung Chen
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 413 90 Gothenburg, Sweden
current address: The Public Health Agency of Sweden, 171 82 Solna, Sweden
Rodney Edvinsson
Department of Economic History and International Relations, Stockholm University, 106 91 Stockholm, Sweden
Karin Modig
Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
Hans W. Linderholm
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 413 90 Gothenburg, Sweden
Fredrik Charpentier Ljungqvist
CORRESPONDING AUTHOR
Department of History, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Swedish Collegium for Advanced Study, Linneanum, Villavägen 6c, 752 36 Uppsala, Sweden
Related authors
No articles found.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-41, https://doi.org/10.5194/cp-2024-41, 2024
Revised manuscript accepted for CP
Short summary
Short summary
We study the climatic signal, with focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Feng Chen, Tongwen Zhang, Andrea Seim, Shulong Yu, Ruibo Zhang, Hans W. Linderholm, Zainalobudin V. Kobuliev, Ahsan Ahmadov, and Anvar Kodirov
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-44, https://doi.org/10.5194/cp-2018-44, 2018
Preprint withdrawn
Short summary
Short summary
Here we present a regional tree-ring chronology from the Kuramenian Mountains which accounts for 40.5 % of the variance of the June–July self-calibrating Palmer Drought Severity Index during the instrumental period (1901 to 2012). Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals. This record can provide some information about the linkage of dry extremes of western Central Asia with the Asian summer monsoon.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Decadal-Seasonal
Documents, reanalysis, and global circulation models: a new method for reconstructing historical climate focusing on present-day inland Tanzania, 1856–1890
Processes, spatial patterns, and impacts of the 1743 extreme-heat event in northern China: from the perspective of historical documents
Public granaries as a source of proxy data on grain harvests and weather extremes for historical climatology
Weather and climate and their human impacts and responses during the Thirty Years' War in central Europe
A global inventory of quantitative documentary evidence related to climate since the 15th century
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Analysis of early Japanese meteorological data and historical weather documents to reconstruct the winter climate between the 1840s and the early 1850s
Climate indices in historical climate reconstructions: a global state of the art
Could phenological records from Chinese poems of the Tang and Song dynasties (618–1279 CE) be reliable evidence of past climate changes?
Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?
“Everything is scorched by the burning sun”: missionary perspectives and experiences of 19th- and early 20th-century droughts in semi-arid central Namibia
Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910
The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements
The climate in south-east Moravia, Czech Republic, 1803–1830, based on daily weather records kept by the Reverend Šimon Hausner
The climate of Granada (southern Spain) during the first third of the 18th century (1706–1730) according to documentary sources
Extracting weather information from a plantation document
Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years
300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America
Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years
Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands
Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence
Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption?
Documentary-derived chronologies of rainfall variability in Antigua, Lesser Antilles, 1770–1890
An underestimated record breaking event – why summer 1540 was likely warmer than 2003
Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps
Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations
Spring-summer temperatures reconstructed for northern Switzerland and southwestern Germany from winter rye harvest dates, 1454–1970
Philip Gooding, Melissa J. Lazenby, Michael R. Frogley, Cecile Dai, and Wenqi Su
Clim. Past, 20, 2701–2718, https://doi.org/10.5194/cp-20-2701-2024, https://doi.org/10.5194/cp-20-2701-2024, 2024
Short summary
Short summary
This article integrates data from historical documents, climate reanalyses, and global circulation models to make time series of seasonal rainfall variability in nineteenth-century Tanzania. It reconstructs climatic conditions using sources and methods that are rooted in both the humanities and natural sciences. This represents a trans-disciplinary breakthrough in the practice of global climate reconstruction.
Le Tao, Yun Su, Xudong Chen, and Fangyu Tian
Clim. Past, 20, 2455–2471, https://doi.org/10.5194/cp-20-2455-2024, https://doi.org/10.5194/cp-20-2455-2024, 2024
Short summary
Short summary
Our study collected 63 historical documents on the extreme heat of 1743 from three kinds of historical materials. Using text analysis methods, such as keyword extraction, grading, and classification, we reconstructed the 1743 extreme heat event. This heat event developed cumulatively, and the key areas affected are consistent with those impacted in modern times. Timely cooling and reducing exposure have been limited but necessary means of addressing extreme heat in both ancient and modern times.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-69, https://doi.org/10.5194/cp-2024-69, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Public granaries served as key infrastructures to improve food security in agrarian societies. The granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE were used to identify years with bad and good grain harvests, which have been further confronted with documentary data and climatic reconstructions. Data used represent the new source of proxy data for historical-climatological research.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Angela-Maria Burgdorf
Clim. Past, 18, 1407–1428, https://doi.org/10.5194/cp-18-1407-2022, https://doi.org/10.5194/cp-18-1407-2022, 2022
Short summary
Short summary
This comprehensive inventory of quantitative documentary evidence related to climate extending back to 1400 CE promotes the first ever global perspective on documentary climate records. It lays the foundation for incorporating documentary evidence from archives of societies into global-scale climate reconstructions, complementing (early) instrumental measurements and natural climate proxies. Documentary records are particularly relevant in seasons and regions poorly covered by natural proxies.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Junpei Hirano, Takehiko Mikami, and Masumi Zaiki
Clim. Past, 18, 327–339, https://doi.org/10.5194/cp-18-327-2022, https://doi.org/10.5194/cp-18-327-2022, 2022
Short summary
Short summary
The East Asian winter monsoon causes orographic snowfall over the windward side of the Japanese islands (facing the Sea of Japan and the northwesterly winter monsoon flow) and negative temperature anomalies around Japan. In this study, we reconstruct the outbreak of the winter monsoon around Japan for the winter from the 1840s to the early 1850s by using daily weather information recorded in old Japanese diaries and early daily instrumental temperature data.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Yachen Liu, Xiuqi Fang, Junhu Dai, Huanjiong Wang, and Zexing Tao
Clim. Past, 17, 929–950, https://doi.org/10.5194/cp-17-929-2021, https://doi.org/10.5194/cp-17-929-2021, 2021
Short summary
Short summary
There are controversies about whether poetry can be used as one of the evidence sources for past climate changes. We tried to discuss the reliability and validity of phenological records from poems of the Tang and Song dynasties (618–1279 CE) by analyzing their certainties and uncertainties. A standardized processing method for phenological records from poems is introduced. We hope that this study can provide a reference for the extraction and application of phenological records from poems.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Stefan Grab and Tizian Zumthurm
Clim. Past, 16, 679–697, https://doi.org/10.5194/cp-16-679-2020, https://doi.org/10.5194/cp-16-679-2020, 2020
Short summary
Short summary
Here we describe the unique nature of droughts over semi-arid central Namibia (southern Africa) between 1850 and 1920. We establish temporal shifts in the influence and impact that historical droughts had on society and the environment during this period. The paper demonstrates and argues that human experience and the associated reporting of drought events depend strongly on social, environmental, spatial, and societal developmental situations and perspectives.
Zhixin Hao, Maowei Wu, Jingyun Zheng, Jiewei Chen, Xuezhen Zhang, and Shiwei Luo
Clim. Past, 16, 101–116, https://doi.org/10.5194/cp-16-101-2020, https://doi.org/10.5194/cp-16-101-2020, 2020
Short summary
Short summary
Using reconstructed extreme drought/flood chronologies and grain harvest series derived from historical documents, it is found that the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated with lower reconstructed harvests during 801–1910. The association was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which indicates that a warm climate might weaken the impact of extreme drought on poor harvests.
Rudolf Brázdil, Gaston R. Demarée, Andrea Kiss, Petr Dobrovolný, Kateřina Chromá, Miroslav Trnka, Lukáš Dolák, Ladislava Řezníčková, Pavel Zahradníček, Danuta Limanowka, and Sylvie Jourdain
Clim. Past, 15, 1861–1884, https://doi.org/10.5194/cp-15-1861-2019, https://doi.org/10.5194/cp-15-1861-2019, 2019
Short summary
Short summary
The paper presents analysis of the 1842 drought in Europe (except the Mediterranean) based on documentary data and instrumental records. First the meteorological background of this drought is shown (seasonal distribution of precipitation, annual variation of temperature, precipitation and drought indices, synoptic reasons) and effects of drought on water management, agriculture, and in society are described in detail with particular attention to human responses.
Rudolf Brázdil, Hubert Valášek, Kateřina Chromá, Lukáš Dolák, Ladislava Řezníčková, Monika Bělínová, Adam Valík, and Pavel Zahradníček
Clim. Past, 15, 1205–1222, https://doi.org/10.5194/cp-15-1205-2019, https://doi.org/10.5194/cp-15-1205-2019, 2019
Short summary
Short summary
The paper analyses a weather diary of the Reverend Šimon Hausner from Buchlovice in south-east Moravia, Czech Republic, in the 1803–1831 period. From daily weather records, series of numbers of precipitation days, cloudiness, strong winds, fogs, and thunderstorms were created. These records were further used to interpret weighted temperature and precipitation indices. Records of Šimon Hausner represent an important contribution to the study of climate fluctuations on the central European scale.
Fernando S. Rodrigo
Clim. Past, 15, 647–659, https://doi.org/10.5194/cp-15-647-2019, https://doi.org/10.5194/cp-15-647-2019, 2019
Short summary
Short summary
The climate of Granada (southern Spain) during the first third of the 18th century is reconstructed. Results suggest that climatic conditions were similar to those of the first decades of the 20th century, when the global warming signal was of less importance than today. In addition, the paper presents the instrumental data taken in Granada in 1729, probably the first instrumental meteorological data recorded in Spain. Some extreme events, such as the cold wave of winter 1729, are studied.
Gregory Burris, Jane Washburn, Omar Lasheen, Sophia Dorribo, James B. Elsner, and Ronald E. Doel
Clim. Past, 15, 477–492, https://doi.org/10.5194/cp-15-477-2019, https://doi.org/10.5194/cp-15-477-2019, 2019
Short summary
Short summary
Historical documents are full of untapped data on past climate conditions. Our paper sets out a method for extracting this information into a database that is easily utilized by climate scientists. We apply this method to a document from Shirley Plantation covering the years 1816–1842. We then provide two case studies to demonstrate the validity and utility of the new method and database.
Jingyun Zheng, Yingzhuo Yu, Xuezhen Zhang, and Zhixin Hao
Clim. Past, 14, 1135–1145, https://doi.org/10.5194/cp-14-1135-2018, https://doi.org/10.5194/cp-14-1135-2018, 2018
Short summary
Short summary
We investigated the decadal variations of extreme droughts and floods in North China using a 17-site seasonal precipitation reconstruction from a unique historical archive. Then, the link of extreme droughts and floods with ENSO episodes and large volcanic eruptions was discussed. This study helps us understand whether the recent extreme events observed by instruments exceed the natural variability at a regional scale, which may be useful for adaptation to extremes and disasters in the future.
Alvaro Guevara-Murua, Caroline A. Williams, Erica J. Hendy, and Pablo Imbach
Clim. Past, 14, 175–191, https://doi.org/10.5194/cp-14-175-2018, https://doi.org/10.5194/cp-14-175-2018, 2018
Short summary
Short summary
This study reconstructs a new semi-quantitative rainfall index for the Pacific coast of Central America using documentary sources for the period 1640 to 1945. In addition, we explore the various mechanisms and processes that may explain inter-annual and inter-decadal rainfall variability over the Pacific coast of Central America.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Rudolf Brázdil, Ladislava Řezníčková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 12, 1361–1374, https://doi.org/10.5194/cp-12-1361-2016, https://doi.org/10.5194/cp-12-1361-2016, 2016
Short summary
Short summary
The paper deals with climatic and human impacts of the strong Tambora (Indonesia) volcanic eruption in April 1815 over the Czech Lands territory based on analysis of documentary data and instrumental records. While climatic effects were related particularly to summers 1815 and 1816 (1816 is known as "a Year Without Summer"), quite important were societal impacts represented after bad harvest by steep increase in prices and shortages of food.
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
A. Guevara-Murua, C. A. Williams, E. J. Hendy, A. C. Rust, and K. V. Cashman
Clim. Past, 10, 1707–1722, https://doi.org/10.5194/cp-10-1707-2014, https://doi.org/10.5194/cp-10-1707-2014, 2014
A. J. Berland, S. E. Metcalfe, and G. H. Endfield
Clim. Past, 9, 1331–1343, https://doi.org/10.5194/cp-9-1331-2013, https://doi.org/10.5194/cp-9-1331-2013, 2013
O. Wetter and C. Pfister
Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, https://doi.org/10.5194/cp-9-41-2013, 2013
H. Castebrunet, N. Eckert, and G. Giraud
Clim. Past, 8, 855–875, https://doi.org/10.5194/cp-8-855-2012, https://doi.org/10.5194/cp-8-855-2012, 2012
F. S. Rodrigo, J. J. Gómez-Navarro, and J. P. Montávez Gómez
Clim. Past, 8, 117–133, https://doi.org/10.5194/cp-8-117-2012, https://doi.org/10.5194/cp-8-117-2012, 2012
O. Wetter and C. Pfister
Clim. Past, 7, 1307–1326, https://doi.org/10.5194/cp-7-1307-2011, https://doi.org/10.5194/cp-7-1307-2011, 2011
Cited articles
Achebak, H., Garcia-Aymerich, J., Rey, G., Chen, Z., Méndez-Turrubiates, R. F., and Ballester, J.: Ambient temperature and seasonal variation in inpatient mortality from respiratory diseases: a retrospective observational study, Lancet Reg. Health Eur., 35, 100757, https://doi.org/10.1016/j.lanepe.2023.100757, 2023. a
Åmark, K.: Spannmålshandel och spannmålspolitik i Sverige 1719–1830, Stockholms högskola, Stockholm, 387 pp., 1915. a
Armstrong, B., Bell, M. L., de Sousa Zanotti Stagliorio Coelho, M., Leon Guo, Y.-L., Guo, Y., Goodman, P., Hashizume, M., Honda, Y., Kim, H., Lavigne, E., Michelozzi, P., Hilario, P., Saldiva, N., Schwartz, J., Scortichini, M., Sera, F., Tobias, A., Tong, S., Wu, C.-f., Zanobetti, A., Zeka, A., and Gasparrini, A.: Longer-term impact of high and low temperature on mortality: an international study to clarify length of mortality displacement, Environ. Health Perspect., 125, 107009, https://doi.org/10.1289/EHP1756, 2017. a
Åström, D. O., Edvinsson, S., Hondula, D., Rocklöv, J., and Schumann, B.: On the association between weather variability and total and cause-specific mortality before and during industrialization in Sweden, Demographic Res., 35, 991–1010, https://doi.org/10.4054/DemRes.2016.35.33, 2016. a
Bakhtsiyarava, M., Schinasi, L. H., Sánchez, B. N., Dronova, I., Kephart, J. L., Ju, Y., Gouveia, N., Caiaffa, W. T., O'Neill, M. S., Yamada, G., Arunachalam, S., Diez-Roux, A. V., and Rodríguez, D. A.: Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities, Soc. Sci. Med., 317, 115526, https://doi.org/10.1016/j.socscimed.2022.115526, 2023. a
Ballester, J., Rodó, X., Robine, J.-M., and Herrmann, F. R.: European seasonal mortality and influenza incidence due to winter temperature variability, Nat. Clim. Change., 6, 927–930, https://doi.org/10.1038/nclimate3070, 2016. a
Barnard, S., Chiavenna, C., Fox, S., Charlett, A., Waller, Z., Andrews, N., Goldblatt, P., Burton, P., and De Angelis, D.: Methods for modelling excess mortality across England during the COVID-19 pandemic, Stat. Methods Med. Res., 31, 1790–1802, https://doi.org/10.1177/09622802211046384, 2022. a
Baten, J.: Climate, grain production and nutritional status in southern Germany during the XVIIIth century, J. Eur. Econ. Hist., 30, 9–47, 2001. a
Bengtsson, T. and Dribe, M.: Deliberate control in a natural fertility population: Southern Sweden, 1766–1864, Demography, 43, 727–746, https://doi.org/10.1353/dem.2006.0030, 2006. a
Bengtsson, T., Campbell, C., and Lee, J. Z.: Life under Pressure: Mortality and Living Standards in Europe and Asia, MIT Press, Cambridge, MA, https://doi.org/10.7551/mitpress/4227.001.0001, 2004. a
Bergström, H. and Moberg, A.: Daily air temperature and pressure series for Uppsala (1722–1998), Clim. Change, 53, 213–252, https://doi.org/10.1023/A:1014983229213, 2002. a, b
Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri, M.: The early instrumental warm-bias: a solution for long central European temperature series 1760–2007, Clim. Change, 101, 41–67, https://doi.org/10.1007/s10584-009-9649-4, 2010. a
Bradley, L.: An enquiry into seasonality in baptisms, marriages, and burials, Local Popul. Stud., 4, 21–40, http://www.localpopulationstudies.org.uk/PDF/LPS5/LPS5_1970_18-35.pdf (last access: 17 January 2025), 1970. a
Briffa, K., van der Schrier, G., and Jones, P.: Wet and dry summers in Europe since 1750: evidence of increasing drought, Int. J. Climatol., 29, 1894–1905, https://doi.org/10.1002/joc.1836, 2009. a, b
Brönnimann, S., Allan, R., Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Domínguez-Castro, F., Filipiak, J., Founda, D., Herrera, R. G., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K. S., Jones, P., Jourdain, S., Kiss, A., Lin, K. E., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Moberg, A., Neukom, R., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K. B., Pearce, P. R., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Řezníčková, L., Rodrigo, F. S., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P., Valente, M. A., Vaquero, J. M., Westcottt, N. E., Williamson, F., and Wyszyński, P.: Unlocking pre-1850 instrumental meteorological records: A global inventory, Bull. Am. Meteorol. Soc., 100, ES389–ES413, https://doi.org/10.1175/BAMS-D-19-0040.1, 2019. a
Buchan, A. and Mitchell, A.: On the influence of weather on mortality from different diseases and at different ages, J. Scott. Meteorol. Soc., 4, 187–265, 1875. a
Calleja-Agius, J., England, K., and Calleja, N.: The effect of global warming on mortality, Early Hum. Dev., 155, 105222, https://doi.org/10.1016/j.earlhumdev.2020.105222, 2021. a
Carlton, E. J., Woster, A. P., DeWitt, P., Goldstein, R. S., and Levy, K.: A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases, Int. J. Epidemiol., 45, 117–130, https://doi.org/10.1093/ije/dyv296, 2016. a
Castenbrandt, H.: A forgotten plague: dysentery in Sweden, 1750–1900, Scand. J. Hist., 39, 612–639, https://doi.org/10.1080/03468755.2014.953199, 2014. a
Chen, T. T., Ljungqvist, F. C., Castenbrandt, H., Hildebrandt, F., Ingholt, M. M., Hesson, J. C., Ankarklev, J., Seftigen, K., and Linderholm, H. W.: The spatiotemporal distribution of historical malaria cases in Sweden: a climatic perspective, Malar. J., 20, 1–14, https://doi.org/10.1186/s12936-021-03744-9, 2021. a, b
Collet, D.: Die doppelte Katastrophe: Klima und Kultur in der europäischen Hungerkrise 1770–1772, 466 pp., Vandenhoeck & Ruprecht, Göttingen, ISBN 978-3-525-35592-3, 2019. a
Collet, D. and Schuh, M. (Eds.): Famines During the `Little Ice Age' (1300–1800): Socio-natural Entanglements in Premodern Societies, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-54337-6, 2018. a
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015. a
Costello, E., Kearney, K., and Gearey, B.: Adapting to the Little Ice Age in pastoral regions: An interdisciplinary approach to climate history in north-west Europe, Hist. Methods, 56, 77–96, https://doi.org/10.1080/01615440.2022.2156958, 2023. a
Dai, A., Trenberth, K. E., and Qian, T.: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130, https://doi.org/10.1175/JHM-386.1, 2004. a
Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegy, F., Cui, J., de Luna, K., Guzowski, P., Hambrecht, G., Huhtamaa, H., Izdebski, A., Kleemann, K., Moesswilde, E., Neupane, N., Newfield, T., Pei, Q., Xoplaki, E., and Zappia, N.: Towards a rigorous understanding of societal responses to climate change, Nature, 591, 539–550, https://doi.org/10.1038/s41586-021-03190-2, 2021. a
Demografiska databasen: Centre for Demographic and Ageing Research (CEDAR), U23003 [data set], https://doi.org/10.17197/U23003, 2023. a, b
de Schrijver, E., Bundo, M., Ragettli, M. S., Sera, F., Gasparrini, A., Franco, O. H., and Vicedo-Cabrera, A. M.: Nationwide analysis of the heat- and cold-related mortality trends in Switzerland between 1969 and 2017: the role of population aging, Environ. Health Perspect., 130, 037001, https://doi.org/10.1289/EHP9835, 2022. a
Diaz, H. F., Kovats, R. S., McMichael, A. J., and Nicholls, N.: Climate and human health linkages on multiple timescales, in: History and Climate: Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T. D., and Briffa, K. R., 267–289 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-1-4757-3365-5_13, 2001. a
Dribe, M.: Demand and supply factors in the fertility transition: A county-level analysis of age-specific marital fertility in Sweden, 1880–1930, Eur. Rev. Econ. Hist., 13, 65–94, https://doi.org/10.1017/S1361491608002372, 2009. a
Dribe, M., Olsson, M., and Svensson, P.: Nordic Europe, in: Famine in European history, edited by: Alfani, G. and Ó Gráda, C., 185–211 pp., Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316841235.009, 2017. a, b
Dybdahl, A.: Klimatiske sjokk, uår, sykdom og demografiske kriser i Trøndelag på 1600- og 1700-tallet, Hist. Tidskr., 93, 243–275, https://doi.org/10.18261/ISSN1504-2944-2014-02-05, 2014. a
Eckstein, Z., Schultz, T. P., and Wolpin, K. I.: Short-run fluctuations in fertility and mortality in pre-industrial Sweden, Eur. Econ. Rev., 26, 295–317, https://doi.org/10.1016/0014-2921(84)90093-X, 1984. a, b, c
Edvinsson, R.: Swedish harvests, 1665–1820: Early modern growth in the periphery of European economy, Scand. Econ. Hist. Rev., 57, 2–25, https://doi.org/10.1080/03585520802631592, 2009. a, b
Edvinsson, R.: Recalculating Swedish pre-census demographic data: Was there acceleration in early modern population growth?, Cliometrica, 9, 167–191, https://doi.org/10.1007/s11698-014-0112-z, 2015. a, b, c
Edvinsson, R., Leijonhufvud, L., and Söderberg, J.: Väder, skördar och priser i Sverige, in: Agrarhistoria på många sätt: 28 studier om människan och jorden. Festskrift till Janken Myrdal på hans 60-årsdag, edited by: Liljewall, B., Flygare, I. A., Lange, U., Ljunggren, L., and Söderberg, J., 115–136 pp., The Royal Swedish Academy of Agriculture and Forestry, Stockholm, ISBN 9789185205912, 2009. a, b, c
Edvinsson, R. B.: The response of vital rates to harvest fluctuations in pre-industrial Sweden, Cliometrica, 11, 245–268, https://doi.org/10.1007/s11698-016-0144-7, 2017. a, b, c
Eurowinter Group: Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe, Lancet, 349, 1341–1346, https://doi.org/10.1016/S0140-6736(96)12338-2, 1997. a, b
Fonseca-Rodríguez, O., Sheridan, S. C., Lundevaller, E. H., and Schumann, B.: Hot and cold weather based on the spatial synoptic classification and cause-specific mortality in Sweden: a time-stratified case-crossover study, Int. J. Biometeorol., 64, 1435–1449, https://doi.org/10.1007/s00484-020-01921-0, 2020. a, b
Fonseca-Rodríguez, O., Sheridan, S. C., Lundevaller, E. H., and Schumann, B.: Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: A time series analysis, Environ. Res., 193, 110535, https://doi.org/10.1016/j.envres.2020.110535, 2021. a
Galloway, P. R.: Annual variations in deaths by age, deaths by cause, prices, and weather in London 1670 to 1830, Popul. Stud., 39, 487–505, https://doi.org/10.1080/0032472031000141646, 1985. a
Galloway, P. R.: Long-term fluctuations in climate and population in the preindustrial era, Popul. Dev. Rev., 12, 1–24, https://doi.org/10.2307/1973349, 1986. a
Galloway, P. R.: Population, Prices, and Weather in Preindustrial Europe, Ph.D. thesis, University of California, Berkeley, 954 pp., 1987. a
Galloway, P. R.: Basic patterns in annual variations in fertility, nuptiality, mortality, and prices in pre-industrial Europe, Popul. Stud., 42, 275–303, https://doi.org/10.1080/0032472031000143366, 1988. a
Hajat, S., Armstrong, B. G., Gouveia, N., and Wilkinson, P.: Mortality displacement of heat-related deaths: a comparison of Delhi, São Paulo, and London, Epidemiology, 16, 613–620, https://doi.org/10.1097/01.ede.0000164559.41092.2a, 2005. a
Hallberg, E., Leijonhufvud, L., Linde, M., and Andersson Palm, L.: Skördar i Sverige före agrarrevolutionen: Statistisk undersökning av det rörliga tiondet fr.o.m. 1665: Introduktion till databaser, Department of Historical Studies, University of Gothenburg, Gothenburg, https://doi.org/10.5878/002873, 2016. a
Holopainen, J., Rickard, I. J., and Helama, S.: Climatic signatures in crops and grain prices in 19th-century Sweden, Holocene, 22, 939–945, https://doi.org/10.1177/0959683611434220, 2012. a, b
Huhtamaa, H.: Combining written and tree-ring evidence to trace past food crises: A case study from Finland, in: Famines During the 'Little Ice Age' (1300–1800), edited by: Collet, D. and Schuh, M., 43–66 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-54337-6_3, 2018. a
Huhtamaa, H. and Helama, S.: Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland, J. Hist. Geogr., 57, 40–51, https://doi.org/10.1016/j.jhg.2017.05.011, 2017. a
Huhtamaa, H. and Ljungqvist, F. C.: Climate in Nordic historical research – a research review and future perspectives, Scand. J. Hist., 46, 665–695, https://doi.org/10.1080/03468755.2021.1929455, 2021. a
Huhtamaa, H., Stoffel, M., and Corona, C.: Recession or resilience? Long-range socioeconomic consequences of the 17th century volcanic eruptions in northern Fennoscandia, Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, 2022. a, b
Huldén, L. and Huldén, L.: The decline of malaria in Finland – the impact of the vector and social variables, Malar. J., 8, 94, https://doi.org/10.1186/1475-2875-8-94, 2009. a
Huldén, L., Huldén, L., and Heliövaara, K.: Endemic malaria: an “indoor” disease in northern Europe. Historical data analysed, Malar. J., 4, 1–13, https://doi.org/10.1186/1475-2875-4-19, 2005. a
Imhof, A. E.: Aspekte der Bevölkerungsentwicklung in den nordischen Ländern: 1720–1750, Francke, Giessen, Vol. 1–2, 1122 pp., ISBN 3772011853, 1976. a
Joelsson, L. M. T., Södling, J., Kjellström, E., and Josefsson, W.: Comparison of historical and modern precipitation measurement techniques in Sweden, Idöjárás, 128, 195–218, https://doi.org/10.28974/idojaras.2024.2.4, 2024. a
Junkka, J., Karlsson, L., Lundevaller, E., and Schumann, B.: Climate vulnerability of Swedish newborns: Gender differences and time trends of temperature-related neonatal mortality, 1880–1950, Environ. Res., 192, 110400, https://doi.org/10.1016/j.envres.2020.110400, 2021. a
Karlsson, L., Lundevaller, E., and Schumann, B.: The association between cold extremes and neonatal mortality in Swedish Sápmi from 1800 to 1895, Glob. Health Action, 12, 1623609, https://doi.org/10.1080/16549716.2019.1623609, 2019. a
Klemp, M. and Møller, N. F.: Post-Malthusian dynamics in pre-industrial Scandinavia, Scand. J. Econ., 118, 841–867, https://doi.org/10.1111/sjoe.12155, 2016. a
Larsson, D.: Diseases in early modern Sweden: A parish-level study 1631–1775, Scand. J. Hist., 45, 407–432, https://doi.org/10.1080/03468755.2019.1659178, 2020. a, b
Ledberg, A.: A large decrease in the magnitude of seasonal fluctuations in mortality among elderly explains part of the increase in longevity in Sweden during 20th century, BMC Public Health, 20, 1–10, https://doi.org/10.1186/s12889-020-09749-4, 2020. a
Lee, R. D.: Short-term variation: Vital rates, prices and weather, in: The Population History of England, edited by: Wrigley, E. A. and Schofield, R. S., 356–401 pp., Cambridge University Press, Cambridge, 1981. a
Leijonhufvud, L.: Grain Tithes and Manorial Yields in Early Modern Sweden: Trends and Patterns of Production and Productivity c. 1540–1680, Ph.D. thesis, Swedish University of Agricultural Sciences, Ulltuna, 359 pp., ISBN 9157658293, 2001. a
Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö, D., and Söderlind, U.: Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations, Clim. Change, 101, 109–141, https://doi.org/10.1007/s10584-009-9650-y, 2010. a
Levitt, M., Zonta, F., and Ioannidis, J.: Excess death estimates from multiverse analysis in 2009–2021, Eur. J. Epidemiol., 38, 1129–1139, https://doi.org/10.1007/s10654-023-00998-2, 2023. a, b
Liczbińska, G., Vögele, J. P., and Brabec, M.: Climate and disease in historical urban space: evidence from 19th century Poznań, Poland, Clim. Past, 20, 137–150, https://doi.org/10.5194/cp-20-137-2024, 2024. a
Lilja, S.: Klimatet, döden och makten – 1690-talets klimatkris, in: Leva vid Östersjöns kust: en antologi om naturförutsättningar och resursutnyttjande på båda sidor av Östersjön ca 800–1800, edited by: Lilja, S., 23–79 pp., Södertörns högskola, Stockholm, http://sh.diva-portal.org/smash/get/diva2:213729/FULLTEXT01.pdf (last access: 17 January 2025), 2008. a
Lilja, S.: Klimat och skördar ca 1530–1820, in: Fiske, jordbruk och klimat i Östersjöregionen under förmodern tid: Projektet Förmoderna kustmiljöer, edited by: Lilja, S., 59–119 pp., Södertörns högskola, Stockholm, https://www.diva-portal.org/smash/get/diva2:477376/FULLTEXT01.pdf (last access: 17 January 2025), 2012. a
Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., and Fuentes, M.: Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900 years, Clim. Dynam., 45, 933–947, https://doi.org/10.1007/s00382-014-2328-9, 2015. a
Livi-Bacci, M.: A Concise History of World Population, Wiley-Blackwell, Cambridge, Mass., 279 pp., https://doi.org/10.1002/9781119406822, 2007. a
Ljungqvist, F. C., Seim, A., Krusic, P. J., González-Rouco, J. F., Werner, J. P., Cook, E. R., Zorita, E., Luterbacher, J., Xoplaki, E., Destouni, G., García-Bustamante, E., Aguilar, C. A. M., Seftigen, K., Wang, J., Gagen, M. H., Esper, J., Solomina, O., Fleitmann, D., and Büntgen, U.: European warm-season temperature and hydroclimate since 850 CE, Environ. Res. Lett., 14, 084015, https://doi.org/10.1088/1748-9326/ab2c7e, 2019. a
Ljungqvist, F. C., Seim, A., and Huhtamaa, H.: Climate and society in European history, Wiley Interdisciplin. Rev.: Clim. Change, 12, e691, https://doi.org/10.1002/wcc.691, 2021. a
Ljungqvist, F. C., Christiansen, B., Esper, J., Huhtamaa, H., Leijonhufvud, L., Pfister, C., Seim, A., Skoglund, M. K., and Thejll, P.: Climatic signatures in early modern European grain harvest yields, Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, 2023. a
Ljungqvist, F. C., Seim, A., and Collet, D.: Famines in medieval and early modern Europe – connecting climate and society, Wiley Interdisciplin. Rev.: Clim. Change, 15, e859, https://doi.org/10.1002/wcc.859, 2024. a, b, c, d
Lowen, A. C. and Steel, J.: Roles of humidity and temperature in shaping influenza seasonality, J. Virol., 88, 7692–7695, https://doi.org/10.1128/JVI.03544-13, 2014. a, b
Lowen, A. C., Mubareka, S., Steel, J., and Palese, P.: Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathogens, 3, e151, https://doi.org/10.1371/journal.ppat.0030151, 2007. a
Marti-Soler, H., Gonseth, S., Gubelmann, C., Stringhini, S., Bovet, P., Chen, P.-C., Wojtyniak, B., Paccaud, F., Tsai, D.-H., Zdrojewski, T., and Marques-Vidal, P.: Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations, PloS One, 9, e113500, https://doi.org/10.1371/journal.pone.0113500, 2014. a
Martínez-Solanas, È., Quijal-Zamorano, M., Achebak, H., Petrova, D., Robine, J.-M., Herrmann, F. R., Rodó, X., and Ballester, J.: Projections of temperature-attributable mortality in Europe: a time series analysis of 147 contiguous regions in 16 countries, Lancet Planet. Health, 5, e446–e454, https://doi.org/10.1016/S2542-5196(21)00150-9, 2021. a
Masselot, P., Mistry, M., Vanoli, J., Schneider, R., Iungman, T., Garcia-Leon, D., Ciscar, J.-C., Feyen, L., Orru, H., Urban, A., Breitner, S., Huber, V., Schneider, A., Samoli, E., Stafoggia, M., de’Donato Francesca, Rao, S., Armstrong, B., Nieuwenhuijsen, M., Vicedo-Cabrera, A. M., and Gasparrini, A.: Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe, Lancet Planet. Health, 7, e271–e281, https://doi.org/10.1016/S2542-5196(23)00023-2, 2023. a
McMichael, A. J.: Insights from past millennia into climatic impacts on human health and survival, P. Natl. Acad. Sci. USA, 109, 4730–4737, https://doi.org/10.1073/pnas.1120177109, 2012. a
Mills, J. N., Gage, K. L., and Khan, A. S.: Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan, Environ. Health Perspect., 118, 1507–1514, https://doi.org/10.1289/ehp.0901389, 2010. a
Moberg, A. and Bergström, H.: Homogenization of Swedish temperature data. Part III: The long temperature records from Uppsala and Stockholm, Int. J. Climatol., 17, 667–699, https://doi.org/10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-J, 1997. a
Moberg, A., Bergström, H., Krigsman, J. R., and Svanered, O.: Daily air temperature and pressure series for Stockholm (1756–1998), Clim. Change, 53, 171–212, https://doi.org/10.1007/978-94-010-0371-1_7, 2002. a
Moberg, A., Alexandersson, H., Bergström, H., and Jones, P. D.: Were southern Swedish summer temperatures before 1860 as warm as measured?, Int. J. Climatol., 23, 1495–1521, https://doi.org/10.1002/joc.945, 2003. a
Mokyr, J. and Ó Gráda, C.: What do people die of during famines: the Great Irish Famine in comparative perspective, Eur. Rev. Econ. Hist., 6, 339–363, https://doi.org/10.1017/S1361491602000163, 2002. a, b
Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., and Wakefield, J.: The WHO estimates of excess mortality associated with the COVID-19 pandemic, Nature, 613, 130–137, https://doi.org/10.1038/s41586-022-05522-2, 2023. a
Nepomuceno, M. R., Klimkin, I., Jdanov, D. A., Alustiza-Galarza, A., and Shkolnikov, V. M.: Sensitivity analysis of excess mortality due to the COVID-19 pandemic, Popul. Dev. Rev., 48, 279–302, https://doi.org/10.1111/padr.12475, 2022. a, b
Palmer, W. C.: Meteorological Drought, US Department of Commerce, Weather Bureau, Washington D.C., 1965. a
Pfister, C. and Wanner, H.: Climate and Society in Europe: The Last Thousand Years, Bern: Haupt Verlag, 397 pp., ISBN 978-3-258-08234-9, 2021. a
Post, J. D.: Food Shortage, Climatic Variability, and Epidemic Disease in Preindustrial Europe: The Mortality Peak in the Early 1740s, Cornell University Press, Ithaca, 303 pp., ISBN 0-8014-1773-2, 1985. a
Qiao, Z., Guo, Y., Yu, W., and Tong, S.: Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004, Environ. Health Perspect., 123, 766–772, https://doi.org/10.1289/ehp.1307606, 2015. a
Rau, R., Bohk-Ewald, C., Muszyńska, M. M., and Vaupel, J. W.: Seasonality of causes of death, in: Visualizing Mortality Dynamics in the Lexis Diagram, edited by: Rau, R., Bohk-Ewald, C., Muszyńska, M. M., and Vaupel, J. W., 99–122 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-64820-0_9, 2017. a, b
Raymond, C., Matthews, T., and Horton, R. M.: The emergence of heat and humidity too severe for human tolerance, Sci. Adv., 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838, 2020. a
Robbins Schug, G., Buikstra, J. E., DeWitte, S. N., Baker, B. J., Berger, E., Buzon, M. R., Davies-Barrett, A. M., Goldstein, L., Grauer, A. L., Gregoricka, L. A., Halcrow, S. E., Knudson, K. J., Larsen, C. S., Martin, D. L., Nystrom, K. C., Perry, M. A., Roberts, C. A., Santos, A. L., Stojanowski, C. M., Suby, J. A., Temple, D. H., Tung, T. A., Vlok, M., Watson-Glen, T., and Zakrzewski, S. R.: Climate change, human health, and resilience in the Holocene, P. Natl. Acad. Sci. USA, 120, e2209472120, https://doi.org/10.1073/pnas.2209472120, 2023. a
Rocklöv, J. and Dubrow, R.: Climate change: an enduring challenge for vector-borne disease prevention and control, Nat. Immunol., 21, 479–483, https://doi.org/10.1038/s41590-020-0648-y, 2020. a
Rocklöv, J., Edvinsson, S., Arnqvist, P., De Luna, S. S., and Schumann, B.: Association of seasonal climate variability and age-specific mortality in northern Sweden before the onset of industrialization, Int. J. Environ. Res. Public Health., 11, 6940–6954, https://doi.org/10.3390/ijerph110706940, 2014a. a
Rocklöv, J., Forsberg, B., Ebi, K., and Bellander, T.: Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden, Glob. Health Action, 7, 22737, https://doi.org/10.3402/gha.v7.22737, 2014b. a
Rocklöv, J. P., Forsberg, B., and Meister, K.: Winter mortality modifies the heat-mortality association the following summer, Epidemiology, 19, S87–S88, https://doi.org/10.1183/09031936.00037808, 2008. a
Rohde, R., Muller, R., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A new estimate of the average Earth surface land temperature spanning 1753 to 2011, Geoinform. Geostat.: An Overview, 1, 1–7, https://doi.org/10.4172/2327-4581.1000101, 2013a. a
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele, J., Curry, J., Wickham, C., and Mosher, S.: Berkeley Earth temperature averaging process, Geoinformatics Geostatistics: An Overview, 1, 20–100, https://doi.org/10.4172/2327-4581.1000103, 2013b. a
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/ Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020 (data available at: https://berkeleyearth.org/data/, last access: 17 January). a, b
Romanello, M., Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman, D., Arnell, N., Ayeb-Karlsson, S., and Ford, L. B.: The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels, Lancet, 400, 1619–1654, https://doi.org/10.1016/S0140-6736(22)01540-9, 2022. a
Rossen, L. M., Branum, A. M., Ahmad, F. B., Sutton, P., and Anderson, R. N.: Excess deaths associated with COVID-19, by age and race and ethnicity – United States, January 26–October 3, 2020, Morb. Mortal. Wkly. Rep., 69, 1522, https://doi.org/10.15585/mmwr.mm6942e2, 2020. a
Schumann, B., Edvinsson, S., Evengård, B., and Rocklöv, J.: The influence of seasonal climate variability on mortality in pre-industrial Sweden, Glob. Health Action, 6, 20153, https://doi.org/10.3402/gha.v6i0.20153, 2013. a, b
Schumann, B., Häggström Lundevaller, E., and Karlsson, L.: Weather extremes and perinatal mortality – Seasonal and ethnic differences in northern Sweden, 1800–1895, PLoS One, 14, e0223538, https://doi.org/10.1371/journal.pone.0223538, 2019. a
Seftigen, K., Goosse, H., Klein, F., and Chen, D.: Hydroclimate variability in Scandinavia over the last millennium – insights from a climate model–proxy data comparison, Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, 2017. a
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability, Clim. Dynam., 55, 579–594, https://doi.org/10.1007/s00382-020-05287-2, 2020. a
Semenza, J. C. and Menne, B.: Climate change and infectious diseases in Europe, Lancet Infect. Dis., 9, 365–375, https://doi.org/10.1016/S1473-3099(09)70104-5, 2009. a
Sera, F., Armstrong, B., Tobias, A., Vicedo-Cabrera, A. M., Åström, C., Bell, M. L., Chen, B.-Y., de Sousa Zanotti Stagliorio Coelho, M., Matus Correa, P., Cruz, J. C., Dang, T. N., Hurtado-Diaz, M., Do Van, D., Forsberg, B., Guo, Y. L., Guo, Y., Hashizume, M., Honda, Y., Iñiguez, C., Jaakkola, J. J. K., Kan, H., Kim, H., Lavigne, E., Michelozzi, P., Ortega, N. V., Osorio, S., Pascal, M., Ragettli, M. S., Ryti, N. R. I., Saldiva, P. H. N., Schwartz, J., Scortichini, M., Seposo, X., Tong, S., Zanobetti, A., and Gasparrini, A.: How urban characteristics affect vulnerability to heat and cold: a multi-country analysis, Int. J. Epidemiol., 48, 1101–1112, https://doi.org/10.1093/ije/dyz008, 2019. a
Skoglund, M. K.: Climate variability and grain production in Scania, 1702–1911, Clim. Past, 18, 405–433, https://doi.org/10.5194/cp-18-405-2022, 2022. a
Skoglund, M. K.: The impact of drought on northern European pre-industrial agriculture, Holocene, 34, 120–135, https://doi.org/10.1177/09596836231200431, 2024. a
Sköld, P.: From inoculation to vaccination: Smallpox in Sweden in the eighteenth and nineteenth centuries, Popul. Stud., 50, 247–262, https://doi.org/10.1080/0032472031000149336, 1996. a
Slavin, P.: Climate and famines: A historical reassessment, Wiley Interdisciplin. Rev.: Clim. Change, 7, 433–447, https://doi.org/10.1002/wcc.395, 2016. a
Slicher van Bath, B. H.: Yield Ratios, 1810–1820, Afdeling Agrarische Geschiedenis, Universiteit Wageningen, Wageningen, 264 pp., https://edepot.wur.nl/296371 (last access: 17 January 2025), 1963. a
Statistics Sweden: Historisk statistik för Sverige Del 1. Befolkning 1720–1967, Stockholm: SCB, 177 pp., http://hdl.handle.net/2077/854 (last access: 17 January 2025), 1969. a
Statistics Sweden: Information About the Statistics on Mortality, Statistics Sweden, Örebro, 7 pp., https://www.scb.se/contentassets/1d234c96211e427997250c52de572504/text-om-statistiken-over-doda_en.pdf (last access: 17 January 2025), 2020. a
Utterström, G.: Climatic fluctuations and population problems in early modern history, Scand. Econ. Hist. Rev., 3, 3–47, https://doi.org/10.1080/03585522.1955.10411467, 1955. a
van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., Dasandi, N., Jankin, S., Achebak, H., Ballester, J., Bechara, H., Callaghan, M. W., Chambers, J., Dasgupta, S., Drummond, P., Farooq, Z., Gasparyan, O., Gonzalez-Reviriego, N., Hamilton, I., Hänninen, R., Kazmierczak, A., Kendrovski, V., Kennard, H., Kiesewetter, G., Lloyd, S. J., Lotto Batista, M., Martinez-Urtaza, J., Milà, C., Minx, J. C., Nieuwenhuijsen, M., Palamarchuk, J., Quijal-Zamorano, M., Robinson, E. J. Z., Scamman, D., Schmoll, O., Sewe, M. O., Sjödin, H., Sofiev, M., Solaraju-Murali, B., Springmann, M., Triñanes, J., Anto, J. M., Nilsson, M., and Lowe, R.: The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future, Lancet Public Health, 7, e942–e965, https://doi.org/10.1016/S2468-2667(22)00197-9, 2022. a, b
van der Schrier, G., Jones, P., and Briffa, K.: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration, J. Geophys. Res.-Atmos., 116, D03106, https://doi.org/10.1029/2010JD015001, 2011. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Change, 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021. a
Waldinger, M.: The economic effects of long-term climate change: evidence from the Little Ice Age, J. Polit. Econ., 130, 2275–2314, https://doi.org/10.1086/720393, 2022. a
Walter, J. and Schofield, R.: Famine, disease and crisis mortality in early modern society, in: Famine, Disease and the Social Order in Early Modern Society, edited by: Walter, J., Schofield, R., and Appleby, A. B., 1–74 pp., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511599637.003, 1989. a
Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., Aravkin, A. Y., Bisignano, C., Barber, R. M., Alam, T., Fuller, J. E., May, E. A., Jones, D. P., Frisch, M. E., Abbafati, C., Adolph, C., Allorant, A., Amlag, J. O., Bang-Jensen, B., Bertolacci, G. J., Bloom, S. S., Carter, A., Castro, E., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., Collins, J. K., Cooperrider, K., Dai, X., Dangel, W. J., Daoud, F., Dapper, C., Deen, A., Duncan, B. B., Erickson, M., Ewald, S. B., Fedosseeva, T., Ferrari, A. J., Frostad, J. J., Fullman, N., Gallagher, J., Gamkrelidze, A., Guo, G., He, J., Helak, M., Henry, N. J., Hulland, E. N., Huntley, B. M., Kereselidze, M., Lazzar-Atwood, A., LeGrand, K. E., Lindstrom, A., Linebarger, E., Lotufo, P. A., Lozano, R., Magistro, B., Malta, D. C., Månsson, J., Mantilla Herrera, A. M., Marinho, F., Mirkuzie, A. H., Misganaw, A. T., Monasta, L., Naik, P., Nomura, S., O'Brien, E. G., O'Halloran, J. K., Olana, L. T., Ostroff, S. M., Penberthy, L., Reiner Jr, R. C., Reinke, G., Ribeiro, A. L. P., Santomauro, D. F., Schmidt, M. I., Shaw, D. H., Sheena, B. S., Sholokhov, A., Skhvitaridze, N., Sorensen, R. J. D., Spurlock, E. E., Syailendrawati, R., Topor-Madry, R., Troeger, C. E., Walcott, R., Walker, A., Wiysonge, C. S., Worku, N. A., Zigler, B., Pigott, D. M., Naghavi, M., Mokdad, A. H., Lim, S. S., Hay, S. I., Gakidou, E., and Murray, C. J. L.: Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21, Lancet, 399, 1513–1536, https://doi.org/10.1016/S0140-6736(21)02796-3, 2022. a
Wanner, H., Pfister, C., and Neukom, R.: The variable European Little Ice Age, Quaternary Sci. Rev., 287, 107531, https://doi.org/10.1016/j.quascirev.2022.107531, 2022. a
Wastenson, L., Raab, B., and Vedin, H.: Sveriges nationalatlas: Klimat, sjöar och vattendrag, Stockholm: Sveriges nationalatlas, 176 pp., ISBN 9187760320, 1995. a
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer Drought Severity Index, J. Climate, 17, 2335–2351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004. a
Wrigley, E. A. and Schofield, R. S.: The Population History of England 1541–1871, Cambridge University Press, Cambridge, 779 pp., ISBN 9780521356886, 1981. a
Wu, Y., Li, S. S., Zhao, Q., Wen, B., Gasparrini, A., Tong, S. L., Overcenco, A., Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A. M., Zanobetti, A., Analitis, A., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Armstrong, B., Forsberg, B., Pan, S. C., Iñiguez, C., Ameling, C., Valencia, C. D., Åström, C., Houthuijs, D., Dung, D. V., Royé, D., Indermitte, E., Lavigne, E., Mayvaneh, F., Acquaotta, F., De'Donato, F., Rao, S., Sera, F., Carrasco-Escobar, G., Kan, H. D., Orru, H., Kim, H., Holobaca, I. H., Kysely, J., Madureira, J., Schwartz, J., Jaakkola, J. J. K., Katsouyanni, K., Diaz, M. H., Ragettli, M. S., Hashizume, M., Pascal, M., Cóelho, M. D. Z. S., Ortega, N. V., Ryti, N., Scovronick, N., Michelozzi, P., Correa, P. M., Goodman, P., Saldiva, P. H. N., Abrutzky, R., Osorio, S., Dang, T. N., Colistro, V., Huber, V., Lee, W., Seposo, X., Honda, Y., Guo, Y. L., Bell, M. L., and Guo, Y. M.: Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study, Lancet Planet. Health, 6, e410–e421, https://doi.org/10.1016/S2542-5196(22)00073-0, 2022. a
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
We study the climate effects on mortality, using annual mortality records and meteorological...