Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic impacts on mortality in pre-industrial Sweden
Tzu Tung Chen
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 413 90 Gothenburg, Sweden
current address: The Public Health Agency of Sweden, 171 82 Solna, Sweden
Rodney Edvinsson
Department of Economic History and International Relations, Stockholm University, 106 91 Stockholm, Sweden
Karin Modig
Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
Hans W. Linderholm
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 413 90 Gothenburg, Sweden
Fredrik Charpentier Ljungqvist
CORRESPONDING AUTHOR
Department of History, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Swedish Collegium for Advanced Study, Linneanum, Villavägen 6c, 752 36 Uppsala, Sweden
Related authors
No articles found.
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past, 21, 327–342, https://doi.org/10.5194/cp-21-327-2025, https://doi.org/10.5194/cp-21-327-2025, 2025
Short summary
Short summary
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Cited articles
Achebak, H., Garcia-Aymerich, J., Rey, G., Chen, Z., Méndez-Turrubiates, R. F., and Ballester, J.: Ambient temperature and seasonal variation in inpatient mortality from respiratory diseases: a retrospective observational study, Lancet Reg. Health Eur., 35, 100757, https://doi.org/10.1016/j.lanepe.2023.100757, 2023. a
Åmark, K.: Spannmålshandel och spannmålspolitik i Sverige 1719–1830, Stockholms högskola, Stockholm, 387 pp., 1915. a
Armstrong, B., Bell, M. L., de Sousa Zanotti Stagliorio Coelho, M., Leon Guo, Y.-L., Guo, Y., Goodman, P., Hashizume, M., Honda, Y., Kim, H., Lavigne, E., Michelozzi, P., Hilario, P., Saldiva, N., Schwartz, J., Scortichini, M., Sera, F., Tobias, A., Tong, S., Wu, C.-f., Zanobetti, A., Zeka, A., and Gasparrini, A.: Longer-term impact of high and low temperature on mortality: an international study to clarify length of mortality displacement, Environ. Health Perspect., 125, 107009, https://doi.org/10.1289/EHP1756, 2017. a
Åström, D. O., Edvinsson, S., Hondula, D., Rocklöv, J., and Schumann, B.: On the association between weather variability and total and cause-specific mortality before and during industrialization in Sweden, Demographic Res., 35, 991–1010, https://doi.org/10.4054/DemRes.2016.35.33, 2016. a
Bakhtsiyarava, M., Schinasi, L. H., Sánchez, B. N., Dronova, I., Kephart, J. L., Ju, Y., Gouveia, N., Caiaffa, W. T., O'Neill, M. S., Yamada, G., Arunachalam, S., Diez-Roux, A. V., and Rodríguez, D. A.: Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities, Soc. Sci. Med., 317, 115526, https://doi.org/10.1016/j.socscimed.2022.115526, 2023. a
Ballester, J., Rodó, X., Robine, J.-M., and Herrmann, F. R.: European seasonal mortality and influenza incidence due to winter temperature variability, Nat. Clim. Change., 6, 927–930, https://doi.org/10.1038/nclimate3070, 2016. a
Barnard, S., Chiavenna, C., Fox, S., Charlett, A., Waller, Z., Andrews, N., Goldblatt, P., Burton, P., and De Angelis, D.: Methods for modelling excess mortality across England during the COVID-19 pandemic, Stat. Methods Med. Res., 31, 1790–1802, https://doi.org/10.1177/09622802211046384, 2022. a
Baten, J.: Climate, grain production and nutritional status in southern Germany during the XVIIIth century, J. Eur. Econ. Hist., 30, 9–47, 2001. a
Bengtsson, T. and Dribe, M.: Deliberate control in a natural fertility population: Southern Sweden, 1766–1864, Demography, 43, 727–746, https://doi.org/10.1353/dem.2006.0030, 2006. a
Bengtsson, T., Campbell, C., and Lee, J. Z.: Life under Pressure: Mortality and Living Standards in Europe and Asia, MIT Press, Cambridge, MA, https://doi.org/10.7551/mitpress/4227.001.0001, 2004. a
Bergström, H. and Moberg, A.: Daily air temperature and pressure series for Uppsala (1722–1998), Clim. Change, 53, 213–252, https://doi.org/10.1023/A:1014983229213, 2002. a, b
Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri, M.: The early instrumental warm-bias: a solution for long central European temperature series 1760–2007, Clim. Change, 101, 41–67, https://doi.org/10.1007/s10584-009-9649-4, 2010. a
Bradley, L.: An enquiry into seasonality in baptisms, marriages, and burials, Local Popul. Stud., 4, 21–40, http://www.localpopulationstudies.org.uk/PDF/LPS5/LPS5_1970_18-35.pdf (last access: 17 January 2025), 1970. a
Briffa, K., van der Schrier, G., and Jones, P.: Wet and dry summers in Europe since 1750: evidence of increasing drought, Int. J. Climatol., 29, 1894–1905, https://doi.org/10.1002/joc.1836, 2009. a, b
Brönnimann, S., Allan, R., Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Domínguez-Castro, F., Filipiak, J., Founda, D., Herrera, R. G., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K. S., Jones, P., Jourdain, S., Kiss, A., Lin, K. E., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Moberg, A., Neukom, R., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K. B., Pearce, P. R., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Řezníčková, L., Rodrigo, F. S., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P., Valente, M. A., Vaquero, J. M., Westcottt, N. E., Williamson, F., and Wyszyński, P.: Unlocking pre-1850 instrumental meteorological records: A global inventory, Bull. Am. Meteorol. Soc., 100, ES389–ES413, https://doi.org/10.1175/BAMS-D-19-0040.1, 2019. a
Buchan, A. and Mitchell, A.: On the influence of weather on mortality from different diseases and at different ages, J. Scott. Meteorol. Soc., 4, 187–265, 1875. a
Calleja-Agius, J., England, K., and Calleja, N.: The effect of global warming on mortality, Early Hum. Dev., 155, 105222, https://doi.org/10.1016/j.earlhumdev.2020.105222, 2021. a
Carlton, E. J., Woster, A. P., DeWitt, P., Goldstein, R. S., and Levy, K.: A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases, Int. J. Epidemiol., 45, 117–130, https://doi.org/10.1093/ije/dyv296, 2016. a
Castenbrandt, H.: A forgotten plague: dysentery in Sweden, 1750–1900, Scand. J. Hist., 39, 612–639, https://doi.org/10.1080/03468755.2014.953199, 2014. a
Chen, T. T., Ljungqvist, F. C., Castenbrandt, H., Hildebrandt, F., Ingholt, M. M., Hesson, J. C., Ankarklev, J., Seftigen, K., and Linderholm, H. W.: The spatiotemporal distribution of historical malaria cases in Sweden: a climatic perspective, Malar. J., 20, 1–14, https://doi.org/10.1186/s12936-021-03744-9, 2021. a, b
Collet, D.: Die doppelte Katastrophe: Klima und Kultur in der europäischen Hungerkrise 1770–1772, 466 pp., Vandenhoeck & Ruprecht, Göttingen, ISBN 978-3-525-35592-3, 2019. a
Collet, D. and Schuh, M. (Eds.): Famines During the `Little Ice Age' (1300–1800): Socio-natural Entanglements in Premodern Societies, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-54337-6, 2018. a
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015. a
Costello, E., Kearney, K., and Gearey, B.: Adapting to the Little Ice Age in pastoral regions: An interdisciplinary approach to climate history in north-west Europe, Hist. Methods, 56, 77–96, https://doi.org/10.1080/01615440.2022.2156958, 2023. a
Dai, A., Trenberth, K. E., and Qian, T.: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130, https://doi.org/10.1175/JHM-386.1, 2004. a
Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegy, F., Cui, J., de Luna, K., Guzowski, P., Hambrecht, G., Huhtamaa, H., Izdebski, A., Kleemann, K., Moesswilde, E., Neupane, N., Newfield, T., Pei, Q., Xoplaki, E., and Zappia, N.: Towards a rigorous understanding of societal responses to climate change, Nature, 591, 539–550, https://doi.org/10.1038/s41586-021-03190-2, 2021. a
Demografiska databasen: Centre for Demographic and Ageing Research (CEDAR), U23003 [data set], https://doi.org/10.17197/U23003, 2023. a, b
de Schrijver, E., Bundo, M., Ragettli, M. S., Sera, F., Gasparrini, A., Franco, O. H., and Vicedo-Cabrera, A. M.: Nationwide analysis of the heat- and cold-related mortality trends in Switzerland between 1969 and 2017: the role of population aging, Environ. Health Perspect., 130, 037001, https://doi.org/10.1289/EHP9835, 2022. a
Diaz, H. F., Kovats, R. S., McMichael, A. J., and Nicholls, N.: Climate and human health linkages on multiple timescales, in: History and Climate: Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T. D., and Briffa, K. R., 267–289 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-1-4757-3365-5_13, 2001. a
Dribe, M.: Demand and supply factors in the fertility transition: A county-level analysis of age-specific marital fertility in Sweden, 1880–1930, Eur. Rev. Econ. Hist., 13, 65–94, https://doi.org/10.1017/S1361491608002372, 2009. a
Dribe, M., Olsson, M., and Svensson, P.: Nordic Europe, in: Famine in European history, edited by: Alfani, G. and Ó Gráda, C., 185–211 pp., Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316841235.009, 2017. a, b
Dybdahl, A.: Klimatiske sjokk, uår, sykdom og demografiske kriser i Trøndelag på 1600- og 1700-tallet, Hist. Tidskr., 93, 243–275, https://doi.org/10.18261/ISSN1504-2944-2014-02-05, 2014. a
Eckstein, Z., Schultz, T. P., and Wolpin, K. I.: Short-run fluctuations in fertility and mortality in pre-industrial Sweden, Eur. Econ. Rev., 26, 295–317, https://doi.org/10.1016/0014-2921(84)90093-X, 1984. a, b, c
Edvinsson, R.: Swedish harvests, 1665–1820: Early modern growth in the periphery of European economy, Scand. Econ. Hist. Rev., 57, 2–25, https://doi.org/10.1080/03585520802631592, 2009. a, b
Edvinsson, R.: Recalculating Swedish pre-census demographic data: Was there acceleration in early modern population growth?, Cliometrica, 9, 167–191, https://doi.org/10.1007/s11698-014-0112-z, 2015. a, b, c
Edvinsson, R., Leijonhufvud, L., and Söderberg, J.: Väder, skördar och priser i Sverige, in: Agrarhistoria på många sätt: 28 studier om människan och jorden. Festskrift till Janken Myrdal på hans 60-årsdag, edited by: Liljewall, B., Flygare, I. A., Lange, U., Ljunggren, L., and Söderberg, J., 115–136 pp., The Royal Swedish Academy of Agriculture and Forestry, Stockholm, ISBN 9789185205912, 2009. a, b, c
Edvinsson, R. B.: The response of vital rates to harvest fluctuations in pre-industrial Sweden, Cliometrica, 11, 245–268, https://doi.org/10.1007/s11698-016-0144-7, 2017. a, b, c
Eurowinter Group: Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe, Lancet, 349, 1341–1346, https://doi.org/10.1016/S0140-6736(96)12338-2, 1997. a, b
Fonseca-Rodríguez, O., Sheridan, S. C., Lundevaller, E. H., and Schumann, B.: Hot and cold weather based on the spatial synoptic classification and cause-specific mortality in Sweden: a time-stratified case-crossover study, Int. J. Biometeorol., 64, 1435–1449, https://doi.org/10.1007/s00484-020-01921-0, 2020. a, b
Fonseca-Rodríguez, O., Sheridan, S. C., Lundevaller, E. H., and Schumann, B.: Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: A time series analysis, Environ. Res., 193, 110535, https://doi.org/10.1016/j.envres.2020.110535, 2021. a
Galloway, P. R.: Annual variations in deaths by age, deaths by cause, prices, and weather in London 1670 to 1830, Popul. Stud., 39, 487–505, https://doi.org/10.1080/0032472031000141646, 1985. a
Galloway, P. R.: Long-term fluctuations in climate and population in the preindustrial era, Popul. Dev. Rev., 12, 1–24, https://doi.org/10.2307/1973349, 1986. a
Galloway, P. R.: Population, Prices, and Weather in Preindustrial Europe, Ph.D. thesis, University of California, Berkeley, 954 pp., 1987. a
Galloway, P. R.: Basic patterns in annual variations in fertility, nuptiality, mortality, and prices in pre-industrial Europe, Popul. Stud., 42, 275–303, https://doi.org/10.1080/0032472031000143366, 1988. a
Hajat, S., Armstrong, B. G., Gouveia, N., and Wilkinson, P.: Mortality displacement of heat-related deaths: a comparison of Delhi, São Paulo, and London, Epidemiology, 16, 613–620, https://doi.org/10.1097/01.ede.0000164559.41092.2a, 2005. a
Hallberg, E., Leijonhufvud, L., Linde, M., and Andersson Palm, L.: Skördar i Sverige före agrarrevolutionen: Statistisk undersökning av det rörliga tiondet fr.o.m. 1665: Introduktion till databaser, Department of Historical Studies, University of Gothenburg, Gothenburg, https://doi.org/10.5878/002873, 2016. a
Holopainen, J., Rickard, I. J., and Helama, S.: Climatic signatures in crops and grain prices in 19th-century Sweden, Holocene, 22, 939–945, https://doi.org/10.1177/0959683611434220, 2012. a, b
Huhtamaa, H.: Combining written and tree-ring evidence to trace past food crises: A case study from Finland, in: Famines During the 'Little Ice Age' (1300–1800), edited by: Collet, D. and Schuh, M., 43–66 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-54337-6_3, 2018. a
Huhtamaa, H. and Helama, S.: Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland, J. Hist. Geogr., 57, 40–51, https://doi.org/10.1016/j.jhg.2017.05.011, 2017. a
Huhtamaa, H. and Ljungqvist, F. C.: Climate in Nordic historical research – a research review and future perspectives, Scand. J. Hist., 46, 665–695, https://doi.org/10.1080/03468755.2021.1929455, 2021. a
Huhtamaa, H., Stoffel, M., and Corona, C.: Recession or resilience? Long-range socioeconomic consequences of the 17th century volcanic eruptions in northern Fennoscandia, Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, 2022. a, b
Huldén, L. and Huldén, L.: The decline of malaria in Finland – the impact of the vector and social variables, Malar. J., 8, 94, https://doi.org/10.1186/1475-2875-8-94, 2009. a
Huldén, L., Huldén, L., and Heliövaara, K.: Endemic malaria: an “indoor” disease in northern Europe. Historical data analysed, Malar. J., 4, 1–13, https://doi.org/10.1186/1475-2875-4-19, 2005. a
Imhof, A. E.: Aspekte der Bevölkerungsentwicklung in den nordischen Ländern: 1720–1750, Francke, Giessen, Vol. 1–2, 1122 pp., ISBN 3772011853, 1976. a
Joelsson, L. M. T., Södling, J., Kjellström, E., and Josefsson, W.: Comparison of historical and modern precipitation measurement techniques in Sweden, Idöjárás, 128, 195–218, https://doi.org/10.28974/idojaras.2024.2.4, 2024. a
Junkka, J., Karlsson, L., Lundevaller, E., and Schumann, B.: Climate vulnerability of Swedish newborns: Gender differences and time trends of temperature-related neonatal mortality, 1880–1950, Environ. Res., 192, 110400, https://doi.org/10.1016/j.envres.2020.110400, 2021. a
Karlsson, L., Lundevaller, E., and Schumann, B.: The association between cold extremes and neonatal mortality in Swedish Sápmi from 1800 to 1895, Glob. Health Action, 12, 1623609, https://doi.org/10.1080/16549716.2019.1623609, 2019. a
Klemp, M. and Møller, N. F.: Post-Malthusian dynamics in pre-industrial Scandinavia, Scand. J. Econ., 118, 841–867, https://doi.org/10.1111/sjoe.12155, 2016. a
Larsson, D.: Diseases in early modern Sweden: A parish-level study 1631–1775, Scand. J. Hist., 45, 407–432, https://doi.org/10.1080/03468755.2019.1659178, 2020. a, b
Ledberg, A.: A large decrease in the magnitude of seasonal fluctuations in mortality among elderly explains part of the increase in longevity in Sweden during 20th century, BMC Public Health, 20, 1–10, https://doi.org/10.1186/s12889-020-09749-4, 2020. a
Lee, R. D.: Short-term variation: Vital rates, prices and weather, in: The Population History of England, edited by: Wrigley, E. A. and Schofield, R. S., 356–401 pp., Cambridge University Press, Cambridge, 1981. a
Leijonhufvud, L.: Grain Tithes and Manorial Yields in Early Modern Sweden: Trends and Patterns of Production and Productivity c. 1540–1680, Ph.D. thesis, Swedish University of Agricultural Sciences, Ulltuna, 359 pp., ISBN 9157658293, 2001. a
Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö, D., and Söderlind, U.: Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations, Clim. Change, 101, 109–141, https://doi.org/10.1007/s10584-009-9650-y, 2010. a
Levitt, M., Zonta, F., and Ioannidis, J.: Excess death estimates from multiverse analysis in 2009–2021, Eur. J. Epidemiol., 38, 1129–1139, https://doi.org/10.1007/s10654-023-00998-2, 2023. a, b
Liczbińska, G., Vögele, J. P., and Brabec, M.: Climate and disease in historical urban space: evidence from 19th century Poznań, Poland, Clim. Past, 20, 137–150, https://doi.org/10.5194/cp-20-137-2024, 2024. a
Lilja, S.: Klimatet, döden och makten – 1690-talets klimatkris, in: Leva vid Östersjöns kust: en antologi om naturförutsättningar och resursutnyttjande på båda sidor av Östersjön ca 800–1800, edited by: Lilja, S., 23–79 pp., Södertörns högskola, Stockholm, http://sh.diva-portal.org/smash/get/diva2:213729/FULLTEXT01.pdf (last access: 17 January 2025), 2008. a
Lilja, S.: Klimat och skördar ca 1530–1820, in: Fiske, jordbruk och klimat i Östersjöregionen under förmodern tid: Projektet Förmoderna kustmiljöer, edited by: Lilja, S., 59–119 pp., Södertörns högskola, Stockholm, https://www.diva-portal.org/smash/get/diva2:477376/FULLTEXT01.pdf (last access: 17 January 2025), 2012. a
Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., and Fuentes, M.: Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900 years, Clim. Dynam., 45, 933–947, https://doi.org/10.1007/s00382-014-2328-9, 2015. a
Livi-Bacci, M.: A Concise History of World Population, Wiley-Blackwell, Cambridge, Mass., 279 pp., https://doi.org/10.1002/9781119406822, 2007. a
Ljungqvist, F. C., Seim, A., Krusic, P. J., González-Rouco, J. F., Werner, J. P., Cook, E. R., Zorita, E., Luterbacher, J., Xoplaki, E., Destouni, G., García-Bustamante, E., Aguilar, C. A. M., Seftigen, K., Wang, J., Gagen, M. H., Esper, J., Solomina, O., Fleitmann, D., and Büntgen, U.: European warm-season temperature and hydroclimate since 850 CE, Environ. Res. Lett., 14, 084015, https://doi.org/10.1088/1748-9326/ab2c7e, 2019. a
Ljungqvist, F. C., Seim, A., and Huhtamaa, H.: Climate and society in European history, Wiley Interdisciplin. Rev.: Clim. Change, 12, e691, https://doi.org/10.1002/wcc.691, 2021. a
Ljungqvist, F. C., Christiansen, B., Esper, J., Huhtamaa, H., Leijonhufvud, L., Pfister, C., Seim, A., Skoglund, M. K., and Thejll, P.: Climatic signatures in early modern European grain harvest yields, Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, 2023. a
Ljungqvist, F. C., Seim, A., and Collet, D.: Famines in medieval and early modern Europe – connecting climate and society, Wiley Interdisciplin. Rev.: Clim. Change, 15, e859, https://doi.org/10.1002/wcc.859, 2024. a, b, c, d
Lowen, A. C. and Steel, J.: Roles of humidity and temperature in shaping influenza seasonality, J. Virol., 88, 7692–7695, https://doi.org/10.1128/JVI.03544-13, 2014. a, b
Lowen, A. C., Mubareka, S., Steel, J., and Palese, P.: Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathogens, 3, e151, https://doi.org/10.1371/journal.ppat.0030151, 2007. a
Marti-Soler, H., Gonseth, S., Gubelmann, C., Stringhini, S., Bovet, P., Chen, P.-C., Wojtyniak, B., Paccaud, F., Tsai, D.-H., Zdrojewski, T., and Marques-Vidal, P.: Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations, PloS One, 9, e113500, https://doi.org/10.1371/journal.pone.0113500, 2014. a
Martínez-Solanas, È., Quijal-Zamorano, M., Achebak, H., Petrova, D., Robine, J.-M., Herrmann, F. R., Rodó, X., and Ballester, J.: Projections of temperature-attributable mortality in Europe: a time series analysis of 147 contiguous regions in 16 countries, Lancet Planet. Health, 5, e446–e454, https://doi.org/10.1016/S2542-5196(21)00150-9, 2021. a
Masselot, P., Mistry, M., Vanoli, J., Schneider, R., Iungman, T., Garcia-Leon, D., Ciscar, J.-C., Feyen, L., Orru, H., Urban, A., Breitner, S., Huber, V., Schneider, A., Samoli, E., Stafoggia, M., de’Donato Francesca, Rao, S., Armstrong, B., Nieuwenhuijsen, M., Vicedo-Cabrera, A. M., and Gasparrini, A.: Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe, Lancet Planet. Health, 7, e271–e281, https://doi.org/10.1016/S2542-5196(23)00023-2, 2023. a
McMichael, A. J.: Insights from past millennia into climatic impacts on human health and survival, P. Natl. Acad. Sci. USA, 109, 4730–4737, https://doi.org/10.1073/pnas.1120177109, 2012. a
Mills, J. N., Gage, K. L., and Khan, A. S.: Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan, Environ. Health Perspect., 118, 1507–1514, https://doi.org/10.1289/ehp.0901389, 2010. a
Moberg, A. and Bergström, H.: Homogenization of Swedish temperature data. Part III: The long temperature records from Uppsala and Stockholm, Int. J. Climatol., 17, 667–699, https://doi.org/10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-J, 1997. a
Moberg, A., Bergström, H., Krigsman, J. R., and Svanered, O.: Daily air temperature and pressure series for Stockholm (1756–1998), Clim. Change, 53, 171–212, https://doi.org/10.1007/978-94-010-0371-1_7, 2002. a
Moberg, A., Alexandersson, H., Bergström, H., and Jones, P. D.: Were southern Swedish summer temperatures before 1860 as warm as measured?, Int. J. Climatol., 23, 1495–1521, https://doi.org/10.1002/joc.945, 2003. a
Mokyr, J. and Ó Gráda, C.: What do people die of during famines: the Great Irish Famine in comparative perspective, Eur. Rev. Econ. Hist., 6, 339–363, https://doi.org/10.1017/S1361491602000163, 2002. a, b
Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., and Wakefield, J.: The WHO estimates of excess mortality associated with the COVID-19 pandemic, Nature, 613, 130–137, https://doi.org/10.1038/s41586-022-05522-2, 2023. a
Nepomuceno, M. R., Klimkin, I., Jdanov, D. A., Alustiza-Galarza, A., and Shkolnikov, V. M.: Sensitivity analysis of excess mortality due to the COVID-19 pandemic, Popul. Dev. Rev., 48, 279–302, https://doi.org/10.1111/padr.12475, 2022. a, b
Palmer, W. C.: Meteorological Drought, US Department of Commerce, Weather Bureau, Washington D.C., 1965. a
Pfister, C. and Wanner, H.: Climate and Society in Europe: The Last Thousand Years, Bern: Haupt Verlag, 397 pp., ISBN 978-3-258-08234-9, 2021. a
Post, J. D.: Food Shortage, Climatic Variability, and Epidemic Disease in Preindustrial Europe: The Mortality Peak in the Early 1740s, Cornell University Press, Ithaca, 303 pp., ISBN 0-8014-1773-2, 1985. a
Qiao, Z., Guo, Y., Yu, W., and Tong, S.: Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004, Environ. Health Perspect., 123, 766–772, https://doi.org/10.1289/ehp.1307606, 2015. a
Rau, R., Bohk-Ewald, C., Muszyńska, M. M., and Vaupel, J. W.: Seasonality of causes of death, in: Visualizing Mortality Dynamics in the Lexis Diagram, edited by: Rau, R., Bohk-Ewald, C., Muszyńska, M. M., and Vaupel, J. W., 99–122 pp., Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-64820-0_9, 2017. a, b
Raymond, C., Matthews, T., and Horton, R. M.: The emergence of heat and humidity too severe for human tolerance, Sci. Adv., 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838, 2020. a
Robbins Schug, G., Buikstra, J. E., DeWitte, S. N., Baker, B. J., Berger, E., Buzon, M. R., Davies-Barrett, A. M., Goldstein, L., Grauer, A. L., Gregoricka, L. A., Halcrow, S. E., Knudson, K. J., Larsen, C. S., Martin, D. L., Nystrom, K. C., Perry, M. A., Roberts, C. A., Santos, A. L., Stojanowski, C. M., Suby, J. A., Temple, D. H., Tung, T. A., Vlok, M., Watson-Glen, T., and Zakrzewski, S. R.: Climate change, human health, and resilience in the Holocene, P. Natl. Acad. Sci. USA, 120, e2209472120, https://doi.org/10.1073/pnas.2209472120, 2023. a
Rocklöv, J. and Dubrow, R.: Climate change: an enduring challenge for vector-borne disease prevention and control, Nat. Immunol., 21, 479–483, https://doi.org/10.1038/s41590-020-0648-y, 2020. a
Rocklöv, J., Edvinsson, S., Arnqvist, P., De Luna, S. S., and Schumann, B.: Association of seasonal climate variability and age-specific mortality in northern Sweden before the onset of industrialization, Int. J. Environ. Res. Public Health., 11, 6940–6954, https://doi.org/10.3390/ijerph110706940, 2014a. a
Rocklöv, J., Forsberg, B., Ebi, K., and Bellander, T.: Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden, Glob. Health Action, 7, 22737, https://doi.org/10.3402/gha.v7.22737, 2014b. a
Rocklöv, J. P., Forsberg, B., and Meister, K.: Winter mortality modifies the heat-mortality association the following summer, Epidemiology, 19, S87–S88, https://doi.org/10.1183/09031936.00037808, 2008. a
Rohde, R., Muller, R., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A new estimate of the average Earth surface land temperature spanning 1753 to 2011, Geoinform. Geostat.: An Overview, 1, 1–7, https://doi.org/10.4172/2327-4581.1000101, 2013a. a
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele, J., Curry, J., Wickham, C., and Mosher, S.: Berkeley Earth temperature averaging process, Geoinformatics Geostatistics: An Overview, 1, 20–100, https://doi.org/10.4172/2327-4581.1000103, 2013b. a
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/ Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020 (data available at: https://berkeleyearth.org/data/, last access: 17 January). a, b
Romanello, M., Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman, D., Arnell, N., Ayeb-Karlsson, S., and Ford, L. B.: The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels, Lancet, 400, 1619–1654, https://doi.org/10.1016/S0140-6736(22)01540-9, 2022. a
Rossen, L. M., Branum, A. M., Ahmad, F. B., Sutton, P., and Anderson, R. N.: Excess deaths associated with COVID-19, by age and race and ethnicity – United States, January 26–October 3, 2020, Morb. Mortal. Wkly. Rep., 69, 1522, https://doi.org/10.15585/mmwr.mm6942e2, 2020. a
Schumann, B., Edvinsson, S., Evengård, B., and Rocklöv, J.: The influence of seasonal climate variability on mortality in pre-industrial Sweden, Glob. Health Action, 6, 20153, https://doi.org/10.3402/gha.v6i0.20153, 2013. a, b
Schumann, B., Häggström Lundevaller, E., and Karlsson, L.: Weather extremes and perinatal mortality – Seasonal and ethnic differences in northern Sweden, 1800–1895, PLoS One, 14, e0223538, https://doi.org/10.1371/journal.pone.0223538, 2019. a
Seftigen, K., Goosse, H., Klein, F., and Chen, D.: Hydroclimate variability in Scandinavia over the last millennium – insights from a climate model–proxy data comparison, Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, 2017. a
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability, Clim. Dynam., 55, 579–594, https://doi.org/10.1007/s00382-020-05287-2, 2020. a
Semenza, J. C. and Menne, B.: Climate change and infectious diseases in Europe, Lancet Infect. Dis., 9, 365–375, https://doi.org/10.1016/S1473-3099(09)70104-5, 2009. a
Sera, F., Armstrong, B., Tobias, A., Vicedo-Cabrera, A. M., Åström, C., Bell, M. L., Chen, B.-Y., de Sousa Zanotti Stagliorio Coelho, M., Matus Correa, P., Cruz, J. C., Dang, T. N., Hurtado-Diaz, M., Do Van, D., Forsberg, B., Guo, Y. L., Guo, Y., Hashizume, M., Honda, Y., Iñiguez, C., Jaakkola, J. J. K., Kan, H., Kim, H., Lavigne, E., Michelozzi, P., Ortega, N. V., Osorio, S., Pascal, M., Ragettli, M. S., Ryti, N. R. I., Saldiva, P. H. N., Schwartz, J., Scortichini, M., Seposo, X., Tong, S., Zanobetti, A., and Gasparrini, A.: How urban characteristics affect vulnerability to heat and cold: a multi-country analysis, Int. J. Epidemiol., 48, 1101–1112, https://doi.org/10.1093/ije/dyz008, 2019. a
Skoglund, M. K.: Climate variability and grain production in Scania, 1702–1911, Clim. Past, 18, 405–433, https://doi.org/10.5194/cp-18-405-2022, 2022. a
Skoglund, M. K.: The impact of drought on northern European pre-industrial agriculture, Holocene, 34, 120–135, https://doi.org/10.1177/09596836231200431, 2024. a
Sköld, P.: From inoculation to vaccination: Smallpox in Sweden in the eighteenth and nineteenth centuries, Popul. Stud., 50, 247–262, https://doi.org/10.1080/0032472031000149336, 1996. a
Slavin, P.: Climate and famines: A historical reassessment, Wiley Interdisciplin. Rev.: Clim. Change, 7, 433–447, https://doi.org/10.1002/wcc.395, 2016. a
Slicher van Bath, B. H.: Yield Ratios, 1810–1820, Afdeling Agrarische Geschiedenis, Universiteit Wageningen, Wageningen, 264 pp., https://edepot.wur.nl/296371 (last access: 17 January 2025), 1963. a
Statistics Sweden: Historisk statistik för Sverige Del 1. Befolkning 1720–1967, Stockholm: SCB, 177 pp., http://hdl.handle.net/2077/854 (last access: 17 January 2025), 1969. a
Statistics Sweden: Information About the Statistics on Mortality, Statistics Sweden, Örebro, 7 pp., https://www.scb.se/contentassets/1d234c96211e427997250c52de572504/text-om-statistiken-over-doda_en.pdf (last access: 17 January 2025), 2020. a
Utterström, G.: Climatic fluctuations and population problems in early modern history, Scand. Econ. Hist. Rev., 3, 3–47, https://doi.org/10.1080/03585522.1955.10411467, 1955. a
van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., Dasandi, N., Jankin, S., Achebak, H., Ballester, J., Bechara, H., Callaghan, M. W., Chambers, J., Dasgupta, S., Drummond, P., Farooq, Z., Gasparyan, O., Gonzalez-Reviriego, N., Hamilton, I., Hänninen, R., Kazmierczak, A., Kendrovski, V., Kennard, H., Kiesewetter, G., Lloyd, S. J., Lotto Batista, M., Martinez-Urtaza, J., Milà, C., Minx, J. C., Nieuwenhuijsen, M., Palamarchuk, J., Quijal-Zamorano, M., Robinson, E. J. Z., Scamman, D., Schmoll, O., Sewe, M. O., Sjödin, H., Sofiev, M., Solaraju-Murali, B., Springmann, M., Triñanes, J., Anto, J. M., Nilsson, M., and Lowe, R.: The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future, Lancet Public Health, 7, e942–e965, https://doi.org/10.1016/S2468-2667(22)00197-9, 2022. a, b
van der Schrier, G., Jones, P., and Briffa, K.: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration, J. Geophys. Res.-Atmos., 116, D03106, https://doi.org/10.1029/2010JD015001, 2011. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Change, 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021. a
Waldinger, M.: The economic effects of long-term climate change: evidence from the Little Ice Age, J. Polit. Econ., 130, 2275–2314, https://doi.org/10.1086/720393, 2022. a
Walter, J. and Schofield, R.: Famine, disease and crisis mortality in early modern society, in: Famine, Disease and the Social Order in Early Modern Society, edited by: Walter, J., Schofield, R., and Appleby, A. B., 1–74 pp., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511599637.003, 1989. a
Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., Aravkin, A. Y., Bisignano, C., Barber, R. M., Alam, T., Fuller, J. E., May, E. A., Jones, D. P., Frisch, M. E., Abbafati, C., Adolph, C., Allorant, A., Amlag, J. O., Bang-Jensen, B., Bertolacci, G. J., Bloom, S. S., Carter, A., Castro, E., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., Collins, J. K., Cooperrider, K., Dai, X., Dangel, W. J., Daoud, F., Dapper, C., Deen, A., Duncan, B. B., Erickson, M., Ewald, S. B., Fedosseeva, T., Ferrari, A. J., Frostad, J. J., Fullman, N., Gallagher, J., Gamkrelidze, A., Guo, G., He, J., Helak, M., Henry, N. J., Hulland, E. N., Huntley, B. M., Kereselidze, M., Lazzar-Atwood, A., LeGrand, K. E., Lindstrom, A., Linebarger, E., Lotufo, P. A., Lozano, R., Magistro, B., Malta, D. C., Månsson, J., Mantilla Herrera, A. M., Marinho, F., Mirkuzie, A. H., Misganaw, A. T., Monasta, L., Naik, P., Nomura, S., O'Brien, E. G., O'Halloran, J. K., Olana, L. T., Ostroff, S. M., Penberthy, L., Reiner Jr, R. C., Reinke, G., Ribeiro, A. L. P., Santomauro, D. F., Schmidt, M. I., Shaw, D. H., Sheena, B. S., Sholokhov, A., Skhvitaridze, N., Sorensen, R. J. D., Spurlock, E. E., Syailendrawati, R., Topor-Madry, R., Troeger, C. E., Walcott, R., Walker, A., Wiysonge, C. S., Worku, N. A., Zigler, B., Pigott, D. M., Naghavi, M., Mokdad, A. H., Lim, S. S., Hay, S. I., Gakidou, E., and Murray, C. J. L.: Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21, Lancet, 399, 1513–1536, https://doi.org/10.1016/S0140-6736(21)02796-3, 2022. a
Wanner, H., Pfister, C., and Neukom, R.: The variable European Little Ice Age, Quaternary Sci. Rev., 287, 107531, https://doi.org/10.1016/j.quascirev.2022.107531, 2022. a
Wastenson, L., Raab, B., and Vedin, H.: Sveriges nationalatlas: Klimat, sjöar och vattendrag, Stockholm: Sveriges nationalatlas, 176 pp., ISBN 9187760320, 1995. a
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer Drought Severity Index, J. Climate, 17, 2335–2351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004. a
Wrigley, E. A. and Schofield, R. S.: The Population History of England 1541–1871, Cambridge University Press, Cambridge, 779 pp., ISBN 9780521356886, 1981. a
Wu, Y., Li, S. S., Zhao, Q., Wen, B., Gasparrini, A., Tong, S. L., Overcenco, A., Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A. M., Zanobetti, A., Analitis, A., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Armstrong, B., Forsberg, B., Pan, S. C., Iñiguez, C., Ameling, C., Valencia, C. D., Åström, C., Houthuijs, D., Dung, D. V., Royé, D., Indermitte, E., Lavigne, E., Mayvaneh, F., Acquaotta, F., De'Donato, F., Rao, S., Sera, F., Carrasco-Escobar, G., Kan, H. D., Orru, H., Kim, H., Holobaca, I. H., Kysely, J., Madureira, J., Schwartz, J., Jaakkola, J. J. K., Katsouyanni, K., Diaz, M. H., Ragettli, M. S., Hashizume, M., Pascal, M., Cóelho, M. D. Z. S., Ortega, N. V., Ryti, N., Scovronick, N., Michelozzi, P., Correa, P. M., Goodman, P., Saldiva, P. H. N., Abrutzky, R., Osorio, S., Dang, T. N., Colistro, V., Huber, V., Lee, W., Seposo, X., Honda, Y., Guo, Y. L., Bell, M. L., and Guo, Y. M.: Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study, Lancet Planet. Health, 6, e410–e421, https://doi.org/10.1016/S2542-5196(22)00073-0, 2022. a
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
We study the climate effects on mortality, using annual mortality records and meteorological...