Articles | Volume 21, issue 6
https://doi.org/10.5194/cp-21-1043-2025
https://doi.org/10.5194/cp-21-1043-2025
Research article
 | 
13 Jun 2025
Research article |  | 13 Jun 2025

Closing the Plio-Pleistocene 13C cycle in the 405 kyr periodicity by isotopic signatures of geological sources

Peter Köhler

Related authors

Mean ocean temperature change and decomposition of the benthic δ18O record over the past 4.5 million years
Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Patrick J. Bartlein, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, and Daniel P. Schrag
Clim. Past, 21, 973–1000, https://doi.org/10.5194/cp-21-973-2025,https://doi.org/10.5194/cp-21-973-2025, 2025
Short summary
FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025,https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
No detectable influence of the carbonate ion effect on changes in stable carbon isotope ratios (δ13C) of shallow dwelling planktic foraminifera over the past 160 kyr
Peter Köhler and Stefan Mulitza
Clim. Past, 20, 991–1015, https://doi.org/10.5194/cp-20-991-2024,https://doi.org/10.5194/cp-20-991-2024, 2024
Short summary
Carbon isotopes in the marine biogeochemistry model FESOM2.1-REcoM3
Martin Butzin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler
Geosci. Model Dev., 17, 1709–1727, https://doi.org/10.5194/gmd-17-1709-2024,https://doi.org/10.5194/gmd-17-1709-2024, 2024
Short summary
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023,https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Ice Cores | Timescale: Pleistocene
Predicting trends in atmospheric CO2 across the Mid-Pleistocene Transition using existing climate archives
Jordan R. W. Martin, Joel B. Pedro, and Tessa R. Vance
Clim. Past, 20, 2487–2497, https://doi.org/10.5194/cp-20-2487-2024,https://doi.org/10.5194/cp-20-2487-2024, 2024
Short summary
Stratigraphic templates for ice core records of the past 1.5 Myr
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022,https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Evolution of mean ocean temperature in Marine Isotope Stage 4
Sarah Shackleton, James A. Menking, Edward Brook, Christo Buizert, Michael N. Dyonisius, Vasilii V. Petrenko, Daniel Baggenstos, and Jeffrey P. Severinghaus
Clim. Past, 17, 2273–2289, https://doi.org/10.5194/cp-17-2273-2021,https://doi.org/10.5194/cp-17-2273-2021, 2021
Short summary
Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11
Thomas Kleinen, Victor Brovkin, and Guy Munhoven
Clim. Past, 12, 2145–2160, https://doi.org/10.5194/cp-12-2145-2016,https://doi.org/10.5194/cp-12-2145-2016, 2016
Short summary

Cited articles

Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene-Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, dzx002, https://doi.org/10.1093/climsys/dzx002, 2017. a, b, c
Bachan, A., Lau, K. V., Saltzman, M. R., Thomas, E., Kump, L. R., and Payne, J. L.: A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic, Am. J. Sci., 317, 641–676, https://doi.org/10.2475/06.2017.01, 2017. a, b, c
Barker, S., Lisiecki, L. E., Knorr, G., Nuber, S., and Tzedakis, P. C.: Distinct roles for precession, obliquity and eccentricity in Pleistocene 100 kyr glacial cycles, Science, 387, eadp3491, https://doi.org/10.1126/science.adp3491, 2025. a
Barry, P., Hilton, D., Füri, E., Halldórsson, S., and Grönvold, K.: Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes, Geochim. Cosmochim. Ac., 134, 74–99, https://doi.org/10.1016/j.gca.2014.02.038, 2014. a, b, c
Barry, P. H., Negrete-Aranda, R., Spelz, R. M., Seltzer, A. M., Bekaert, D. V., Virrueta, C., and Kulongoski, J. T.: Volatile sources, sinks and pathways: A helium carbon isotope study of Baja California fluids and gases, Chem. Geol., 550, 119722, https://doi.org/10.1016/j.chemgeo.2020.119722, 2020. a, b
Download
Short summary
Using a carbon cycle model, I show that the 405 kyr periodicity found in marine δ13C during the last 5 million years and the offset in atmospheric δ13CO2 between the Last Glacial Maximum and the Penultimate Glacial Maximum are probably related to each other. They can be explained by variations in the δ13C signature of weathered carbonate rock or of volcanically degassed CO2, which vary mainly with obliquity (41 kyr), suggesting that Northern Hemispheric land ice sheets are their ultimate drivers.
Share