Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-865-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-865-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation
Nils Weitzel
CORRESPONDING AUTHOR
Department of Geosciences, University of Tübingen, Tübingen, Germany
Heather Andres
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland, Canada
Jean-Philippe Baudouin
Department of Geosciences, University of Tübingen, Tübingen, Germany
Marie-Luise Kapsch
Max Planck Institute for Meteorology, Hamburg, Germany
Uwe Mikolajewicz
Max Planck Institute for Meteorology, Hamburg, Germany
Lukas Jonkers
MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Oliver Bothe
formerly at: Institute of Coastal Systems – Analysis and Modelling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Elisa Ziegler
Department of Geosciences, University of Tübingen, Tübingen, Germany
Department of Physics, University of Tübingen, Tübingen, Germany
Thomas Kleinen
Max Planck Institute for Meteorology, Hamburg, Germany
André Paul
MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Kira Rehfeld
Department of Geosciences, University of Tübingen, Tübingen, Germany
Department of Physics, University of Tübingen, Tübingen, Germany
Related authors
Yana Savytska, Viktor Smolii, and Nils Weitzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1981, https://doi.org/10.5194/egusphere-2024-1981, 2024
Short summary
Short summary
In recent decades, we have witnessed abnormally hot summers and frequent weather extremes globally. These are clear signs of global warming and climate change. A constant increase in atmospheric carbon dioxide (CO2) is a major driver of these changes. We propose an algorithm for near-real-time detection of terrestrial areas with CO2 sources and sinks. This algorithm could aid in developing new methods of natural CO2 reduction and exploring ecosystem responses to disturbances.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019, https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Short summary
ll-posedness of the inverse problem and sparse noisy data are two major challenges in the modeling of high-dimensional spatiotemporal processes. We present a Bayesian inference method with a strongly regularized posterior to overcome these challenges, enabling joint state-parameter estimation and quantifying uncertainty in the estimation. We demonstrate the method on a physically motivated nonlinear stochastic partial differential equation arising from paleoclimate construction.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-61, https://doi.org/10.5194/cp-2024-61, 2024
Preprint under review for CP
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive Earth system model and investigate vegetation change in North Africa during the last four African humid periods (AHPs). We find a common AHP pattern of vegetation change and relate it to climatic factors to discuss how vegetation might have evolved in much older AHPs. The relationship we found for past AHPs does not hold for projected changes in North Africa under strong greenhouse gas warming.
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-24, https://doi.org/10.5194/esd-2024-24, 2024
Preprint under review for ESD
Short summary
Short summary
Using a comprehensive set of simulations with the Max Planck Institute for Meteorology Earth System Model, we disentangle and quantify the impacts of a disintegrated Greenland Ice Sheet on the global climate, including the deep ocean. We find that most of the climate response is driven by Greenland’s lower elevation and enhanced by changed surface-properties, although regional differences exist. The altered climate conditions constrain a potential ice-sheet regrowth to high-bedrock elevations.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55, https://doi.org/10.5194/cp-2024-55, 2024
Revised manuscript under review for CP
Short summary
Short summary
A fully coupled atmosphere-ocean-ice sheet-solid earth model was applied to simulate the time from the last glacial maximum to the preindustrial. The model simulations are compared to proxy data. During the glacial and deglaciation the model simulates several abrupt changes in North Atlantic climate. The underlying meachanisms are analysed and described.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024, https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Short summary
We close the terrestrial water cycle across the Sahara and Sahel by integrating a new endorheic-lake model into a climate model. A factor analysis of mid-Holocene simulations shows that both dynamic lakes and dynamic vegetation individually contribute to a precipitation increase over northern Africa that is collectively greater than that caused by the interaction between lake and vegetation dynamics. Thus, the lake–vegetation interaction causes a relative drying response across the entire Sahel.
Yana Savytska, Viktor Smolii, and Nils Weitzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1981, https://doi.org/10.5194/egusphere-2024-1981, 2024
Short summary
Short summary
In recent decades, we have witnessed abnormally hot summers and frequent weather extremes globally. These are clear signs of global warming and climate change. A constant increase in atmospheric carbon dioxide (CO2) is a major driver of these changes. We propose an algorithm for near-real-time detection of terrestrial areas with CO2 sources and sinks. This algorithm could aid in developing new methods of natural CO2 reduction and exploring ecosystem responses to disturbances.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Revised manuscript has not been submitted
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Ryan Love, Lev Tarasov, Heather Andres, Alan Condron, Xu Zhang, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2225, https://doi.org/10.5194/egusphere-2023-2225, 2023
Preprint archived
Short summary
Short summary
Freshwater injection into bands across the North Atlantic are a mainstay of climate modelling when investigating topics such as climate change or the role of glacial runoff in the glacial climate system. However, this approach is unrealistic and results in a systematic bias in the climate response to a given flux of freshwater. We evaluate the magnitude of this bias by comparison to two other approaches for introducing freshwater into a coupled climate model setup for glacial conditions.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Alexandre Cauquoin, Ayako Abe-Ouchi, Takashi Obase, Wing-Le Chan, André Paul, and Martin Werner
Clim. Past, 19, 1275–1294, https://doi.org/10.5194/cp-19-1275-2023, https://doi.org/10.5194/cp-19-1275-2023, 2023
Short summary
Short summary
Stable water isotopes are tracers of climate processes occurring in the hydrological cycle. They are widely used to reconstruct the past variations of polar temperature before the instrumental era thanks to their measurements in ice cores. However, the relationship between measured isotopes and temperature has large uncertainties. In our study, we investigate how the sea surface conditions (temperature, sea ice, ocean circulation) impact this relationship for a cold to warm climate change.
Thomas Kleinen, Sergey Gromov, Benedikt Steil, and Victor Brovkin
Clim. Past, 19, 1081–1099, https://doi.org/10.5194/cp-19-1081-2023, https://doi.org/10.5194/cp-19-1081-2023, 2023
Short summary
Short summary
We modelled atmospheric methane continuously from the last glacial maximum to the present using a state-of-the-art Earth system model. Our model results compare well with reconstructions from ice cores and improve our understanding of a very intriguing period of Earth system history, the deglaciation, when atmospheric methane changed quickly and strongly. Deglacial methane changes are driven by emissions from tropical wetlands, with wetlands in high northern latitudes being secondary.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Clemens Schannwell, Uwe Mikolajewicz, Florian Ziemen, and Marie-Luise Kapsch
Clim. Past, 19, 179–198, https://doi.org/10.5194/cp-19-179-2023, https://doi.org/10.5194/cp-19-179-2023, 2023
Short summary
Short summary
Heinrich-type ice-sheet surges are recurring events over the course of the last glacial cycle during which large numbers of icebergs are discharged from the Laurentide ice sheet into the ocean. These events alter the evolution of the global climate. Here, we use model simulations of the Laurentide ice sheet to identify and quantify the importance of various climate and ice-sheet parameters for the simulated surge cycle.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Mateo Duque-Villegas, Martin Claussen, Victor Brovkin, and Thomas Kleinen
Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, https://doi.org/10.5194/cp-18-1897-2022, 2022
Short summary
Short summary
Using an Earth system model of intermediate complexity, we quantify contributions of the Earth's orbit, greenhouse gases (GHGs) and ice sheets to the strength of Saharan greening during late Quaternary African humid periods (AHPs). Orbital forcing is found as the dominant factor, having a critical threshold and accounting for most of the changes in the vegetation response. However, results suggest that GHGs may influence the orbital threshold and thus may play a pivotal role for future AHPs.
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Short summary
Palaeoenvironmental records only provide a fragmentary picture of the lake and wetland extent in North Africa during the mid-Holocene. Therefore, we investigate the possible range of mid-Holocene precipitation changes caused by an estimated small and maximum lake extent and a maximum wetland extent. Results show a particularly strong monsoon precipitation response to lakes and wetlands over the Western Sahara and an increased monsoon precipitation when replacing lakes with vegetated wetlands.
Katharina Dorothea Six and Uwe Mikolajewicz
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-27, https://doi.org/10.5194/bg-2022-27, 2022
Preprint withdrawn
Short summary
Short summary
We developed a global ocean biogeochemical model with a zoom on the Benguela upwelling system. We show that the high spatial resolution is necessary to capture long-term trends of oxygen of the recent past. The regional anthropogenic carbon uptake over the last century is lower than compared to a coarser resolution ocean model as used in Earth system models. This suggests that, at least for some regions, the changes projected by these Earth system models are associated with high uncertainty.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021, https://doi.org/10.5194/wcd-2-1187-2021, 2021
Short summary
Short summary
Western disturbances are mid-latitude, high-altitude, low-pressure areas that bring orographic precipitation into the Upper Indus Basin. Using statistical tools, we show that the interaction between western disturbances and relief explains the near-surface, cross-barrier wind activity. We also reveal the existence of a moisture pathway from the nearby seas. Overall, we offer a conceptual framework for western-disturbance activity, particularly in terms of precipitation.
Ryan Love, Heather J. Andres, Alan Condron, and Lev Tarasov
Clim. Past, 17, 2327–2341, https://doi.org/10.5194/cp-17-2327-2021, https://doi.org/10.5194/cp-17-2327-2021, 2021
Short summary
Short summary
Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial- to millennial-scale climate variability and climate transitions. We track the routing of glaciologically constrained freshwater volumes in glacial ocean simulations. Our simulations capture important generally not well-represented small-scale features (boundary currents, eddies). We show that the dilution of freshwater as it is transported to key climate regions reduces the freshening to 20 %–60 %.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev., 14, 2843–2866, https://doi.org/10.5194/gmd-14-2843-2021, https://doi.org/10.5194/gmd-14-2843-2021, 2021
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian A. Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere, 15, 1131–1156, https://doi.org/10.5194/tc-15-1131-2021, https://doi.org/10.5194/tc-15-1131-2021, 2021
Philipp de Vrese, Tobias Stacke, Thomas Kleinen, and Victor Brovkin
The Cryosphere, 15, 1097–1130, https://doi.org/10.5194/tc-15-1097-2021, https://doi.org/10.5194/tc-15-1097-2021, 2021
Short summary
Short summary
With large amounts of carbon stored in frozen soils and a highly energy-limited vegetation the Arctic is very sensitive to changes in climate. Here our simulations with the land surface model JSBACH reveal a number of offsetting factors moderating the Arctic's net response to global warming. More importantly we find that the effects of climate change may not be fully reversible on decadal timescales, leading to substantially different CH4 emissions depending on whether the Arctic warms or cools.
Taimaz Bahadory, Lev Tarasov, and Heather Andres
Clim. Past, 17, 397–418, https://doi.org/10.5194/cp-17-397-2021, https://doi.org/10.5194/cp-17-397-2021, 2021
Short summary
Short summary
We present an ensemble of last glacial inception simulations using a fully coupled ice–climate model for the Northern Hemisphere. The ensemble largely captures inferred ice volume changes within proxy uncertainties. Notable features include an ice bridge across Davis Strait and between Greenland and Iceland. Via an equilibrium climate response experiment, we also demonstrate the potential value of fully coupled ice–climate modelling of last glacial inception to constrain future climate change.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu
Clim. Past, 16, 2039–2054, https://doi.org/10.5194/cp-16-2039-2020, https://doi.org/10.5194/cp-16-2039-2020, 2020
Short summary
Short summary
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During the peak of the last ice age, their distribution was obtained based on pollen data literature. A climate model, after validation on the present, was used to calculate the potential distribution of such trees in the past. It shows that the shift of the tree belt was only 2° latitude to the south. Moreover, greater population connectivity was shown for the Yellow Sea and southern Himalayas.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Thomas Kleinen, Uwe Mikolajewicz, and Victor Brovkin
Clim. Past, 16, 575–595, https://doi.org/10.5194/cp-16-575-2020, https://doi.org/10.5194/cp-16-575-2020, 2020
Short summary
Short summary
We investigate the changes in natural methane emissions between the Last Glacial Maximum and preindustrial periods with a methane-enabled version of MPI-ESM. We consider all natural sources of methane except for emissions from wild animals and geological sources. Changes are dominated by changes in tropical wetland emissions, high-latitude wetlands play a secondary role, and all other natural sources are of minor importance. We explain the changes in ice core methane by methane emissions only.
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020, https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary
Short summary
Chemical processes in ocean-floor sediments have a large influence on the marine carbon cycle, hence the global climate, at long timescales. We developed a new coupling scheme for a chemical sediment model and a comprehensive climate model. The new coupled model outperformed the original uncoupled climate model in reproducing the global distribution of sediment properties. The sediment model will also act as a
bridgebetween the ocean model and paleoceanographic data.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, https://doi.org/10.5194/hess-24-427-2020, 2020
Short summary
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.
Moritz Mathis and Uwe Mikolajewicz
Ocean Sci., 16, 167–193, https://doi.org/10.5194/os-16-167-2020, https://doi.org/10.5194/os-16-167-2020, 2020
Short summary
Short summary
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses flushing the NWES lead to a reduction in the biological productivity on the shelf. We show that meltwater discharge from the Greenland ice sheet induces a change in the subpolar ocean circulation, resulting in a nutrient increase of deeper Atlantic water masses. These are mixed up at the shelf break and spread over the shelf, mitigating both the expected nutrient decline and productivity reduction.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Heather J. Andres and Lev Tarasov
Clim. Past, 15, 1621–1646, https://doi.org/10.5194/cp-15-1621-2019, https://doi.org/10.5194/cp-15-1621-2019, 2019
Short summary
Short summary
Abrupt climate shifts of large magnitudes were common during glacial states, with explanations centred on the oceans. However, winds drive ocean surface currents so shifts in mean wind conditions could also have played a critical role. In a small ensemble of transient deglacial simulations, we find abrupt shifts in both jet stream location and variability over the North Atlantic. We show that the eastern North American ice sheet margin strongly constrains regional jet characteristics.
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019, https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Short summary
ll-posedness of the inverse problem and sparse noisy data are two major challenges in the modeling of high-dimensional spatiotemporal processes. We present a Bayesian inference method with a strongly regularized posterior to overcome these challenges, enabling joint state-parameter estimation and quantifying uncertainty in the estimation. We demonstrate the method on a physically motivated nonlinear stochastic partial differential equation arising from paleoclimate construction.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Andreas Lang and Uwe Mikolajewicz
Ocean Sci., 15, 651–668, https://doi.org/10.5194/os-15-651-2019, https://doi.org/10.5194/os-15-651-2019, 2019
Short summary
Short summary
Here we investigate the occurrence of extreme storm surges in the southern German Bight and their associated large-scale forcing mechanisms using climate model simulations covering the last 1000 years. We find that extreme storm surges are characterized by a large internal variability that masks potential links to external climate forcing or background sea level fluctuations; existing estimates of extreme sea levels based on short data records thus fail to account for their full variability.
Charlotte Breitkreuz, André Paul, and Michael Schulz
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-52, https://doi.org/10.5194/cp-2019-52, 2019
Publication in CP not foreseen
Short summary
Short summary
We combined a model simulation of the Last Glacial Maximum ocean with sea surface temperature and calcite oxygen isotope data through data assimilation. The reconstructed ocean state is very similar to the modern and it follows that the employed proxy data do not require an ocean state very different from today's. Sensitivity experiments reveal that data from the deep North Atlantic but also from the global deep Southern Ocean are most important to constrain the Atlantic overturning circulation.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, https://doi.org/10.5194/cp-15-153-2019, 2019
Short summary
Short summary
Heinrich events are among the dominant modes of glacial climate variability. They are caused by massive ice discharges from the Laurentide Ice Sheet into the North Atlantic. In previous studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet–climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects.
Matthias M. May and Kira Rehfeld
Earth Syst. Dynam., 10, 1–7, https://doi.org/10.5194/esd-10-1-2019, https://doi.org/10.5194/esd-10-1-2019, 2019
Short summary
Short summary
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative emission technologies are therefore an important basis for climate policy scenarios. We show that photoelectrochemical CO2 reduction might be a viable, high-efficiency alternative to biomass-based approaches, which reduce competition for arable land. To develop them, chemical reactions have to be optimized for CO2 removal, which deviates from energetic efficiency optimization in solar fuel applications.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Javier García-Pintado and André Paul
Geosci. Model Dev., 11, 5051–5084, https://doi.org/10.5194/gmd-11-5051-2018, https://doi.org/10.5194/gmd-11-5051-2018, 2018
Short summary
Short summary
Earth system models (ESMs) integrate interactions of atmosphere, ocean, land, ice, and biosphere to estimate the state of regional and global climate under a variety of conditions. Past climate field reconstructions with deterministic ESMs through the assimilation of climate proxies need to consider the required high computations and model non-linearity. Our tests indicate that iterative schemes based on the Kalman filter and careful sensitivity analysis are adequate for approaching the problem.
Virna Loana Meccia and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4677–4692, https://doi.org/10.5194/gmd-11-4677-2018, https://doi.org/10.5194/gmd-11-4677-2018, 2018
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, https://doi.org/10.5194/gmd-11-4291-2018, 2018
Short summary
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Climate?
Oliver Bothe
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2018-11, https://doi.org/10.5194/gc-2018-11, 2018
Revised manuscript not accepted
Short summary
Short summary
Everybody experiences weather and has, likely, a grasp on the notion of different climates. There are discussions on how to define climate, since climate is a policy-relevant topic. Here, I try to clarify why the saying
Climate is what you expect, weather is what you getis an appropriate definition that, however, depends on the definition of what may be seen as
weather.
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018, https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Short summary
We present year-round methane emissions from wetlands in Northeast Siberia that were simulated with a land surface model. Ground-based flux measurements from the same area were used for evaluation of the model results, finding a best agreement with the observations in the summertime emissions that take place in this region predominantly through plants. During winter, methane emissions through the snow contribute 4 % of the total annual methane budget, but these are still underestimated.
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Thomas Kleinen, Victor Brovkin, and Guy Munhoven
Clim. Past, 12, 2145–2160, https://doi.org/10.5194/cp-12-2145-2016, https://doi.org/10.5194/cp-12-2145-2016, 2016
Short summary
Short summary
We investigate trends in atmospheric CO2 during three recent interglacials – the Holocene, the Eemian and MIS 11 – using an earth system model of intermediate complexity. Our model experiments show a considerable improvement in the modelled CO2 trends for all three interglacials if peat accumulation and shallow water CaCO3 sedimentation are included, forcing the model only with orbital and sea level changes. The Holocene CO2 trend requires anthropogenic emissions of CO2 only after 3 ka BP.
Marlene Klockmann, Uwe Mikolajewicz, and Jochem Marotzke
Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, https://doi.org/10.5194/cp-12-1829-2016, 2016
Short summary
Short summary
We study the response of the glacial AMOC to different forcings in a coupled AOGCM. The depth of the upper overturning cell remains almost unchanged in response to the full glacial forcing. This is the result of two opposing effects: a deepening due to the ice sheets and a shoaling due to the low GHG concentrations. Increased brine release in the Southern Ocean is key to the shoaling. With glacial ice sheets, a shallower cell can be simulated with GHG concentrations below the glacial level.
Fabio Cresto Aleina, Benjamin R. K. Runkle, Tim Brücher, Thomas Kleinen, and Victor Brovkin
Geosci. Model Dev., 9, 915–926, https://doi.org/10.5194/gmd-9-915-2016, https://doi.org/10.5194/gmd-9-915-2016, 2016
Short summary
Short summary
This study presents the hotspot parameterization, a novel approach to upscaling methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of water table patterns generated by the Hummock–Hollow (HH) model. We show how the hotspot parameterization successfully upscales the micro-topographic controls on methane emissions for both present-day conditions and for the next century under three different scenarios.
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Short summary
We developed a process-based model for peatland micro-topography and hydrology, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By coupling the HH model with a model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We also identify potential biases that models without a micro-topographic representation can introduce in large-scale models.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
L. Jonkers, C. E. Reynolds, J. Richey, and I. R. Hall
Biogeosciences, 12, 3061–3070, https://doi.org/10.5194/bg-12-3061-2015, https://doi.org/10.5194/bg-12-3061-2015, 2015
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
L. Jonkers and M. Kučera
Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, https://doi.org/10.5194/bg-12-2207-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
T. Kurahashi-Nakamura, M. Losch, and A. Paul
Geosci. Model Dev., 7, 419–432, https://doi.org/10.5194/gmd-7-419-2014, https://doi.org/10.5194/gmd-7-419-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Marine Archives | Timescale: Milankovitch
Eccentricity forcing on tropical ocean seasonality
Shallow marine carbonates as recorders of orbitally induced past climate changes – example from the Oxfordian of the Swiss Jura Mountains
Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model
Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis
Emulation of long-term changes in global climate: application to the late Pliocene and future
Luc Beaufort and Anta-Clarisse Sarr
Clim. Past, 20, 1283–1301, https://doi.org/10.5194/cp-20-1283-2024, https://doi.org/10.5194/cp-20-1283-2024, 2024
Short summary
Short summary
At present, under low eccentricity, the tropical ocean experiences a limited seasonality. Based on eight climate simulations of sea surface temperature and primary production, we show that, during high-eccentricity times, significant seasons existed in the tropics due to annual changes in the Earth–Sun distance. Those tropical seasons are slowly shifting in the calendar year to be distinct from classical seasons. Their past dynamics should have influenced phenomena like ENSO and monsoons.
André Strasser
Clim. Past, 18, 2117–2142, https://doi.org/10.5194/cp-18-2117-2022, https://doi.org/10.5194/cp-18-2117-2022, 2022
Short summary
Short summary
Some 155 million years ago, sediments were deposited in a shallow subtropical sea. Coral reefs formed in a warm and arid climate during high sea level, and clays were washed into the ocean at low sea level and when it rained. Climate and sea level changes were induced by cyclical insolation changes. Analysing the sedimentary record, it appears that sea level rise today (as a result of global warming) is more than 10 times faster than the fastest rise reconstructed from the geologic past.
Gaëlle Leloup and Didier Paillard
Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, https://doi.org/10.5194/cp-18-547-2022, 2022
Short summary
Short summary
Over the last 2.6 Myr, the Quaternary period has been marked by the alternation of extended and reduced Northern Hemisphere ice sheets, known as glacial-interglacial cycles. With a simple model, we are able to reproduce the main features of the ice volume evolution, like the switch of periodicity, from 41 kyr cycles to 100 kyr cycles, observed in the data after 1 Ma. The quality of the model-data agreement depending on the input insolation and period considered is discussed.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Cited articles
Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, 2015. a
Adam, M., Weitzel, N., and Rehfeld, K.: Identifying Global‐Scale Patterns of Vegetation Change During the Last Deglaciation From Paleoclimate Networks, Paleoceanogr. Paleocl., 36, e2021PA004265, https://doi.org/10.1029/2021PA004265, 2021. a
Annan, J. D., Hargreaves, J. C., and Mauritsen, T.: A new global surface temperature reconstruction for the Last Glacial Maximum, Clim. Past, 18, 1883–1896, https://doi.org/10.5194/cp-18-1883-2022, 2022. a
Arz, H. W., Pätzold, J., Müller, P. J., and Moammar, M. O.: Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I, Paleoceanography, 18, 1053, https://doi.org/10.1029/2002PA000864, 2003. a
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S.: Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic, Science, 289, 1321–1324, https://doi.org/10.1126/science.289.5483.1321, 2000. a
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019. a
Benz, V., Esper, O., Gersonde, R., Lamy, F., and Tiedemann, R.: Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean, Quaternary Sci. Rev., 146, 216–237, https://doi.org/10.1016/j.quascirev.2016.06.006, 2016. a
Berger, A.: Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, J. Atmos. Sci., 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978. a
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011. a
Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, C., Beaufort, L., Kienast, M., Andersen, N., and Garbe-Schönberg, D.: Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool, Paleoceanography, 26, PA1208, https://doi.org/10.1029/2010PA001966, 2011. a, b
Bouimetarhan, I., Groeneveld, J., Dupont, L., and Zonneveld, K.: Low- to high-productivity pattern within Heinrich Stadial 1: Inferences from dinoflagellate cyst records off Senegal, Global Planet. Change, 106, 64–76, https://doi.org/10.1016/j.gloplacha.2013.03.007, 2013. a, b
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012. a
Bühler, J. C., Roesch, C., Kirschner, M., Sime, L., Holloway, M. D., and Rehfeld, K.: Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium, Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, 2021. a
Cacho, I., Grimalt, J. O., Pelejero, C., Canals, M., Sierro, F. J., Flores, J. A., and Shackleton, N.: Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures, Paleoceanography, 14, 698–705, https://doi.org/10.1029/1999PA900044, 1999. a
Carlson, A. E., Oppo, D. W., Came, R. E., LeGrande, A. N., Keigwin, L. D., and Curry, W. B.: Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation, Geology, 36, 991, https://doi.org/10.1130/G25080A.1, 2008. a
Chapman, M. R., Shackleton, N. J., Zhao, M., and Eglinton, G.: Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr, Paleoceanography, 11, 343–357, https://doi.org/10.1029/96PA00041, 1996. a
Cheng, Z., Weng, C., Steinke, S., and Mohtadi, M.: Anthropogenic modification of vegetated landscapes in southern China from 6,000 years ago, Nat. Geosci., 11, 939–943, https://doi.org/10.1038/s41561-018-0250-1, 2018. a
Chiessi, C. M., Mulitza, S., Paul, A., Pätzold, J., Groeneveld, J., and Wefer, G.: South Atlantic interocean exchange as the trigger for the Bølling warm event, Geology, 36, 919, https://doi.org/10.1130/G24979A.1, 2008. a
Chiessi, C. M., Mulitza, S., Groeneveld, J., Silva, J. B., Campos, M. C., and Gurgel, M. H.: Variability of the Brazil Current during the late Holocene, Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 28–36, https://doi.org/10.1016/j.palaeo.2013.12.005, 2014. a
Chiessi, C. M., Mulitza, S., Mollenhauer, G., Silva, J. B., Groeneveld, J., and Prange, M.: Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1, Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, 2015. a
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J. W.: Global climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, https://doi.org/10.1073/pnas.1116619109, 2012. a
Cleator, S. F., Harrison, S. P., Nichols, N. K., Prentice, I. C., and Roulstone, I.: A new multivariable benchmark for Last Glacial Maximum climate simulations, Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, 2020. a
Climate Data at the NSF National Center for Atmospheric Research: Simulation of the Transient Climate of the Last 21,000 Years (TraCE-21ka), NCAR Climate Data Gateway [data set], https://www.earthsystemgrid.org/project/trace.html, last access: 28 February 2023. a
Crivellari, S., Chiessi, C. M., Kuhnert, H., Häggi, C., Mollenhauer, G., Hefter, J., Portilho-Ramos, R., Schefuß, E., and Mulitza, S.: Thermal response of the western tropical Atlantic to slowdown of the Atlantic Meridional Overturning Circulation, Earth Planet. Sc. Lett., 519, 120–129, https://doi.org/10.1016/j.epsl.2019.05.006, 2019. a, b, c, d
Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., and Herzschuh, U.: The deglacial forest conundrum, Nat. Commun., 13, 6035, https://doi.org/10.1038/s41467-022-33646-6, 2022. a
Dee, S., Parsons, L., Loope, G., Overpeck, J., Ault, T., and Emile-Geay, J.: Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability, Earth Planet. Sc. Lett., 476, 34–46, https://doi.org/10.1016/j.epsl.2017.07.036, 2017. a
Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for sediment-archived climate proxies, Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, 2018. a, b
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg Ca ratios, Nature, 405, 442–445, https://doi.org/10.1038/35013033, 2000. a, b, c, d
Evans, M., Tolwinski-Ward, S., Thompson, D., and Anchukaitis, K.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. a, b
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H., Schmieder, F., and Röhl, U.: Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008. a, b
Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B., Burke, A., Foster, G. L., and Lear, C. H.: Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean, Nat. Geosci., 11, 340–344, https://doi.org/10.1038/s41561-018-0108-6, 2018. a
Hargreaves, J. C., Annan, J. D., Ohgaito, R., Paul, A., and Abe-Ouchi, A.: Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene, Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, 2013. a
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43, 671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014. a
He, C., Liu, Z., Otto-Bliesner, B. L., Brady, E., Zhu, C., Tomas, R., Clark, P., Zhu, J., Jahn, A., Gu, S., Zhang, J., Nusbaumer, J., Noone, D., Cheng, H., Wang, Y., Yan, M., and Bao, Y.: Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation, Sci. Adv., 7, eabe2611, https://doi.org/10.1126/sciadv.abe2611, 2021. a
He, F. and Clark, P. U.: Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited, Nat. Clim. Change, 12, 449–454, https://doi.org/10.1038/s41558-022-01328-2, 2022. a
Herzschuh, U., Böhmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N. H., Nazarova, L., Novenko, E. Y., Park, J., Peyron, O., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.: LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond, Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, 2023. a
Huang, E., Chen, Y., Schefuß, E., Steinke, S., Liu, J., Tian, J., Martínez-Méndez, G., and Mohtadi, M.: Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene, Earth Planet. Sc. Lett., 494, 1–11, https://doi.org/10.1016/j.epsl.2018.04.046, 2018. a
Hüls, M. and Zahn, R.: Millennial-scale sea surface temperature variability in the western tropical North Atlantic from planktonic foraminiferal census counts, Paleoceanography, 15, 659–678, https://doi.org/10.1029/1999PA000462, 2000. a
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016. a, b, c
Johnstone, H. J. H., Kiefer, T., Elderfield, H., and Schulz, M.: Calcite saturation, foraminiferal test mass, and Mg Ca-based temperatures dissolution corrected using XDX-A 150 ka record from the western Indian Ocean, Geochem. Geophy. Geosy., 15, 781–797, https://doi.org/10.1002/2013GC004994, 2014. a, b, c
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017. a, b
Jonkers, L. and Kučera, M.: Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions, Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, 2019. a
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack, A., and Kucera, M.: Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis, Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, 2020. a, b, c
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack, A., and Kucera, M.: PalMod 130k marine palaeoclimate data synthesis version 1.1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.7785766, 2023. a, b
Judd, E. J., Bhattacharya, T., and Ivany, L. C.: A Dynamical Framework for Interpreting Ancient Sea Surface Temperatures, Geophys. Res. Lett., 47, e2020GL089044, https://doi.org/10.1029/2020GL089044, 2020. a
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021. a
Kapsch, M., Mikolajewicz, U., Ziemen, F., and Schannwell, C.: Ocean Response in Transient Simulations of the Last Deglaciation Dominated by Underlying Ice‐Sheet Reconstruction and Method of Meltwater Distribution, Geophys. Res. Lett., 49, e2021GL096767, https://doi.org/10.1029/2021GL096767, 2022. a, b, c, d, e, f, g, h
Kiefer, T.: Produktivität und Temperaturen im subtropischen Nordatlantik: zyklische und abrupte Veränderungen im späten Quartär, Tech. rep., Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, Kiel, https://doi.org/10.2312/REPORTS-GPI.1998.90, 1998. a, b
Kiefer, T., McCave, I. N., and Elderfield, H.: Antarctic control on tropical Indian Ocean sea surface temperature and hydrography, Geophys. Res. Lett., 33, L24612, https://doi.org/10.1029/2006GL027097, 2006. a, b
Kirst, G. J., Schneider, R. R., Müller, P. J., von Storch, I., and Wefer, G.: Late Quaternary Temperature Variability in the Benguela Current System Derived from Alkenones, Quaternary Res., 52, 92–103, https://doi.org/10.1006/qres.1999.2040, 1999. a
Kleinen, T., Gromov, S., Steil, B., and Brovkin, V.: Atmospheric methane since the last glacial maximum was driven by wetland sources, Clim. Past, 19, 1081–1099, https://doi.org/10.5194/cp-19-1081-2023, 2023a. a, b, c
Kleinen, T., Gromov, S., Steil, B., and Brovkin, V.: PalMod2 MPI-M MPI-ESM1-2-CR-CH4 transient-deglaciation-prescribed-glac1d-methane, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/PMMXMCHTD, 2023b. a, b
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale, Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, 2018. a
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, https://doi.org/10.1016/j.quascirev.2004.07.014, 2005. a
Kwon, Y.-O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B., and Thompson, L. A.: Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review, J. Climate, 23, 3249–3281, https://doi.org/10.1175/2010JCLI3343.1, 2010. a
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer, H.: A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing, Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, 2017. a
Labeyrie, L., Labracherie, M., Gorfti, N., Pichon, J. J., Vautravers, M., Arnold, M., Duplessy, J.-C., Paterne, M., Michel, E., Duprat, J., Caralp, M., and Turon, J.-L.: Hydrographic changes of the Southern Ocean (southeast Indian Sector) Over the last 230 kyr, Paleoceanography, 11, 57–76, https://doi.org/10.1029/95PA02255, 1996. a
Laepple, T. and Huybers, P.: Ocean surface temperature variability: Large model–data differences at decadal and longer periods, P. Natl. Acad. Sci. USA, 111, 16682–16687, https://doi.org/10.1073/pnas.1412077111, 2014. a, b
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014. a
Lauterbach, S., Andersen, N., Wang, Y. V., Blanz, T., Larsen, T., and Schneider, R. R.: An ∼130 kyr Record of Surface Water Temperature and δ18O From the Northern Bay of Bengal: Investigating the Linkage Between Heinrich Events and Weak Monsoon Intervals in Asia, Paleoceanography and Paleoclimatology, 35, e2019PA003646, https://doi.org/10.1029/2019PA003646, 2020. a
Lea, D. W., Pak, D. K., Belanger, C. L., Spero, H. J., Hall, M. A., and Shackleton, N. J.: Paleoclimate history of Galápagos surface waters over the last 135,000 yr, Quaternary Sci. Rev., 25, 1152–1167, https://doi.org/10.1016/j.quascirev.2005.11.010, 2006. a
Lenton, T.: QUEST Quaternary: FAMOUS glacial cycle model data, NCAS British Atmospheric Data Centre [data set], https://catalogue.ceda.ac.uk/uuid/a43dcfaccfae4824ab9ab2b572703e72 (last access: 28 February 2023), 2008. a
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009. a, b, c, d, e, f, g
Love, R., Andres, H. J., Condron, A., and Tarasov, L.: Freshwater routing in eddy-permitting simulations of the last deglacial: the impact of realistic freshwater discharge, Clim. Past, 17, 2327–2341, https://doi.org/10.5194/cp-17-2327-2021, 2021. a
Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., and Wu, L.: Western boundary currents regulated by interaction between ocean eddies and the atmosphere, Nature, 535, 533–537, https://doi.org/10.1038/nature18640, 2016. a
MARGO Project Members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, https://doi.org/10.1038/ngeo411, 2009. a
Maslin, M. A., Shackleton, N. J., and Pflaumann, U.: Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds, Paleoceanography, 10, 527–544, https://doi.org/10.1029/94PA03040, 1995. a
Menviel, L., Timmermann, A., Timm, O. E., and Mouchet, A.: Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings, Quaternary Sci. Rev., 30, 1155–1172, https://doi.org/10.1016/j.quascirev.2011.02.005, 2011. a
Mikolajewicz, U., Kapsch, M.-L., Gayler, V., Meccia, V. L., Riddick, T., Ziemen, F. A., and Schannwell, C.: PalMod2 MPI-M MPI-ESM1-2-CR Transient Simulations of the Last Deglaciation with prescribed ice sheets from GLAC-1D reconstructions (r1i1p3f2), World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/PMMXMCRTDGP132, 2023a. a
Mikolajewicz, U., Kapsch, M.-L., Gayler, V., Meccia, V. L., Riddick, T., Ziemen, F. A., and Schannwell, C.: PalMod2 MPI-M MPI-ESM1-2-CR Transient Simulations of the Last Deglaciation with prescribed ice sheets from ICE-6G reconstructions (r1i1p3f2), World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/PMMXMCRTDIP132, 2023b. a
Mikolajewicz, U., Kapsch, M.-L., Gayler, V., Meccia, V. L., Riddick, T., Ziemen, F. A., and Schannwell, C.: PalMod2 MPI-M MPI-ESM1-2-CR Transient Simulations of the Last Deglaciation with prescribed ice sheets from ICE-6G reconstructions (r1i1p2f2), World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/PMMXMCRTDIP122, 2023c. a
Niedermeyer, E. M., Prange, M., Mulitza, S., Mollenhauer, G., Schefuß, E., and Schulz, M.: Extratropical forcing of Sahel aridity during Heinrich stadials, Geophys. Res. Lett., 36, L20707, https://doi.org/10.1029/2009GL039687, 2009. a
Nürnberg, D., Böschen, T., Doering, K., Mollier-Vogel, E., Raddatz, J., and Schneider, R.: Sea surface and subsurface circulation dynamics off equatorial Peru during the last ∼17 kyr, Paleoceanography, 30, 984–999, https://doi.org/10.1002/2014PA002706, 2015. a, b, c
Obase, T. and Abe‐Ouchi, A.: Abrupt Bølling‐Allerød Warming Simulated under Gradual Forcing of the Last Deglaciation, Geophys. Res. Lett., 46, 11397–11405, https://doi.org/10.1029/2019GL084675, 2019. a
Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J., and Poulsen, C. J.: Globally resolved surface temperatures since the Last Glacial Maximum, Nature, 599, 239–244, https://doi.org/10.1038/s41586-021-03984-4, 2021. a, b, c
PAGES 2k Consortium: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era, Nat. Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019. a
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015. a
Pailler, D. and Bard, E.: High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian Margin, Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 431–452, https://doi.org/10.1016/S0031-0182(01)00444-8, 2002. a
Pedro, J., Andersson, C., Vettoretti, G., Voelker, A., Waelbroeck, C., Dokken, T., Jensen, M., Rasmussen, S., Sessford, E., Jochum, M., and Nisancioglu, K.: Dansgaard-Oeschger and Heinrich event temperature anomalies in the North Atlantic set by sea ice, frontal position and thermocline structure, Quaternary Sci. Rev., 289, 107599, https://doi.org/10.1016/j.quascirev.2022.107599, 2022. a
Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M., and Wang, L.: High-resolution U temperature reconstructions in the South China Sea over the past 220 kyr, Paleoceanography, 14, 224–231, https://doi.org/10.1029/1998PA900015, 1999. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model: Global Glacial Isostatic Adjustment, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015. a
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017. a
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series, Nonlin. Processes Geophys., 18, 389–404, https://doi.org/10.5194/npg-18-389-2011, 2011. a
Reschke, M., Rehfeld, K., and Laepple, T.: Empirical estimate of the signal content of Holocene temperature proxy records, Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, 2019. a
Riddick, T., Brovkin, V., Hagemann, S., and Mikolajewicz, U.: Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0, Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, 2018. a
Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., and Tiedemann, R.: Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification, Paleoceanography, 28, 91–104, https://doi.org/10.1002/palo.20014, 2013. a, b, c
Roberts, J., Gottschalk, J., Skinner, L. C., Peck, V. L., Kender, S., Elderfield, H., Waelbroeck, C., Vázquez Riveiros, N., and Hodell, D. A.: Evolution of South Atlantic density and chemical stratification across the last deglaciation, P. Natl. Acad. Sci. USA, 113, 514–519, https://doi.org/10.1073/pnas.1511252113, 2016. a
Roberts, J., McCave, I., McClymont, E., Kender, S., Hillenbrand, C.-D., Matano, R., Hodell, D., and Peck, V.: Deglacial changes in flow and frontal structure through the Drake Passage, Earth Planet. Sc. Lett., 474, 397–408, https://doi.org/10.1016/j.epsl.2017.07.004, 2017. a
Romahn, S., Mackensen, A., Groeneveld, J., and Pätzold, J.: Deglacial intermediate water reorganization: new evidence from the Indian Ocean, Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, 2014. a
Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., and Zahn, R.: Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation, Nature, 402, 511–514, https://doi.org/10.1038/990069, 1999. a
Salgueiro, E., Naughton, F., Voelker, A., de Abreu, L., Alberto, A., Rossignol, L., Duprat, J., Magalhães, V., Vaqueiro, S., Turon, J.-L., and Abrantes, F.: Past circulation along the western Iberian margin: a time slice vision from the Last Glacial to the Holocene, Quaternary Sci. Rev., 106, 316–329, https://doi.org/10.1016/j.quascirev.2014.09.001, 2014. a
Samson, C. R., Sikes, E. L., and Howard, W. R.: Deglacial paleoceanographic history of the Bay of Plenty, New Zealand, Paleoceanography, 20, PA4017, https://doi.org/10.1029/2004PA001088, 2005. a
Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Mulitza, S., Kuhnert, H., Govin, A., Machado, T., Costa, K. B., Toledo, F., Dias, B. B., and Albuquerque, A. L. S.: Prolonged warming of the Brazil Current precedes deglaciations, Earth Planet. Sc. Lett., 463, 1–12, https://doi.org/10.1016/j.epsl.2017.01.014, 2017. a
Schlung, S. A., Christina Ravelo, A., Aiello, I. W., Andreasen, D. H., Cook, M. S., Drake, M., Dyez, K. A., Guilderson, T. P., LaRiviere, J. P., Stroynowski, Z., and Takahashi, K.: Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high-resolution record from IODP Site U1340, Paleoceanography, 28, 54–67, https://doi.org/10.1029/2012PA002365, 2013. a
Schröder, J. F., Holbourn, A., Kuhnt, W., and Küssner, K.: Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr, Quaternary Sci. Rev., 154, 143–156, https://doi.org/10.1016/j.quascirev.2016.10.018, 2016. a
Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P., Hendrizan, M., and Xu, J.: Deglacial Warming and Hydroclimate Variability in the Central Indonesian Archipelago, Paleoceanography and Paleoclimatology, 33, 974–993, https://doi.org/10.1029/2018PA003323, 2018. a, b, c, d
Schulz, H.: Meeresoberflächentemperaturen vor 10.000 Jahren – Auswirkungen des frühholozänen Insolationsmaximums, Tech. rep., Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, Kiel, https://doi.org/10.2312/REPORTS-GPI.1995.73, 1995. a
Seager, R., Murtugudde, R., Naik, N., Clement, A., Gordon, N., and Miller, J.: Air–Sea Interaction and the Seasonal Cycle of the Subtropical Anticyclones, J. Climate, 16, 1948–1966, https://doi.org/10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2, 2003. a
Sikes, E. L., Howard, W. R., Samson, C. R., Mahan, T. S., Robertson, L. G., and Volkman, J. K.: Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary, Paleoceanography, 24, PA2201, https://doi.org/10.1029/2008PA001659, 2009. a, b
Smith, R. S. and Gregory, J.: The last glacial cycle: transient simulations with an AOGCM, Clim. Dynam., 38, 1545–1559, https://doi.org/10.1007/s00382-011-1283-y, 2012. a, b, c
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C., Hughes, A. L., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P., and Teller, J. T.: On the reconstruction of palaeo-ice sheets: Recent advances and future challenges, Quaternary Sci. Rev., 125, 15–49, https://doi.org/10.1016/j.quascirev.2015.07.016, 2015. a
Stott, L., Poulsen, C., Lund, S., and Thunell, R.: Super ENSO and Global Climate Oscillations at Millennial Time Scales, Science, 297, 222–226, https://doi.org/10.1126/science.1071627, 2002. a, b
Stott, L., Timmermann, A., and Thunell, R.: Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO2 Rise and Tropical Warming, Science, 318, 435–438, https://doi.org/10.1126/science.1143791, 2007. a
Thorarinsdottir, T. L., Gneiting, T., and Gissibl, N.: Using Proper Divergence Functions to Evaluate Climate Models, SIAM/ASA J. Uncertainty Quantification, 1, 522–534, https://doi.org/10.1137/130907550, 2013. a
Thornalley, D. J., Elderfield, H., and McCave, I. N.: Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation, Global Planet. Change, 79, 163–175, https://doi.org/10.1016/j.gloplacha.2010.06.003, 2011. a
Tierney, J. E. and Tingley, M. P.: BAYSPLINE: A New Calibration for the Alkenone Paleothermometer, Paleoceanography and Paleoclimatology, 33, 281–301, https://doi.org/10.1002/2017PA003201, 2018. a
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020. a, b
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and Rajaratnam, B.: Piecing together the past: statistical insights into paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22, https://doi.org/10.1016/j.quascirev.2012.01.012, 2012. a, b
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations, Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022. a
Vogelsang, E., Sarnthein, M., and Pflaumann, U.: d18O Stratigraphy, chronology, and sea surface temperatures of Atlantic sediment records (GLAMAP-2000 Kiel), Tech. rep., Institut für Geowissenschaften, Christian-Albrechts-Universität, Kiel, https://doi.org/10.2312/REPORTS-IFG.2001.13, 2001. a, b, c
von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco, F., and Tett, S. F. B.: Reconstructing Past Climate from Noisy Data, Science, 306, 679–682, https://doi.org/10.1126/science.1096109, 2004. a
Waelbroeck, C., Labeyrie, L., Duplessy, J.-C., Guiot, J., Labracherie, M., Leclaire, H., and Duprat, J.: Improving past sea surface temperature estimates based on planktonic fossil faunas, Paleoceanography, 13, 272–283, https://doi.org/10.1029/98PA00071, 1998. a
Weinelt, M., Rosell-Melé, A., Pflaumann, U., Sarnthein, M., and Kiefer, T.: The role of productivity in the Northeast Atlantic on abrupt climate change over the last 80,000 years, zdgg_alt, Zeitschrift der Deutschen Geologischen Gesellschaft, 154, 47–66, https://doi.org/10.1127/zdgg/154/2003/47, 2003. a
Weitzel, N., Andres, H., Baudouin, J.-P., Kapsch, M.-L., Mikolajewicz, U., Jonkers, L., Bothe, O., Ziegler, E., Kleinen, T., Paul, A., and Rehfeld, K.: Code in support of “Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation”, Zenodo [code], https://doi.org/10.5281/zenodo.10497834, 2024. a
Xu, J., Kuhnt, W., Holbourn, A., Andersen, N., and Bartoli, G.: Changes in the vertical profile of the Indonesian Throughflow during Termination II: Evidence from the Timor Sea, Paleoceanography, 21, PA4202, https://doi.org/10.1029/2006PA001278, 2006. a, b
Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H.: Changes in the thermocline structure of the Indonesian outflow during Terminations I and II, Earth Planet. Sc. Lett., 273, 152–162, https://doi.org/10.1016/j.epsl.2008.06.029, 2008. a, b
Zarriess, M., Johnstone, H., Prange, M., Steph, S., Groeneveld, J., Mulitza, S., and Mackensen, A.: Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials, Geophys. Res. Lett., 38, L04706, https://doi.org/10.1029/2010GL046070, 2011. a, b
Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M., and Eglinton, G.: Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 Ka, Paleoceanography, 10, 661–675, https://doi.org/10.1029/94PA03354, 1995. a, b
Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R., and Lourens, L. J.: Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events, Nat. Geosci., 1, 601–605, https://doi.org/10.1038/ngeo277, 2008. a
Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, 2019. a
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
The ability of climate models to faithfully reproduce past warming episodes is a valuable test...