Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-817-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-817-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
Carolina Franco
CORRESPONDING AUTHOR
Institute of Geography, GEOPOLAR, University of Bremen, Bremen, Germany
Antonio Maldonado
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
Christian Ohlendorf
Institute of Geography, GEOPOLAR, University of Bremen, Bremen, Germany
A. Catalina Gebhardt
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
María Eugenia de Porras
IANIGLA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
Amalia Nuevo-Delaunay
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
César Méndez
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
Bernd Zolitschka
Institute of Geography, GEOPOLAR, University of Bremen, Bremen, Germany
Related authors
No articles found.
Coral Pardo-Esté, Juan Castro-Severyn, Francisco Remonsellez, Antonio Maldonado, Inger Heine Fuster, Hector Pizarro, and Adriana Aránguiz-Acuña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3035, https://doi.org/10.5194/egusphere-2024-3035, 2024
Short summary
Short summary
Inka-Coya Lake is located in the Atacama Desert, and this pioneer study characterized the gradient of microbial life along the deep lacustrine sediments that stratified for over 600 years, since the pre-mining period. Our results indicate there is great taxonomic novelty and strong relationships with geochemical composition especially in Cu, Fe, Ni, and V. We propose a clustering of taxa and function in three zones with characteristic taxonomic and functional potential.
Stella Birlo, Wojciech Tylmann, and Bernd Zolitschka
Geochronology, 5, 65–90, https://doi.org/10.5194/gchron-5-65-2023, https://doi.org/10.5194/gchron-5-65-2023, 2023
Short summary
Short summary
Sediment cores from the volcanic lake Holzmaar provide a very precise chronology based on tree-ring-like annual laminations or varves. We statistically combine this varve chronology with radiometric dating and tested three different methods to upgrade the age–depth model. However, only one of the three methods tested improved the dating accuracy considerably. With this work, an overview of different age integration methods is discussed and made available for increased future demands.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
Matías Frugone-Álvarez, Claudio Latorre, Fernando Barreiro-Lostres, Santiago Giralt, Ana Moreno, Josué Polanco-Martínez, Antonio Maldonado, María Laura Carrevedo, Patricia Bernárdez, Ricardo Prego, Antonio Delgado Huertas, Magdalena Fuentealba, and Blas Valero-Garcés
Clim. Past, 16, 1097–1125, https://doi.org/10.5194/cp-16-1097-2020, https://doi.org/10.5194/cp-16-1097-2020, 2020
Short summary
Short summary
The manuscript identifies the main volcanic phases in the Laguna del Maule volcanic field and their impact in the lake basin through the late glacial and Holocene. We show that the bio-productivity and geochemical variabilities in the lake are related with climatic dynamics type ENSO, SPA and SWW and that the main phases are synchronous with the major regional climate changes on millennial timescales.
Ignacio A. Jara, Antonio Maldonado, Leticia González, Armand Hernández, Alberto Sáez, Santiago Giralt, Roberto Bao, and Blas Valero-Garcés
Clim. Past, 15, 1845–1859, https://doi.org/10.5194/cp-15-1845-2019, https://doi.org/10.5194/cp-15-1845-2019, 2019
Short summary
Short summary
The South American summer monsoon (SASM) is the most important climate system of South America. However, little is known about its long-term variability. Here we present a new SASM reconstruction from Lago Chungará in the southern Altiplano (18°S). We show important changes in SASM precipitation at timescales of centuries. Our results suggest that SASM variability was controlled not only by tropical climates but was also influenced by precipitation outside the tropics.
Christoph Mayr, Renate Matzke-Karasz, Philipp Stojakowits, Sally E. Lowick, Bernd Zolitschka, Tanja Heigl, Richard Mollath, Marian Theuerkauf, Marc-Oliver Weckend, Rupert Bäumler, and Hans-Joachim Gregor
E&G Quaternary Sci. J., 66, 73–89, https://doi.org/10.5194/egqsj-66-73-2017, https://doi.org/10.5194/egqsj-66-73-2017, 2017
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Andrea Catalina Gebhardt, Lieven Naudts, Lies De Mol, Jan Klerkx, Kanatbek Abdrakhmatov, Edward R. Sobel, and Marc De Batist
Clim. Past, 13, 73–92, https://doi.org/10.5194/cp-13-73-2017, https://doi.org/10.5194/cp-13-73-2017, 2017
Short summary
Short summary
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes of up to 400 m. Seven stratigraphic sequences were identified, each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level fluctuations point to significant changes in the strength and position of the Siberian High and the mid-latitude Westerlies. Their interplay is responsible for the amount of moisture that reaches this area.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Aurèle Vuillemin, Daniel Ariztegui, Peter R. Leavitt, Lynda Bunting, and the PASADO Science Team
Biogeosciences, 13, 2475–2492, https://doi.org/10.5194/bg-13-2475-2016, https://doi.org/10.5194/bg-13-2475-2016, 2016
Short summary
Short summary
Aquatic sediments record climatic conditions while providing ecological niches for microorganisms. In lacustrine settings, the relationship between environmental features and sedimentary DNA remains largely unknown. Comparison of microbial assemblages with fossil pigments show that the subsurface biosphere is specific to climatic intervals and that post-depositional processes result in a rapid overprint of phototrophic communities by heterotrophic assemblages with preserved pigment compositions.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Holocene
Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
Reconstructing burnt area during the Holocene: an Iberian case study
Expression of the “4.2 ka event” in the southern Rocky Mountains, USA
Arctic glaciers and ice caps through the Holocene:a circumpolar synthesis of lake-based reconstructions
Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change
Climate-driven desertification and its implications for the ancient Silk Road trade
Diatom-oxygen isotope record from high-altitude Lake Petit (2200 m a.s.l.) in the Mediterranean Alps: shedding light on a climatic pulse at 4.2 ka
Episodic Neoglacial expansion and rapid 20th century retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change
Climate trends in northern Ontario and Québec from borehole temperature profiles
Interactions between climate change and human activities during the early to mid-Holocene in the eastern Mediterranean basins
Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data
Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria
Glacier response to North Atlantic climate variability during the Holocene
Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidence of late Classic (AD 600–900) and Little Ice Age drought events
Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives
Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance
Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps
Late Glacial–Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34° S
Holocene changes in African vegetation: tradeoff between climate and water availability
Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy
Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards
A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)
Bunker Cave stalagmites: an archive for central European Holocene climate variability
Temperature variability at Dürres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
David T. Liefert and Bryan N. Shuman
Clim. Past, 18, 1109–1124, https://doi.org/10.5194/cp-18-1109-2022, https://doi.org/10.5194/cp-18-1109-2022, 2022
Short summary
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
Laura J. Larocca and Yarrow Axford
Clim. Past, 18, 579–606, https://doi.org/10.5194/cp-18-579-2022, https://doi.org/10.5194/cp-18-579-2022, 2022
Short summary
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Guanghui Dong, Leibin Wang, David Dian Zhang, Fengwen Liu, Yifu Cui, Guoqiang Li, Zhilin Shi, and Fahu Chen
Clim. Past, 17, 1395–1407, https://doi.org/10.5194/cp-17-1395-2021, https://doi.org/10.5194/cp-17-1395-2021, 2021
Short summary
Short summary
A compilation of the results of absolute dating and high-resolution paleoclimatic records from the Xishawo site in the Dunhuang area and historical archives reveals that two desertification events occurred at ~ 800–600 BCE and ~ 1450 CE. The later desertification event was consistent with the immediate fall in tribute trade that occurred in ~ 1450 CE, which indicates that climate change played a potentially important role in explaining the decline of the Ancient Silk Road trade.
Rosine Cartier, Florence Sylvestre, Christine Paillès, Corinne Sonzogni, Martine Couapel, Anne Alexandre, Jean-Charles Mazur, Elodie Brisset, Cécile Miramont, and Frédéric Guiter
Clim. Past, 15, 253–263, https://doi.org/10.5194/cp-15-253-2019, https://doi.org/10.5194/cp-15-253-2019, 2019
Short summary
Short summary
A major environmental change, 4200 years ago, was recorded in the lacustrine sediments of Lake Petit (Mediterranean Alps). The regime shift was described by a modification in erosion processes in the watershed and aquatic species in the lake. This study, based on the analysis of the lake water balance by using oxygen isotopes in diatoms, revealed that these environmental responses were due to a rapid change in precipitation regime, lasting ca. 500 years.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2215–2227, https://doi.org/10.5194/cp-12-2215-2016, https://doi.org/10.5194/cp-12-2215-2016, 2016
Short summary
Short summary
The ground surface temperature histories of the past 500 years were reconstructed at 10 sites in northern Ontario and Quebec. The regions experienced a warming of ~1–2 K for the past 150 years, agreeing with borehole reconstructions for southern Ontario and Quebec and proxy data. Permafrost maps locate the sites in a region of discontinuous permafrost but our reconstructions suggest that the potential for permafrost was minimal to absent over the past 500 years.
Jean-Francois Berger, Laurent Lespez, Catherine Kuzucuoğlu, Arthur Glais, Fuad Hourani, Adrien Barra, and Jean Guilaine
Clim. Past, 12, 1847–1877, https://doi.org/10.5194/cp-12-1847-2016, https://doi.org/10.5194/cp-12-1847-2016, 2016
Short summary
Short summary
This paper focuses on early Holocene rapid climate changes in the Mediterranean zone, which are under-represented in continental archives, and on their impact on prehistoric societies from the eastern to central Mediterranean (central Anatolia, Cyprus, NE and NW Greece). Our study demonstrates the reality of hydrogeomorphological responses to early Holocene RCCs in valleys and alluvial fans and lake–marsh systems. We finally question their socio-economic and geographical adaptation capacities.
C. Pickler, H. Beltrami, and J.-C. Mareschal
Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, https://doi.org/10.5194/cp-12-115-2016, 2016
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
A. Rodríguez-Ramírez, M. Caballero, P. Roy, B. Ortega, G. Vázquez-Castro, and S. Lozano-García
Clim. Past, 11, 1239–1248, https://doi.org/10.5194/cp-11-1239-2015, https://doi.org/10.5194/cp-11-1239-2015, 2015
Short summary
Short summary
We present results from western Mexico, where very few palaeoclimatic research sites exist. The record has good chronological resolution (ca. 20 years) and clear climatic trends during the last 2ka. The most important signals are: dry conditions during the late Classic (AD 500 to 1000), especially from AD 600 to 800, and low lake levels during the LIA, in two phases that follow Spörer and Maunder solar minima. Drier conditions are related with a lower intensity of the North American monsoon.
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Beltrami, G. S. Matharoo, L. Tarasov, V. Rath, and J. E. Smerdon
Clim. Past, 10, 1693–1706, https://doi.org/10.5194/cp-10-1693-2014, https://doi.org/10.5194/cp-10-1693-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
A. E. Mehl and M. A. Zárate
Clim. Past, 10, 863–875, https://doi.org/10.5194/cp-10-863-2014, https://doi.org/10.5194/cp-10-863-2014, 2014
C. Hély, A.-M. Lézine, and APD contributors
Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, https://doi.org/10.5194/cp-10-681-2014, 2014
B. Vannière, M. Magny, S. Joannin, A. Simonneau, S. B. Wirth, Y. Hamann, E. Chapron, A. Gilli, M. Desmet, and F. S. Anselmetti
Clim. Past, 9, 1193–1209, https://doi.org/10.5194/cp-9-1193-2013, https://doi.org/10.5194/cp-9-1193-2013, 2013
A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, https://doi.org/10.5194/cp-9-825-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
J. Fohlmeister, A. Schröder-Ritzrau, D. Scholz, C. Spötl, D. F. C. Riechelmann, M. Mudelsee, A. Wackerbarth, A. Gerdes, S. Riechelmann, A. Immenhauser, D. K. Richter, and A. Mangini
Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, https://doi.org/10.5194/cp-8-1751-2012, 2012
R. Moschen, N. Kühl, S. Peters, H. Vos, and A. Lücke
Clim. Past, 7, 1011–1026, https://doi.org/10.5194/cp-7-1011-2011, https://doi.org/10.5194/cp-7-1011-2011, 2011
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change., 4, 564–569, https://doi.org/10.1038/nclimate2235, 2014.
Alder, J. R. and Hostetler, S. W.: Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model, Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, 2015.
Aniya, M.: Holocene Glacial Chronology in Patagonia: Tyndall and Upsala Glaciers, Arct. Alp. Res., 27, 311–322, https://doi.org/10.2307/1552024, 1995.
Ballantyne, C. K.: Paraglacial Landsystems, in: Glacial Landsystems, edited by: Evans, D. J. A., Arnold, 2003.
Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., Zanettin, B., and Rocks, I. S. O. T. S. O. I.: A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram, J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Bendle, J. M., Palmer, A. P., Thorndycraft, V. R., and Matthews, I. P.: High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5° S) revealed through varve chronology and Bayesian age modelling, Quaternary Sci. Rev., 177, 314–339, https://doi.org/10.1016/j.quascirev.2017.10.013, 2017a.
Bendle, J. M., Thorndycraft, V. R., and Palmer, A. P.: The glacial geomorphology of the Lago Buenos Aires and Lago Pueyrredón ice lobes of central Patagonia, J. Maps, 13, 654–673, https://doi.org/10.1080/17445647.2017.1351908, 2017b.
Benito, G. and Thorndycraft, V. R.: Catastrophic glacial-lake outburst flooding of the Patagonian Ice Sheet, Earth Sci. Rev., 200, 102996, https://doi.org/10.1016/j.earscirev.2019.102996, 2020.
Benito, G., Thorndycraft, V. R., Medialdea, A., Machado, M. J., Sancho, C., and Dussaillant, A.: Declining discharge of glacier outburst floods through the Holocene in central Patagonia, Quaternary Sci. Rev., 256, 106810, https://doi.org/10.1016/j.quascirev.2021.106810, 2021.
Bertrand, S., Hughen, K. A., Lamy, F., Stuut, J.-B. W., Torrejón, F., and Lange, C. B.: Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern Patagonian Icefield, Clim. Past, 8, 519–534, https://doi.org/10.5194/cp-8-519-2012, 2012.
Blaauw, M. and Christen, J.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process, Bayesian Analysis, 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Boex, J., Fogwill, C., Harrison, S., Glasser, N. F., Hein, A., Schnabel, C., and Xu, S.: Rapid thinning of the Late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies, Sci. Rep., 3, 2118, https://doi.org/10.1038/srep02118, 2013.
Burnett, A. P., Soreghan, M. J., Scholz, C. A., and Brown, E. T.: Tropical East African climate change and its relation to global climate: A record from Lake Tanganyika, Tropical East Africa, over the past 90+kyr, Palaeogeogr. Palaeocl., 303, 155–167, https://doi.org/10.1016/j.palaeo.2010.02.011, 2011.
Caldenius, C. C. Z.: Las Glaciaciones Cuaternarias en la Patagonia y Tierra del Fuego, Geogr. Ann., 14, 1–164, https://doi.org/10.1080/20014422.1932.11880545, 1932.
Caniupan, M., Lamy, F., Lange, C., Kaiser, J., Arz, H., Kilian, R., Baeza, O., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., and Mollenhauer, G.: Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53° S) over the past ∼60 kyr, Paleoceanography, 26, PA3221, https://doi.org/10.1029/2010PA002049, 2011.
Clapperton, C. M. and Sugden, D. E.: Holocene glacier fluctuations in South America and Antarctica, Quaternary Sci. Rev., 7, 185–198, https://doi.org/10.1016/0277-3791(88)90005-4, 1988.
Croudace, I., Rindby, A., and Rothwell, R.: ITRAX: Description and Evaluation of a New Multi-Function X-ray Core Scanner, Geological Society, London, Special Publications, 267, 51–63, https://doi.org/10.1144/GSL.SP.2006.267.01.04, 2006.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M., Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium, Clim. Dynam., 51, 2321–2339, https://doi.org/10.1007/s00382-017-4015-0, 2018.
Davies, B. J. and Glasser, N. F.: Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (∼ AD 1870) to 2011, J. Glaciol., 58, 1063–1084, https://doi.org/10.3189/2012JoG12J026, 2012.
Davies, B. J., Thorndycraft, V. R., Fabel, D., and Martin, J. R. V.: Asynchronous glacier dynamics during the Antarctic Cold Reversal in central Patagonia, Quaternary Sci. Rev., 200, 287–312, https://doi.org/10.1016/j.quascirev.2018.09.025, 2018.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., García, J. L., Geiger, A., Glasser, N. F., Gheorghiu, D. M., Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M., Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K., Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE), Earth Sci. Rev., 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Davies, S. J., Lamb, H. F., and Roberts, S. J.: Micro-XRF Core Scanning in Palaeolimnology: Recent Developments, in: Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, edited by: Croudace, I. W. and Rothwell, R. G., Springer Netherlands, Dordrecht, 189–226, https://doi.org/10.1007/978-94-017-9849-5_7, 2015.
De la Cruz, R. and Suárez, M.: Geology of the area Chile Chico-Río de las Nieves, Carlos Ibáñez del Campo Region, Servicio Nacional de Geología y Minería, 116, 2008.
de Porras, M. E., Maldonado, A., Abarzúa, A. M., Cárdenas, M. L., Francois, J. P., Martel-Cea, A., Stern, C. R., Méndez, C., and Reyes, O.: Postglacial vegetation, fire and climate dynamics at Central Chilean Patagonia (Lake Shaman, 44° S), Quaternary Sci. Rev., 50, 71–85, https://doi.org/10.1016/j.quascirev.2012.06.015, 2012.
de Porras, M. E., Maldonado, A., Quintana, F. A., Martel-Cea, A., Reyes, O., and Méndez, C.: Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44° S), Clim. Past, 10, 1063–1078, https://doi.org/10.5194/cp-10-1063-2014, 2014.
Douglass, D., Singer, B., Kaplan, M., Ackert, R., Mickelson, D., and Caffee, M.: Evidence of early Holocene glacial advances in southern South America from cosmogenic surface-exposure dating, Geology, 33, 237–240, https://doi.org/10.1130/G21144.1, 2005a.
Douglass, D. C., Singer, B. S., Kaplan, M. R., Mickelson, D. M., and Caffee, M.: Cosmogenic Surface-Exposure Dating of Boulders on Last-Glacial and Late-Glacial Moraines, Lago Buenos Aires, Argentina: Interpretive Strategies and Paleoclimate Implications, Quaternary Geochronol., 2005, 43–58, 2005b.
Espinoza, F., Morata, D., Pelleter, E., Maury, R., Guivel, C., Suárez, M., Lagabrielle, Y., Polve, M., Bellon, H., Cotten, J., and R, D.: Petrogenesis of the Eocene and Mio-Pliocene alkaline basaltic magmatism in Meseta Chile chico, southern Patagonia, Chile: evidence of two slab window processes, Lithos, 3–4, 314–343, 2005.
Fernández, R., Anderson, J., Bertrand, S., and Wellner, J.: Gualas Glacier sedimentary record of climate and environmental change, Golfo Elefantes, Western Patagonia (46.5° S), Holocene, 22, 451–463, https://doi.org/10.1177/0959683611425545, 2012.
Franco, C., Maldonado, A., Ohlendorf, C., Gebhardt, A. C., de Porras, M. E., Nuevo Delaunay, A., Méndez, C., and Zolitschka, B.: Holocene multiproxy records of Laguna Meseta, Chile (46.5° S): XRF-elements, magnetic susceptibility, bulk chemistry and grain size, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.961940, 2024.
Futa, K. and Stern, C. R.: Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes, Earth Planet. Sc. Lett., 88, 253–262, https://doi.org/10.1016/0012-821X(88)90082-9, 1988.
García, J. L., Maldonado, A., de Porras, M. E., Nuevo Delaunay, A., Reyes, O., Ebensperger, C. A., Binnie, S. A., Lüthgens, C., and Méndez, C.: Early deglaciation and paleolake history of Río Cisnes Glacier, Patagonian Ice Sheet (44° S), Quaternary Res., 91, 194–217, https://doi.org/10.1017/qua.2018.93, 2019.
Garibotti, I. A. and Villalba, R.: Lichenometric dating using Rhizocarpon subgenus Rhizocarpon in the Patagonian Andes, Argentina, Quaternary Res., 71, 271–283, https://doi.org/10.1016/j.yqres.2009.01.012, 2009.
Garibotti, I. A. and Villalba, R.: Colonization of mid- and late-Holocene moraines by lichens and trees in the Magellanic sub-Antarctic province, Polar Biology, 40, 1739–1753, https://doi.org/10.1007/s00300-017-2096-1, 2017.
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M.: Large-Scale Control on the Patagonian Climate, J. Climate, 26, 215–230, https://doi.org/10.1175/JCLI-D-12-00001.1, 2013.
Glasser, N. F. and Jansson, K. N.: Fast-flowing outlet glaciers of the Last Glacial Maximum Patagonian Icefield, Quaternary Res., 63, 206–211, https://doi.org/10.1016/j.yqres.2004.11.002, 2005.
Glasser, N. F., Harrison, S., Winchester, V., and Aniya, M.: Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia, Global Planet. Change, 43, 79–101, https://doi.org/10.1016/j.gloplacha.2004.03.002, 2004.
Glasser, N. F., Jansson, K. N., Harrison, S., and Rivera, A.: Geomorphological evidence for variations of the North Patagonian Icefield during the Holocene, Geomorphology, 71, 263–277, https://doi.org/10.1016/j.geomorph.2005.02.003, 2005.
Glasser, N. F., Harrison, S., and Jansson, K. N.: Topographic controls on glacier sediment–landform associations around the temperate North Patagonian Icefield, Quaternary Sci. Rev., 28, 2817–2832, https://doi.org/10.1016/j.quascirev.2009.07.011, 2009.
Glasser, N. F., Harrison, S., Schnabel, C., Fabel, D., and Jansson, K. N.: Younger Dryas and early Holocene age glacier advances in Patagonia, Quat. Sci. Rev., 58, 7–17, https://doi.org/10.1016/j.quascirev.2012.10.011, 2012.
Glasser, N. F., Jansson, K. N., Duller, G. A. T., Singarayer, J., Holloway, M., and Harrison, S.: Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean, Sci. Rep., 6, 21064, https://doi.org/10.1038/srep21064, 2016.
Grove, J. M.: The Little Ice Ages: Ancient and Modern 2nd edn., Routledge, Oxfordshire, England, UK, 405–504, https://doi.org/10.4324/9780203505205, 2004.
Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P., and Mélières, M.-A.: High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif), Quaternary Sci. Rev., 26, 2644–2660, https://doi.org/10.1016/j.quascirev.2007.07.007, 2007.
Hall, B. L., Lowell, T. V., Bromley, G. R. M., Denton, G. H., and Putnam, A. E.: Holocene glacier fluctuations on the northern flank of Cordillera Darwin, southernmost South America, Quaternary Sci. Rev., 222, 105904, https://doi.org/10.1016/j.quascirev.2019.105904, 2019.
Harrison, S., Winchester, V., and Glasser, N.: The timing and nature of recession of outlet glaciers of Hielo Patagónico Norte, Chile, from their Neoglacial IV (Little Ice Age) maximum positions, Global Planet. Change, 59, 67–78, https://doi.org/10.1016/j.gloplacha.2006.11.020, 2007.
Harrison, S., Glasser, N., Winchester, V., Haresign, E., Warren, C., Duller, G. A. T., Bailey, R., Ivy-Ochs, S., Jansson, K., and Kubik, P.: Glaciar León, Chilean Patagonia: late-Holocene chronology and geomorphology, Holocene, 18, 643–652, https://doi.org/10.1177/0959683607086771, 2008.
Harrison, S., Glasser, N. F., Duller, G. A. T., and Jansson, K. N.: Early and mid-Holocene age for the Tempanos moraines, Laguna San Rafael, Patagonian Chile, Quaternary Sci. Rev., 31, 82–92, https://doi.org/10.1016/j.quascirev.2011.10.015, 2012.
Hein, A. S., Hulton, N. R. J., Dunai, T. J., Sugden, D. E., Kaplan, M. R., and Xu, S.: The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia, Quaternary Sci. Rev., 29, 1212–1227, https://doi.org/10.1016/j.quascirev.2010.01.020, 2010.
Henríquez, W. I., Villa-Martínez, R., Vilanova, I., De Pol-Holz, R., and Moreno, P. I.: The last glacial termination on the eastern flank of the central Patagonian Andes (47° S), Clim. Past, 13, 879–895, https://doi.org/10.5194/cp-13-879-2017, 2017.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP, Radiocarbon, 62, 759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Hulton, N., Sugden, D., Payne, A., and Clapperton, C.: Glacier Modeling and the Climate of Patagonia during the Last Glacial Maximum, Quaternary Res., 42, 1–19, https://doi.org/10.1006/qres.1994.1049, 1994.
Iglesias, V., Haberle, S. G., Holz, A., and Whitlock, C.: Holocene Dynamics of Temperate Rainforests in West-Central Patagonia, Front. Ecol. Evol., 5, 177, https://doi.org/10.3389/fevo.2017.00177, 2018.
Kaiser, J. and Lamy, F.: Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2), Quaternary Sci. Rev., 29, 1464–1471, https://doi.org/10.1016/j.quascirev.2010.03.005, 2010.
Kaplan, M. R., Schaefer, J. M., Strelin, J. A., Denton, G. H., Anderson, R. F., Vandergoes, M. J., Finkel, R. C., Schwartz, R., Travis, S. G., Garcia, J. L., Martini, M. A., and Nielsen, S. H. H.: Patagonian and southern South Atlantic view of Holocene climate, Quaternary Sci. Rev., 141, 112–125, https://doi.org/10.1016/j.quascirev.2016.03.014, 2016.
Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Peltier, C., Martini, M. A., Flores, E., Winckler, G., and Schwartz, R.: Holocene glacier behavior around the northern Antarctic Peninsula and possible causes, Earth Planet. Sci. Lett., 534, 116077, https://doi.org/10.1016/j.epsl.2020.116077, 2020.
Kilian, R. and Lamy, F.: A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55° S), Quaternary Sci. Rev., 53, 1–23, https://doi.org/10.1016/j.quascirev.2012.07.017, 2012.
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G.: High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene, Paleoceanography, 17, 16-1–16-10, https://doi.org/10.1029/2001PA000727, 2002.
Lamy, F., Kaiser, J., Arz, H. W., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., and Toggweiler, J. R.: Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1, Earth Planet. Sc. Lett., 259, 400–413, https://doi.org/10.1016/j.epsl.2007.04.040, 2007.
Lamy, F., Kilian, R., Arz, H. W., Francois, J.-P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Leemann, A. and Niessen, F.: Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments, Holocene, 4, 259–268, https://doi.org/10.1177/095968369400400305, 1994.
Lopez-Escobar, L., Kilian, R., Kempton, P. D., and Tagiri, M.: Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41° 30′ and 46°00′ S, Chile, Rev. Geol. Chile, 20, 33–55, 1993.
Luebert, F. and Pliscoff, P.: Sinopsis bioclimática y vegetacional de Chile, Editorial Universitaria, Santiago, Chile, 2017.
Maldonado, A., de Porras, M. E., Martel-Cea, A., Reyes, O., Nuevo-Delaunay, A., and Méndez, C.: Holocene Environmental Dynamics of the Lago Cochrane/Pueyrredón Valley, Central West Patagonia (47° S), Front. Earth Sci., 10, 833637, https://doi.org/10.3389/feart.2022.833637, 2022.
Markgraf, V., Whitlock, C., and Haberle, S.: Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallín Pollux, Coyhaique, Province Aisén (45°41′30′′ S, 71°50′30′′ W, 640 m elevation), Palaeogeogr. Palaeocl., 254, 492–507, https://doi.org/10.1016/j.palaeo.2007.07.008, 2007.
McCulloch, R. D., Figuerero Torres, M. J., Mengoni Goñalons, G. L., Barclay, R., and Mansilla, C.: A Holocene record of environmental change from Río Zeballos, central Patagonia, Holocene, 27, 941–950, https://doi.org/10.1177/0959683616678460, 2017.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake Elgygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Méndez, C., de Porras, M. E., Maldonado, A., Reyes, O., Nuevo Delaunay, A., and García, J. L.: Human Effects in Holocene Fire Dynamics of Central Western Patagonia (∼44° S, Chile), Front. Ecol. Evol., 4, 100, https://doi.org/10.3389/fevo.2016.00100, 2016.
Méndez, C., Nuevo-Delaunay, A., and Reyes, O.: The exploration of marginal spaces in Central-West Patagonia and the role of discontinuous occupation of forests and highlands, L'Anthropologie, 127, 103118, https://doi.org/10.1016/j.anthro.2023.103118, 2023.
Mercer, J. H.: Glacial history of southernmost South America, Quaternary Res., 6, 125–166, https://doi.org/10.1016/0033-5894(76)90047-8, 1976.
Moreno, P. I., Vilanova, I., Villa-Martínez, R., Garreaud, R. D., Rojas, M., and De Pol-Holz, R.: Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia, Nat. Commun., 5, 4375, https://doi.org/10.1038/ncomms5375, 2014.
Moreno, P. I., Vilanova, I., Villa-Martínez, R., Dunbar, R. B., Mucciarone, D. A., Kaplan, M. R., Garreaud, R. D., Rojas, M., Moy, C. M., De Pol-Holz, R., and Lambert, F.: Onset and Evolution of Southern Annular Mode-Like Changes at Centennial Timescale, Sci. Rep., 8, 3458, https://doi.org/10.1038/s41598-018-21836-6, 2018.
Müller, P. J. and Schneider, R.: An automated leaching method for the determination of opal in sediments and particulate matter, Deep-Sea Res. Pt. I, 40, 425–444, https://doi.org/10.1016/0967-0637(93)90140-X, 1993.
Nanavati, W. P., Whitlock, C., Iglesias, V., and de Porras, M. E.: Postglacial vegetation, fire, and climate history along the eastern Andes, Argentina and Chile (lat. 41–55° S), Quaternary Sci. Rev., 207, 145–160, https://doi.org/10.1016/j.quascirev.2019.01.014, 2019.
Naranjo, J. A. and Stern, C. R.: Holocene explosive activity of Hudson Volcano, southern Andes, Bull. Volcanol., 59, 291–306, https://doi.org/10.1007/s004450050193, 1998.
Naranjo, J. A. and Stern, C. R.: Holocene tephrochronology of the southernmost part (42° 30′–45° S) of the Andean Southern Volcanic Zone, Rev. Geol. Chile, 31, 224–240, 2004.
Nimick, D. A., McGrath, D., Mahan, S. A., Friesen, B. A., and Leidich, J.: Latest Pleistocene and Holocene glacial events in the Colonia valley, Northern Patagonia Icefield, southern Chile, J. Quat. Sci., 31, 551–564, https://doi.org/10.1002/jqs.2847, 2016.
Nuevo-Delaunay, A., Méndez, C., Reyes, O., Seelenfreund, A., and Belmar, C.: La ocupación humana antigua de los callejones sin salida de los Andes de Patagonia: Midiendo la intensidad de uso del espacio en los márgenes del Campo de Hielo Norte (Aisén, Chile), Chungara Revista de Antropología Chilena, 54, 481–500, https://doi.org/10.4067/S0717-73562022005000203, 2022.
Pánek, T., Bøežný, M., Kilnar, J., and Winocur, D.: Complex causes of landslides after ice sheet retreat: Post-LGM mass movements in the Northern Patagonian Icefield region, Sci. Tot. Environ., 758, 143684, https://doi.org/10.1016/j.scitotenv.2020.143684, 2021.
Porter, S. C.: Onset of neoglaciation in the southern hemisphere, J. Quat. Sci., 15, 395–408, https://doi.org/10.1002/1099-1417(200005)15:4<395::AID-JQS535>3.0.CO;2-H, 2000.
Rabassa, J., Coronato, A. M., and Salemme, M.: Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina), J. S. Am. Earth. Sci., 20, 81–103, https://doi.org/10.1016/j.jsames.2005.07.004, 2005.
Rea, B., Whalley, B., Evans, D., Gordon, J., and McDougall, D.: Plateau Icefields: Geomorphology and dynamics, J. Quat. Sci., 13, 35–54, 1998.
Rea, B. R. and Evans, D. J. A.: Plateau Icefield Landsystems, in: Glacial Landsystems, edited by: Evans, D. J. A., Arnold, 2003.
Reynhout, S. A., Sagredo, E. A., Kaplan, M. R., Aravena, J. C., Martini, M. A., Moreno, P. I., Rojas, M., Schwartz, R., and Schaefer, J. M.: Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability, Quaternary Sci. Rev., 220, 178–187, https://doi.org/10.1016/j.quascirev.2019.05.029, 2019.
Reynhout, S. A., Kaplan, M. R., Sagredo, E. A., Aravena, J. C., Soteres, R. L., Schwartz, R., and Schaefer, J. M.: Holocene glacier history of northeastern Cordillera Darwin, southernmost South America (55° S), Quaternary Res., 105, 166–881, https://doi.org/10.1017/qua.2021.45, 2021.
Sagredo, E., Kaplan, M. R., Araya, P. S., Lowell, T. V., Aravena, J. C., Moreno, P. I., Kelly, M. A., and Schaefer, J. M.: Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes, Quaternary Sci. Rev., 188, 160–166, https://doi.org/10.1016/j.quascirev.2018.01.011, 2018.
Sagredo, E., Reynhout, S., Kaplan, M., Aravena, J., Araya, P., Luckman, B., Schwartz, R., and Schaefer, J.: Holocene History of Río Tranquilo Glacier, Monte San Lorenzo (47° S), Central Patagonia, Front. Earth Sci., 9, 813433, https://doi.org/10.3389/feart.2021.813433, 2021.
Singer, B. S., Ackert, R. P., Jr., and Guillou, H.: and K-Ar chronology of Pleistocene glaciations in Patagonia, GSA Bulletin, 116, 434–450, https://doi.org/10.1130/b25177.1, 2004.
Smedley, R. K., Glasser, N. F., and Duller, G. A. T.: Luminescence dating of glacial advances at Lago Buenos Aires (∼46° S), Patagonia, Quaternary Sci. Rev., 134, 59–73, https://doi.org/10.1016/j.quascirev.2015.12.010, 2016.
Stern, C.: Mid-Holocene tephra on Tierra del Fuego (54° S) derived from the Hudson volcano (46° S): evidence for a large explosive eruption, Rev. Geol. Chile, 18, 139–146, 1991.
Stern, C.: Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes, Bull. Volcanol., 70, 435–454, https://doi.org/10.1007/s00445-007-0148-z, 2008.
Stern, C., Henríquez, W., Villa-Martínez, R., Sagredo, E., Aravena, J., and De Pol-Holz, R.: Holocene tephrochronology around Cochrane (∼47° S), southern Chile, Andean Geol., 43, 1–19, https://doi.org/10.5027/andgeoV43n1-a01, 2016.
Stosch, H.-G.: TAS diagram, K2O-SiO2 diagram and AFM diagram template for Excel (1.1), Zenodo, https://doi.org/10.5281/zenodo.7086317, 2022.
Strelin, J. A., Kaplan, M. R., Vandergoes, M. J., Denton, G. H., and Schaefer, J. M.: Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield, Quaternary Sci. Rev., 101, 124–145, https://doi.org/10.1016/j.quascirev.2014.06.026, 2014.
Sugden, D. E., Bentley, M. J., Fogwill, C. J., Hulton, N. R. J., McCulloch, R. D., and Purves, R. S.: Late-Glacial Glacier Events in Southernmost South America: A Blend of 'Northern' and 'Southern' Hemispheric Climatic Signals?, Geogr. Ann. Ser. A Phys. Geogr., 87, 273–288, 2005.
Thorndycraft, V. R., Bendle, J. M., Benito, G., Davies, B. J., Sancho, C., Palmer, A. P., Fabel, D., Medialdea, A., and Martin, J. R. V.: Glacial lake evolution and Atlantic-Pacific drainage reversals during deglaciation of the Patagonian Ice Sheet, Quaternary Sci. Rev., 203, 102–127, https://doi.org/10.1016/j.quascirev.2018.10.036, 2019.
Turner, K. J., Fogwill, C. J., McCulloch, R. D., and Sugden, D. E.: Deglaciation of the eastern flank of the north patagonian icefield and associated continental-scale lake diversions, Geogr. Ann. Ser. A Phys. Geogr., 87, 363–374, https://doi.org/10.1111/j.0435-3676.2005.00263.x, 2005.
Van Daele, M., Bertrand, S., Meyer, I., Moernaut, J., Vandoorne, W., Siani, G., Tanghe, N., Ghazoui, Z., Pino, M., and Urrutia, R.: Late Quaternary evolution of Lago Castor (Chile, 45.6 S): Timing of the deglaciation in northern Patagonia and evolution of the southern westerlies during the last 17 kyr, Quaternary Sci. Rev., 133, 130–146, https://doi.org/10.1016/j.quascirev.2015.12.021, 2016.
Villa-Martínez, R., Moreno, P. I., and Valenzuela, M. A.: Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47° S), Quaternary Sci. Rev., 32, 86–99, https://doi.org/10.1016/j.quascirev.2011.11.008, 2012.
Weller, D., Miranda, C., Moreno, P., Villa-Martínez, R., and Stern, C.: Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile, Bull. Volcanol., 77, 107, https://doi.org/10.1007/s00445-015-0991-2, 2015.
Weller, D., de Porras, M. E., Maldonado, A., Méndez, C., and Stern, C.: Holocene tephrochronology of the lower Río Cisnes valley, southern Chile, Andean Geol., 44, 229–248, https://doi.org/10.5027/andgeoV44n3-a01, 2017.
Weller, D., de Porras, M. E., Maldonado, A., Méndez, C., and Stern, C.: New age controls on the tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile, Quaternary Res., 91, 250–264, https://doi.org/10.1017/qua.2018.81, 2019.
Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Rohl, U., and Croudace, I. W.: Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties, in: Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, edited by: Croudace, I. W., and Rothwell, R. G., 17, Springer, 507–534, 2015.
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
We present a continuous record of lake sediments spanning the Holocene from central west...