Articles | Volume 19, issue 9
https://doi.org/10.5194/cp-19-1825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper-ocean temperature characteristics in the subantarctic southeastern Pacific based on biomarker reconstructions
Julia Rieke Hagemann
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Lester Lembke-Jene
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Frank Lamy
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Maria-Elena Vorrath
Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Jérôme Kaiser
Leibniz Institute for Baltic Sea Research Warnemünde, 18119
Rostock, Germany
Juliane Müller
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Helge W. Arz
Leibniz Institute for Baltic Sea Research Warnemünde, 18119
Rostock, Germany
Jens Hefter
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Andrea Jaeschke
Institute of Geology and Mineralogy, University of Cologne, 50923
Cologne, Germany
Nicoletta Ruggieri
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Ralf Tiedemann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Related authors
No articles found.
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3297, https://doi.org/10.5194/egusphere-2024-3297, 2024
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Oscar E. Romero, Karl-Heinz Baumann, Karin A. F. Zonneveld, Barbara Donner, Jens Hefter, Bambaye Hamady, Vera Pospelova, and Gerhard Fischer
Biogeosciences, 17, 187–214, https://doi.org/10.5194/bg-17-187-2020, https://doi.org/10.5194/bg-17-187-2020, 2020
Short summary
Short summary
Monitoring of the multiannual evolution of populations representing different trophic levels allows for obtaining insights into the impact of climate variability in marine coastal upwelling ecosystems. By using a multiyear, continuous (1,900 d) sediment trap record, we assess the dynamics and fluxes of calcareous, organic and siliceous microorganisms off Mauritania (NW Africa). The experiment allowed for the recognition of a general sequence of seasonal variations of the main populations.
Juan Pablo Corella, Niccolo Maffezzoli, Carlos Alberto Cuevas, Paul Vallelonga, Andrea Spolaor, Giulio Cozzi, Juliane Müller, Bo Vinther, Carlo Barbante, Helle Astrid Kjær, Ross Edwards, and Alfonso Saiz-Lopez
Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, https://doi.org/10.5194/cp-15-2019-2019, 2019
Short summary
Short summary
This study provides the first reconstruction of atmospheric iodine levels in the Arctic during the last 11 700 years from an ice core record in coastal Greenland. Dramatic shifts in iodine level variability coincide with abrupt climatic transitions in the North Atlantic. Since atmospheric iodine levels have significant environmental and climatic implications, this study may serve as a past analog to predict future changes in Arctic climate in response to global warming.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Björn Klaes, Rolf Kilian, Gerhard Wörner, Sören Thiele-Bruhn, and Helge W. Arz
E&G Quaternary Sci. J., 67, 1–6, https://doi.org/10.5194/egqsj-67-1-2018, https://doi.org/10.5194/egqsj-67-1-2018, 2018
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Gerhard Fischer, Johannes Karstensen, Oscar Romero, Karl-Heinz Baumann, Barbara Donner, Jens Hefter, Gesine Mollenhauer, Morten Iversen, Björn Fiedler, Ivanice Monteiro, and Arne Körtzinger
Biogeosciences, 13, 3203–3223, https://doi.org/10.5194/bg-13-3203-2016, https://doi.org/10.5194/bg-13-3203-2016, 2016
Short summary
Short summary
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on deep sediment trap time-series data collected at 1290 and 3439 m water depths. The typically open-ocean flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen eddy in winter 2010. The eddy passage was accompanied by high biogenic and lithogenic fluxes, lasting from December 2009 to May 2010.
M. Winterfeld, M. A. Goñi, J. Just, J. Hefter, and G. Mollenhauer
Biogeosciences, 12, 2261–2283, https://doi.org/10.5194/bg-12-2261-2015, https://doi.org/10.5194/bg-12-2261-2015, 2015
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Holocene
Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones
Evaluation of the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of changing salinity
Technical Note: Past and future warming – direct comparison on multi-century timescales
Co-evolution of the terrestrial and aquatic ecosystem in the Holocene Baltic Sea
Holocene palaeoceanography of the Northeast Greenland shelf
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 2: Application and interpretation
Evaluation of oxygen isotopes and trace elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept
Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?
Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago
Empirical estimate of the signal content of Holocene temperature proxy records
Sedproxy: a forward model for sediment-archived climate proxies
Tracing winter temperatures over the last two millennia using a north-east Atlantic coastal record
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
Sedimentary archives of climate and sea-level changes during the Holocene in the Rhône prodelta (NW Mediterranean Sea)
Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt
Technical note: Estimating unbiased transfer-function performances in spatially structured environments
Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions)
Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition
Evidence for the non-influence of salinity variability on the Porites coral Sr/Ca palaeothermometer
Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea
Long-term variations in Iceland–Scotland overflow strength during the Holocene
Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation
Natural variability and anthropogenic effects in a Central Mediterranean core
The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability
Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach
Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach
Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Torben Kunz, Andrew M. Dolman, and Thomas Laepple
Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, https://doi.org/10.5194/cp-16-1469-2020, 2020
Short summary
Short summary
This paper introduces a method to estimate the uncertainty of climate reconstructions from single sediment proxy records. The method can compute uncertainties as a function of averaging timescale, thereby accounting for the fact that some components of the uncertainty are autocorrelated in time. This is achieved by treating the problem in the spectral domain. Fully analytic expressions are derived. A companion paper (Part 2) complements this with application-oriented examples of the method.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Maria Reschke, Kira Rehfeld, and Thomas Laepple
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, https://doi.org/10.5194/cp-15-521-2019, 2019
Short summary
Short summary
We empirically estimate signal-to-noise ratios of temperature proxy records used in global compilations of the middle to late Holocene by comparing the spatial correlation structure of proxy records and climate model simulations accounting for noise and time uncertainty. We find that low signal contents of the proxy records or, alternatively, more localised climate variations recorded by proxies than suggested by current model simulations suggest caution when interpreting multi-proxy datasets.
Andrew M. Dolman and Thomas Laepple
Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, https://doi.org/10.5194/cp-14-1851-2018, 2018
Short summary
Short summary
Climate proxies from marine sediments provide an important record of past temperatures, but contain noise from many sources. These include mixing by burrowing organisms, seasonal and habitat biases, measurement error, and small sample size effects. We have created a forward model that simulates the creation of proxy records and provides it as a user-friendly R package. It allows multiple sources of uncertainty to be considered together when interpreting proxy climate records.
Irina Polovodova Asteman, Helena L. Filipsson, and Kjell Nordberg
Clim. Past, 14, 1097–1118, https://doi.org/10.5194/cp-14-1097-2018, https://doi.org/10.5194/cp-14-1097-2018, 2018
Short summary
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Anne-Sophie Fanget, Maria-Angela Bassetti, Christophe Fontanier, Alina Tudryn, and Serge Berné
Clim. Past, 12, 2161–2179, https://doi.org/10.5194/cp-12-2161-2016, https://doi.org/10.5194/cp-12-2161-2016, 2016
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
Mathias Trachsel and Richard J. Telford
Clim. Past, 12, 1215–1223, https://doi.org/10.5194/cp-12-1215-2016, https://doi.org/10.5194/cp-12-1215-2016, 2016
Short summary
Short summary
In spatially structured environments, conventional cross validation results in over-optimistic transfer function performance estimates. H-block cross validation, where all samples within h kilometres of the test samples are omitted is a method for obtaining unbiased transfer function performance estimates. We assess three methods for determining the optimal h using simulated data and published transfer functions. Some transfer functions perform notably worse when h-block cross validation is used.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
M. Moreau, T. Corrège, E. P. Dassié, and F. Le Cornec
Clim. Past, 11, 523–532, https://doi.org/10.5194/cp-11-523-2015, https://doi.org/10.5194/cp-11-523-2015, 2015
Short summary
Short summary
The influence of salinity on the Porites Sr/Ca palaeothermometer is still poorly documented. We test the salinity effect on Porites Sr/Ca-based SST reconstructions using a large spatial compilation of published Porites data from the Pacific, Indian Ocean, and the Red Sea. We find no evidence of a salinity bias in the Sr/Ca SST proxy at monthly and interannual timescales using two different salinity products. This result is in agreement with laboratory experiments on coral species.
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, https://doi.org/10.5194/cp-9-2073-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Alessio, G. Vivaldo, C. Taricco, and M. Ghil
Clim. Past, 8, 831–839, https://doi.org/10.5194/cp-8-831-2012, https://doi.org/10.5194/cp-8-831-2012, 2012
B. Christiansen and F. C. Ljungqvist
Clim. Past, 8, 765–786, https://doi.org/10.5194/cp-8-765-2012, https://doi.org/10.5194/cp-8-765-2012, 2012
V. Nieto-Moreno, F. Martínez-Ruiz, S. Giralt, F. Jiménez-Espejo, D. Gallego-Torres, M. Rodrigo-Gámiz, J. García-Orellana, M. Ortega-Huertas, and G. J. de Lange
Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011, https://doi.org/10.5194/cp-7-1395-2011, 2011
C. Martín-Puertas, F. Jiménez-Espejo, F. Martínez-Ruiz, V. Nieto-Moreno, M. Rodrigo, M. P. Mata, and B. L. Valero-Garcés
Clim. Past, 6, 807–816, https://doi.org/10.5194/cp-6-807-2010, https://doi.org/10.5194/cp-6-807-2010, 2010
C. Andersson, F. S. R. Pausata, E. Jansen, B. Risebrobakken, and R. J. Telford
Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, https://doi.org/10.5194/cp-6-179-2010, 2010
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009, https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Basse, A., Zhu, C., Versteegh, G. J. M., Fischer, G., Hinrichs, K. U., and
Mollenhauer, G.: Distribution of intact and core tetraether lipids in water
column profiles of suspended particulate matter off Cape Blanc, NW Africa,
Org. Geochem., 72, 1–13, https://doi.org/10.1016/j.orggeochem.2014.04.007, 2014.
Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M., and Kinkel, H.:
The significance of extant coccolithophores as indicators of ocean water
masses, surface water temperature, and palaeoproductivity: a review,
Paläent. Z., 79, 93–112, https://doi.org/10.1007/bf03021756, 2005.
Belt, S. T., Brown, T. A., Ampel, L., Cabedo-Sanz, P., Fahl, K., Kocis, J. J., Massé, G., Navarro-Rodriguez, A., Ruan, J., and Xu, Y.: An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations, Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, 2014.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein,
M.: Molecular Stratigraphy – a New Tool for Climatic Assessment, Nature,
320, 129–133, https://doi.org/10.1038/320129a0, 1986.
Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P.:
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the
Thaumarchaeota, Nat. Rev. Microbiol., 6, 245–252, https://doi.org/10.1038/nrmicro1852, 2008.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J.,
and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for
near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293,
https://doi.org/10.1073/pnas.1809600115, 2018.
Caniupán, M., Lamy, F., Lange, C. B., Kaiser, J., Kilian, R., Arz, H.
W., León, T., Mollenhauer, G., Sandoval, S., De Pol-Holz, R., Pantoja,
S., Wellner, J., and Tiedemann, R.: Holocene sea-surface temperature
variability in the Chilean fjord region, Quaternary Res., 82, 342–353,
https://doi.org/10.1016/j.yqres.2014.07.009, 2014.
Chong, P. L.: Archaebacterial bipolar tetraether lipids: Physico-chemical
and membrane properties, Chem. Phys. Lipids, 163, 253–265,
https://doi.org/10.1016/j.chemphyslip.2009.12.006, 2010.
Conte, M. H., Sicre, M.-A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index (UK'37) in surface waters and comparison with
surface sediments, Geochem., Geophys., Geosy. 7, Q02005,
https://doi.org/10.1029/2005gc001054, 2006.
D'Hondt, S., Spivack, A. J., Pockalny, R., Ferdelman, T. G., Fischer, J. P.,
Kallmeyer, J., Abrams, L. J., Smith, D. C., Graham, D., Hasiuk, F., Schrum,
H., and Stancin, A. M.: Subseafloor sedimentary life in the South Pacific
Gyre, P. Natl. Acad. Sci. USA, 106, 11651–11656, https://doi.org/10.1073/pnas.0811793106,
2009.
Dávila, P. M., Figueroa, D., and Müller, E.: Freshwater input into
the coastal ocean and its relation with the salinity distribution off
austral Chile (35–55∘ S), Cont. Shelf Res., 22,
521–534, https://doi.org/10.1016/s0278-4343(01)00072-3, 2002.
Dong, L., Li, Z. Y., and Jia, G. D.: Archaeal ammonia oxidation plays a part
in late Quaternary nitrogen cycling in the South China Sea, Earth
Planet. Sc. Lett., 509, 38–46, https://doi.org/10.1016/j.epsl.2018.12.023, 2019.
Durak, G. M., Taylor, A. R., Walker, C. E., Probert, I., de Vargas, C.,
Audic, S., Schroeder, D., Brownlee, C., and Wheeler, G. L.: A role for
diatom-like silicon transporters in calcifying coccolithophores, Nat. Commun.,
7, 10543, https://doi.org/10.1038/ncomms10543, 2016.
Elling, F. J., Konneke, M., Mussmann, M., Greve, A., and Hinrichs, K. U.:
Influence of temperature, pH, and salinity on membrane lipid composition and
TEX86 of marine planktonic thaumarchaeal isolates, Geochim.
Cosmochim. Ac., 171, 238–255, https://doi.org/10.1016/j.gca.2015.09.004, 2015.
Epstein, B. L., D'Hondt, S., and Hargraves, P. E.: The possible metabolic
role of C37 alkenones in Emiliania huxleyi, Org. Geochem., 32,
867–875, https://doi.org/10.1016/s0146-6380(01)00026-2, 2001.
Fietz, S., Ho, S. L., and Huguet, C.: Archaeal Membrane Lipid-Based
Paleothermometry for Applications in Polar Oceans, Oceanography, 33,
104–114, https://doi.org/10.5670/oceanog.2020.207, 2020.
Fietz, S., Ho, S. L., Huguet, C., Rosell-Mele, A., and Martinez-Garcia, A.:
Appraising GDGT-based seawater temperature indices in the Southern Ocean,
Org. Geochem., 102, 93–105, https://doi.org/10.1016/j.orggeochem.2016.10.003, 2016.
Fietz, S., Huguet, C., Rueda, G., Hambach, B., and Rosell-Mele, A.:
Hydroxylated isoprenoidal GDGTs in the Nordic Seas, Mar. Chem., 152,
1–10, https://doi.org/10.1016/j.marchem.2013.02.007, 2013.
Gabriel, J. L. and Chong, P. L.: Molecular modeling of archaebacterial
bipolar tetraether lipid membranes, Chem. Phys. Lipids, 105, 193–200,
https://doi.org/10.1016/s0009-3084(00)00126-2, 2000.
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M.: Large-Scale Control
on the Patagonian Climate, J. Climate, 26, 215–230,
https://doi.org/10.1175/Jcli-D-12-00001.1, 2013.
Global_Modeling_and_Assimilation_Office_(GAMO): MERRA-2
tavgM_2d_adg_Nx: 2d, Monthly
mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics (extended)
V5.12.4 (M2TMNXADG), GES Disc [data set], https://doi.org/10.5067/RZIK2TV7PP38, 2015.
Herbert, T. D.: Review of alkenone calibrations (culture, water column, and
sediments), Geochem. Geophys. Geosy., 2, 2000GC000055, https://doi.org/10.1029/2000gc000055,
2001.
Herbert, T. D.: Alkenone Paleotemperature Determinations, in: Treatise on
Geochemistry, 399–433, https://doi.org/10.1016/b978-0-08-095975-7.00615-x, 2014.
Herbert, T. D., Peterson, L. C., Lawrence, K. T., and Liu, Z.: Tropical
ocean temperatures over the past 3.5 million years, Science, 328, 1530–1534,
https://doi.org/10.1126/science.1185435, 2010.
Hernández-Sánchez, M. T., Woodward, E. M. S., Taylor, K. W. R.,
Henderson, G. M., and Pancost, R. D.: Variations in GDGT distributions
through the water column in the South East Atlantic Ocean, Geochim.
Cosmochim. Ac., 132, 337–348, https://doi.org/10.1016/j.gca.2014.02.009, 2014.
Ho, S. L., Mollenhauer, G., Lamy, F., Martinez-Garcia, A., Mohtadi, M.,
Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Mele, A., and
Tiedemann, R.: Sea surface temperature variability in the Pacific sector of
the Southern Ocean over the past 700 kyr, Paleoceanography, 27, PA4202,
https://doi.org/10.1029/2012pa002317, 2012.
Ho, S. L., Mollenhauer, G., Fietz, S., Martinez-Garcia, A., Lamy, F., Rueda,
G., Schipper, K., Meheust, M., Rosell-Mele, A., Stein, R., and Tiedemann,
R.: Appraisal of TEX86 and TEX thermometries in subpolar and polar
regions, Geochim. Cosmochim. Ac., 131, 213–226,
https://doi.org/10.1016/j.gca.2014.01.001, 2014.
Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Damste, J. S.
S., and Schouten, S.: A novel proxy for terrestrial organic matter in
sediments based on branched and isoprenoid tetraether lipids, Earth
Planet. Sc. Lett., 224, 107–116, https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hopmans, E. C., Schouten, S., and Damste, J. S. S.: The effect of improved
chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6,
https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Huguet, C., Fietz, S., and Rosell-Mele, A.: Global distribution patterns of
hydroxy glycerol dialkyl glycerol tetraethers, Org. Geochem., 57,
107–118, https://doi.org/10.1016/j.orggeochem.2013.01.010, 2013.
Jaeschke, A., Wengler, M., Hefter, J., Ronge, T. A., Geibert, W.,
Mollenhauer, G., Gersonde, R., and Lamy, F.: A biomarker perspective on
dust, productivity, and sea surface temperature in the Pacific sector of the
Southern Ocean, Geochim. Cosmochim. Ac., 204, 120–139,
https://doi.org/10.1016/j.gca.2017.01.045, 2017.
Kaiser, J., Schouten, S., Kilian, R., Arz, H. W., Lamy, F., and Damste, J.
S. S.: Isoprenoid and branched GDGT-based proxies for surface sediments from
marine, fjord and lake environments in Chile, Org. Geochem., 89–90,
117–127, https://doi.org/10.1016/j.orggeochem.2015.10.007, 2015.
Kalanetra, K. M., Bano, N., and Hollibaugh, J. T.: Ammonia-oxidizing Archaea
in the Arctic Ocean and Antarctic coastal waters, Environ. Microbiol., 11,
2434–2445, https://doi.org/10.1111/j.1462-2920.2009.01974.x, 2009.
Karner, M. B., DeLong, E. F., and Karl, D. M.: Archaeal dominance in the
mesopelagic zone of the Pacific Ocean, Nature, 409, 507–510,
https://doi.org/10.1038/35054051, 2001.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koc, N., Hopmans, E. C., and Damste, J. S. S.: New indices
and calibrations derived from the distribution of crenarchaeal isoprenoid
tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kim, J. H., Romero, O. E., Lohmann, G., Donner, B., Laepple, T., Haam, E.,
and Damste, J. S. S.: Pronounced subsurface cooling of North Atlantic waters
off Northwest Africa during Dansgaard–Oeschger interstadials, Earth
Planet. Sc. Lett., 339, 95–102, https://doi.org/10.1016/j.epsl.2012.05.018, 2012a.
Kim, J. H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P.,
Schouten, S., and Damste, J. S. S.: Holocene subsurface temperature
variability in the eastern Antarctic continental margin, Geophys.
Res. Lett., 39, L06705, https://doi.org/10.1029/2012gl051157, 2012b.
Kim, J. H., Schouten, S., Rodrigo-Gamiz, M., Rampen, S., Marino, G., Huguet,
C., Helmke, P., Buscail, R., Hopmans, E. C., Pross, J., Sangiorgi, F.,
Middelburg, J. B. M., and Damste, J. S. S.: Influence of deep-water derived
isoprenoid tetraether lipids on the TEX86H paleothermometer in the
Mediterranean Sea, Geochim. Cosmochim. Ac., 150, 125–141,
https://doi.org/10.1016/j.gca.2014.11.017, 2015.
Kim, J. H., Villanueva, L., Zell, C., and Damste, J. S. S.: Biological
source and provenance of deep-water derived isoprenoid tetraether lipids
along the Portuguese continental margin, Geochim. Cosmochim. Ac.,
172, 177–204, https://doi.org/10.1016/j.gca.2015.09.010, 2016.
Koenig, Z., Provost, C., Ferrari, R., Sennechael, N., and Rio, M. H.: Volume
transport of the Antarctic Circumpolar Current: Production and validation of
a 20 year long time series obtained from in situ and satellite observations,
J. Geophys. Res.-Oceans, 119, 5407–5433,
https://doi.org/10.1002/2014jc009966, 2014.
Lamping, N., Müller, J., Hefter, J., Mollenhauer, G., Haas, C., Shi, X., Vorrath, M.-E., Lohmann, G., and Hillenbrand, C.-D.: Evaluation of lipid biomarkers as proxies for sea ice and ocean temperatures along the Antarctic continental margin, Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, 2021.
Lamy, F.: The Expedition PS97 of the Research Vessel POLARSTERN to the Drake
Passage in 2016, Berichte zur Polar- und Meeresforschung = Reports on
polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar
and Marine Research, 571 pp., https://doi.org/10.2312/BzPM_0701_2016, 2016.
Lamy, F., Kilian, R., Arz, H. W., Francois, J. P., Kaiser, J., Prange, M.,
and Steinke, T.: Holocene changes in the position and intensity of the
southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/Ngeo959,
2010.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
dust deposition in the Pacific Southern Ocean during glacial periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Liu, R. J., Han, Z. B., Zhao, J., Zhang, H. F., Li, D., Ren, J. Y., Pan, J.
M., and Zhang, H. S.: Distribution and source of glycerol dialkyl glycerol
tetraethers (GDGTs) and the applicability of GDGT-based temperature proxies
in surface sediments of Prydz Bay, East Antarctica, Polar Res., 39, 3557,
https://doi.org/10.33265/polar.v39.3557, 2020.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E.: World Ocean Atlas 2005, in: Temperature, Vol. 1, edited by: Levitus, S., NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, DC, 182 pp., 2006.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas
2009, Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas NESIDIS 68, U.S. Government Printing Office, Washington, DC, 184 pp., 2010.
Lü, X., Liu, X.-L., Elling, F. J., Yang, H., Xie, S., Song, J., Li, X.,
Yuan, H., Li, N., and Hinrichs, K.-U.: Hydroxylated isoprenoid GDGTs in
Chinese coastal seas and their potential as a paleotemperature proxy for
mid-to-low latitude marginal seas, Org. Geochem., 89–90, 31–43,
https://doi.org/10.1016/j.orggeochem.2015.10.004, 2015.
Massana, R., Taylor, L. J., Murray, A. E., Wu, K. Y., Jeffrey, W. H., and
DeLong, E. F.: Vertical distribution and temporal variation of marine
planktonic archaea in the Gerlache Strait, Antarctica, during early spring,
Limnol. Oceanogr., 43, 607–617, https://doi.org/10.4319/lo.1998.43.4.0607, 1998.
Max, L., Lembke-Jene, L., Zou, J., Shi, X., and Tiedemann, R.: Evaluation of
reconstructed sea surface temperatures based on U37k' from sediment surface
samples of the North Pacific, Quaternary Sci. Rev., 243, 106496,
https://doi.org/10.1016/j.quascirev.2020.106496, 2020.
Méheust, M., Fahl, K., and Stein, R.: Variability in modern sea surface
temperature, sea ice and terrigenous input in the sub-polar North Pacific
and Bering Sea: Reconstruction from biomarker data, Org. Geochem.,
57, 54–64, https://doi.org/10.1016/j.orggeochem.2013.01.008, 2013.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic and the global
ocean (60∘ N–60∘ S), Geochim. Cosmochim. Ac.,
62, 1757–1772, https://doi.org/10.1016/s0016-7037(98)00097-0, 1998.
Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu,
K., and DeLong, E. F.: Seasonal and spatial variability of bacterial and
archaeal assemblages in the coastal waters near Anvers Island, Antarctica,
Appl. Environ. Microb., 64, 2585–2595, https://doi.org/10.1128/AEM.64.7.2585-2595.1998,
1998.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the Meridional Extent and
Fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W,
1995.
Pearson, A. and Ingalls, A. E.: Assessing the Use of Archaeal Lipids as
Marine Environmental Proxies, Annu. Rev. Earth Pl. Sc.,
41, 359–384, https://doi.org/10.1146/annurev-earth-050212-123947, 2013.
Popp, B. N., Kenig, F., Wakeham, S. G., Laws, E. A., and Bidigare, R. R.:
Does growth rate affect ketone unsaturation and intracellular carbon
isotopic variability inEmiliania huxleyi?, Paleoceanography, 13, 35–41,
https://doi.org/10.1029/97pa02594, 1998.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for palaeotemperature assessment, Nature,
330, 367–369, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further Evaluation of
Long-Chain Alkenones as Indicators of Paleoceanographic Conditions,
Geochim. Cosmochim. Ac., 52, 2303–2310,
https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Prahl, F. G., Mix, A. C., and Sparrow, M. A.: Alkenone paleothermometry:
Biological lessons from marine sediment records off western South America,
Geochim. Cosmochim. Ac., 70, 101–117, https://doi.org/10.1016/j.gca.2005.08.023,
2006.
Prahl, F. G., Rontani, J. F., Zabeti, N., Walinsky, S. E., and Sparrow, M.
A.: Systematic pattern in – Temperature residuals for surface
sediments from high latitude and other oceanographic settings, Geochim.
Cosmochim. Ac., 74, 131–143, https://doi.org/10.1016/j.gca.2009.09.027, 2010.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W.,
Stahl, D. A., and Ingalls, A. E.: Confounding effects of oxygen and
temperature on the TEX86 signature of marine Thaumarchaeota, P. Natl. Acad. Sci. USA, 112, 10979–10984, https://doi.org/10.1073/pnas.1501568112, 2015.
Quiñones, R. A., Levipan, H. A., and Urrutia, H.: Spatial and temporal
variability of planktonic archaeal abundance in the Humboldt Current System
off Chile, Deep Sea-Res. Pt. II, 56,
1073–1082, https://doi.org/10.1016/j.dsr2.2008.09.012, 2009.
Rintoul, S. R.: The global influence of localized dynamics in the Southern
Ocean, Nature, 558, 209–218, https://doi.org/10.1038/s41586-018-0182-3, 2018.
Saavedra-Pellitero, M., Baumann, K. H., Flores, J. A., and Gersonde, R.:
Biogeographic distribution of living coccolithophores in the Pacific sector
of the Southern Ocean, Mar. Micropaleontol., 109, 1–20,
https://doi.org/10.1016/j.marmicro.2014.03.003, 2014.
Saavedra-Pellitero, M., Baumann, K.-H., Fuertes, M. Á., Schulz, H., Marcon, Y., Vollmar, N. M., Flores, J.-A., and Lamy, F.: Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016, Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, 2019.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 14 September 2023), 2022.
Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., and
Casassa, G.: Weather Observations Across the Southern Andes at 53∘ S, Phys. Geogr., 24, 97–119, https://doi.org/10.2747/0272-3646.24.2.97, 2003.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeotal membrane lipids: a
new tool for reconstructing ancient sea water temperatures?, Earth
Planet. Sc. Lett., 204, 265–274, https://doi.org/10.1016/s0012-821x(02)00979-2,
2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V., and Damste, J.
S.: Analytical methodology for TEX86 paleothermometry by high-performance
liquid chromatography/atmospheric pressure chemical ionization-mass
spectrometry, Anal. Chem., 79, 2940–2944, https://doi.org/10.1021/ac062339v, 2007.
Schouten, S., Pitcher, A., Hopmans, E. C., Villanueva, L., van Bleijswijk,
J., and Damste, J. S. S.: Intact polar and core glycerol dibiphytanyl
glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I.
Selective preservation and degradation in the water column and consequences
for the TEX86, Geochim. Cosmochim. Ac., 98, 228–243,
https://doi.org/10.1016/j.gca.2012.05.002, 2012.
Schouten, S., Hopmans, E. C., and Damste, J. S. S.: The organic geochemistry
of glycerol dialkyl glycerol tetraether lipids: A review, Org. Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013a.
Schouten, S., Hopmans, E. C., Rosell-Melé, A., Pearson, A., Adam, P.,
Bauersachs, T., Bard, E., Bernasconi, S. M., Bianchi, T. S., Brocks, J. J.,
Carlson, L. T., Castañeda, I. S., Derenne, S., Selver, A. D., Dutta, K.,
Eglinton, T., Fosse, C., Galy, V., Grice, K., Hinrichs, K.-U., Huang, Y.,
Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., Keely, B., Knappy,
C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K.,
Martínez-García, A., Ménot, G., Mets, A., Mollenhauer, G.,
Ohkouchi, N., Ossebaar, J., Pagani, M., Pancost, R. D., Pearson, E. J.,
Peterse, F., Reichart, G.-J., Schaeffer, P., Schmitt, G., Schwark, L., Shah,
S. R., Smith, R. W., Smittenberg, R. H., Summons, R. E., Takano, Y., Talbot,
H. M., Taylor, K. W. R., Tarozo, R., Uchida, M., van Dongen, B. E., Van
Mooy, B. A. S., Wang, J., Warren, C., Weijers, J. W. H., Werne, J. P.,
Woltering, M., Xie, S., Yamamoto, M., Yang, H., Zhang, C. L., Zhang, Y.,
Zhao, M., and Damsté, J. S. S.: An interlaboratory study of TEX86 and BIT
analysis of sediments, extracts, and standard mixtures, Geochem.
Geophys. Geosy., 14, 5263–5285, https://doi.org/10.1002/2013gc004904, 2013b.
Sikes, E. L., Volkman, J. K., Robertson, L. G., and Pichon, J. J.: Alkenones
and alkenes in surface waters and sediments of the Southern Ocean:
Implications for paleotemperature estimation in polar regions, Geochim.
Cosmochim. Ac., 61, 1495–1505, https://doi.org/10.1016/S0016-7037(97)00017-3, 1997.
Smith, H. E. K., Poulton, A. J., Garley, R., Hopkins, J., Lubelczyk, L. C., Drapeau, D. T., Rauschenberg, S., Twining, B. S., Bates, N. R., and Balch, W. M.: The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt, Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, 2017.
Strub, P. T., Mesías, J. M., Montecino, V., Rutllant, J., and Salinas,
S.: Chapter 10. Coastal ocean circulation off western south america coastal
segment, in: The Sea, edited by: Robinson, A. R. and Kenneth, H. B.,
273–313, ISBN 0-471-11545-2, 1998.
Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and
Pancost, R. D.: Re-evaluating modern and Palaeogene GDGT distributions:
Implications for SST reconstructions, Global Planet. Change, 108,
158–174, https://doi.org/10.1016/j.gloplacha.2013.06.011, 2013.
Toyos, M. H., Winckler, G., Arz, H. W., Lembke-Jene, L., Lange, C. B., Kuhn, G., and Lamy, F.: Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr, Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, 2022.
Tyrrell, T. and Merico, A.: Emiliania huxleyi: bloom observations and the
conditions that induce them, in: Coccolithophores, 75–97,
https://doi.org/10.1007/978-3-662-06278-4_4, 2004.
Villanueva, L., Schouten, S., and Sinninghe Damste, J. S.: Depth-related
distribution of a key gene of the tetraether lipid biosynthetic pathway in
marine Thaumarchaeota, Environ. Microbiol., 17, 3527–3539,
https://doi.org/10.1111/1462-2920.12508, 2015.
Volkman, J. K.: Ecological and environmental factors affecting alkenone
distributions in seawater and sediments, Geochem. Geophys. Geosy.,
1, 2000GC000061, https://doi.org/10.1029/2000gc000061, 2000.
Vollmar, N. M., Baumann, K.-H., Saavedra-Pellitero, M., and Hernández-Almeida, I.: Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes, Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, 2022.
Vorrath, M.-E., Müller, J., Rebolledo, L., Cárdenas, P., Shi, X., Esper, O., Opel, T., Geibert, W., Muñoz, P., Haas, C., Kuhn, G., Lange, C. B., Lohmann, G., and Mollenhauer, G.: Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy intercomparison study, Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, 2020.
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci.,
8, 861–864, https://doi.org/10.1038/Ngeo2538, 2015.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Damste, J. S. S.:
Occurrence and distribution of tetraether membrane lipids in soils:
Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.:
Temporal and spatial variation in tetraether membrane lipids of marine
Crenarchaeota in particulate organic matter: Implications for
TEX86 paleothermometry, Paleoceanography, 20, PA3013, https://doi.org/10.1029/2004pa001110, 2005.
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past...