Articles | Volume 19, issue 6
https://doi.org/10.5194/cp-19-1245-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1245-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Refinement of the environmental and chronological context of the archeological site El Harhoura 2 (Rabat, Morocco) using paleoclimatic simulations
Léa Terray
CORRESPONDING AUTHOR
Institut de Systématique, Évolution, Biodiversité (ISYEB)
– UMR 7205, Muséum National d'Histoire Naturelle, CNRS, Sorbonne
Université, EPHE, Université des Antilles, Paris, France
Emmanuelle Stoetzel
Histoire Naturelle de l'Homme Préhistorique (HNHP) – UMR 7194, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université,
UPVD, Musée de l'Homme, Paris, France
Eslem Ben Arous
Pan-African Evolution Research Group (Pan-Ev), Max Planck Institute
for the Science of Human History, Jena, Germany
Geochronology Lab, Centro Nacional de Investigación sobre la
Evolución Humana, Burgos, Spain
Histoire Naturelle de l'Homme Préhistorique (HNHP) – UMR 7194, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université,
UPVD, Musée de l'Homme, Paris, France
Masa Kageyama
Laboratoire des Sciences du Climat et de l'Environnement (LSCE) –
UMR 8212, Institut Pierre Simon Laplace (IPSL) – UMR 8112, CEA, CNRS, UVSQ,
Centre CEA-Saclay, Gif-sur-Yvette, France
Raphaël Cornette
Institut de Systématique, Évolution, Biodiversité (ISYEB)
– UMR 7205, Muséum National d'Histoire Naturelle, CNRS, Sorbonne
Université, EPHE, Université des Antilles, Paris, France
Pascale Braconnot
Laboratoire des Sciences du Climat et de l'Environnement (LSCE) –
UMR 8212, Institut Pierre Simon Laplace (IPSL) – UMR 8112, CEA, CNRS, UVSQ,
Centre CEA-Saclay, Gif-sur-Yvette, France
Related authors
Léa Terray, Masa Kageyama, Emmanuelle Stoetzel, Eslem Ben Arous, Raphaël Cornette, and Pascale Braconnot
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-185, https://doi.org/10.5194/cp-2021-185, 2022
Manuscript not accepted for further review
Short summary
Short summary
To reconstruct the paleoenvironmental and chronological context of archaeo/paleontological sites is a key step to understand the evolutionary history of past organisms. Paleoenvironmental proxies often show inconsistencies and age estimations can vary depending on the method used. We show the potential of paleoclimate simulations to address those discrepancies, illustrating the strong potential of our cross-disciplinary approach to refine the context of archaeo/paleontological sites.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Léa Terray, Masa Kageyama, Emmanuelle Stoetzel, Eslem Ben Arous, Raphaël Cornette, and Pascale Braconnot
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-185, https://doi.org/10.5194/cp-2021-185, 2022
Manuscript not accepted for further review
Short summary
Short summary
To reconstruct the paleoenvironmental and chronological context of archaeo/paleontological sites is a key step to understand the evolutionary history of past organisms. Paleoenvironmental proxies often show inconsistencies and age estimations can vary depending on the method used. We show the potential of paleoclimate simulations to address those discrepancies, illustrating the strong potential of our cross-disciplinary approach to refine the context of archaeo/paleontological sites.
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021, https://doi.org/10.5194/gmd-14-2959-2021, 2021
Short summary
Short summary
State-of-the-art Earth system models, like the ones used in CMIP6, suffer from temporal inconsistencies at the ocean–atmosphere interface. In this study, a mathematically consistent iterative Schwarz method is used as a reference. Its tremendous computational cost makes it unusable for production runs, but it allows us to evaluate the error made when using legacy coupling schemes. The impact on the climate at longer timescales of days to decades is not evaluated.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Short summary
To provide reliable projections of the ice-sheet contribution to future sea-level rise, ice sheet models must be able to simulate the observed ice sheet present-day state. Using a low computational iterative minimisation procedure, based on the adjustment of the basal drag coefficient, we rapidly minimise the errors between the simulated and the observed Greenland ice thickness and ice velocity, and we succeed in stabilising the simulated Greenland ice sheet state under present-day conditions.
Pascale Braconnot, Dan Zhu, Olivier Marti, and Jérôme Servonnat
Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, https://doi.org/10.5194/cp-15-997-2019, 2019
Short summary
Short summary
This study discusses a simulation of the last 6000 years realized with a climate model in which the vegetation and carbon cycle are fully interactive. The long-term southward shift in Northern Hemisphere tree line and Afro-Asian monsoon rain are reproduced. The results show substantial change in tree composition with time over Eurasia and the role of trace gases in the recent past. They highlight the limitations due to model setup and multiple preindustrial vegetation states.
Sébastien Le clec'h, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, and Catherine Ritz
The Cryosphere, 13, 373–395, https://doi.org/10.5194/tc-13-373-2019, https://doi.org/10.5194/tc-13-373-2019, 2019
Short summary
Short summary
Quantifying the future contribution of the Greenland ice sheet (GrIS) to sea-level rise in response to atmospheric changes is important but remains challenging. For the first time a full representation of the feedbacks between a GrIS model and a regional atmospheric model was implemented. The authors highlight the fundamental need for representing the GrIS topography change feedbacks with respect to the atmospheric component face to the strong impact on the projected sea-level rise.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Priscilla Le Mézo, Luc Beaufort, Laurent Bopp, Pascale Braconnot, and Masa Kageyama
Clim. Past, 13, 759–778, https://doi.org/10.5194/cp-13-759-2017, https://doi.org/10.5194/cp-13-759-2017, 2017
Short summary
Short summary
This paper focuses on the relationship between Arabian Sea biological productivity and the Indian summer monsoon in climates of the last 72 kyr. A general circulation model coupled to a biogeochemistry model simulates the changes in productivity and monsoon intensity and pattern. The paradigm stating that a stronger summer monsoon enhances productivity is not always verified in our simulations. This work highlights the importance of considering the monsoon pattern in addition to its intensity.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
A. Abe-Ouchi, F. Saito, M. Kageyama, P. Braconnot, S. P. Harrison, K. Lambeck, B. L. Otto-Bliesner, W. R. Peltier, L. Tarasov, J.-Y. Peterschmitt, and K. Takahashi
Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, https://doi.org/10.5194/gmd-8-3621-2015, 2015
Short summary
Short summary
We describe the creation of boundary conditions related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and altitude of ice-free land, at the Last Glacial Maximum (LGM), for use in LGM experiments conducted as part of the Coupled Modelling Intercomparison Project (CMIP5) and Palaeoclimate Modelling Intercomparison Project (PMIP3). The difference in the ice sheet boundary conditions as well as the climate response to them are discussed.
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, and C. Ritz
Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, https://doi.org/10.5194/cp-11-1467-2015, 2015
Short summary
Short summary
The present study investigates the potential impact of the North American ice sheet on the surface mass balance of the Eurasian ice sheet through changes in the past glacial atmospheric circulation. Using an atmospheric circulation model and an ice-sheet model, we show that the albedo of the American ice sheet favors the growth of the Eurasian ice sheet, whereas the topography of the American ice sheet leads to more ablation over North Eurasia, and therefore to a smaller Eurasian ice sheet.
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary
Short summary
This study presents a new parameterization of the vegetation dynamics module in the process-based ecosystem model ORCHIDEE for mid- to high-latitude regions, showing significant improvements in the modeled distribution of tree functional types north of 40°N. A new set of metrics is proposed to quantify the performance of ORCHIDEE, which integrates uncertainties in the observational data sets.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, M.-F. Sánchez-Goñi, and V. Hanquiez
Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, https://doi.org/10.5194/cp-10-1165-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
The Cryosphere, 7, 681–698, https://doi.org/10.5194/tc-7-681-2013, https://doi.org/10.5194/tc-7-681-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
Y. Chavaillaz, F. Codron, and M. Kageyama
Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, https://doi.org/10.5194/cp-9-517-2013, 2013
B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein, A. J. Dolman, and M. Kageyama
Clim. Past, 9, 149–171, https://doi.org/10.5194/cp-9-149-2013, https://doi.org/10.5194/cp-9-149-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Pleistocene
Simulation of ash clouds after a Laacher See-type eruption
Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past, 17, 633–652, https://doi.org/10.5194/cp-17-633-2021, https://doi.org/10.5194/cp-17-633-2021, 2021
Short summary
Short summary
The 13 kyr BP Laacher See eruption impacted local environments, human communities and climate. We have simulated the evolution of its fine ash and sulfur cloud such that it reflects the empirically known ash distribution. In our models, the heating of the ash causes a mesocyclone which changes the dispersion of the cloud itself, resulting in enhanced transport to low latitudes. This may partially explain why no Laacher See ash has yet been found in Greenlandic ice cores.
Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu
Clim. Past, 16, 2039–2054, https://doi.org/10.5194/cp-16-2039-2020, https://doi.org/10.5194/cp-16-2039-2020, 2020
Short summary
Short summary
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During the peak of the last ice age, their distribution was obtained based on pollen data literature. A climate model, after validation on the present, was used to calculate the potential distribution of such trees in the past. It shows that the shift of the tree belt was only 2° latitude to the south. Moreover, greater population connectivity was shown for the Yellow Sea and southern Himalayas.
Cited articles
Adams, D. C. and Otárola-Castillo, E.: geomorph: an R package for the
collection and analysis of geometric morphometric shape data, Methods Ecol.
Evol., 4, 393–399, https://doi.org/10.1111/2041-210X.12035, 2013.
Adler, R., Sapiano, M., Huffman, G., Wang, J.-J., Gu, G., Bolvin, D., Chiu,
L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin,
D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly Analysis
(New Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere, 9,
138, https://doi.org/10.3390/atmos9040138, 2018.
Alhajeri, B. H. and Steppan, S. J.: Association between climate and body
size in rodents: A phylogenetic test of Bergmann's rule, Mamm. Biol., 81,
219–225, https://doi.org/10.1016/j.mambio.2015.12.001, 2016.
Avery, D. M.: Pleistocene micromammals from Wonderwerk Cave, South Africa:
practical issues, J. Archaeol. Sci., 34, 613–625,
https://doi.org/10.1016/j.jas.2006.07.001, 2007.
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019.
Ben Arous, E., Falguères, C., Tombret, O., El Hajraoui, M. A., and
Nespoulet, R.: Combined US-ESR dating of fossil teeth from El Harhoura 2
cave (Morocco): New data about the end of the MSA in Temara region, Quatern.
Int., 556, 88–95, https://doi.org/10.1016/j.quaint.2019.02.029, 2020a.
Ben Arous, E., Falguères, C., Nespoulet, R., and El Hajraoui, M. A.:
Review of chronological data from the Rabat-Temara caves (Morocco):
Implications for understanding human occupation in north-west Africa during
the Late Pleistocene., in: Not just a corridor. Human occupation of the Nile
Valley and neighbouring regions between 75,000 and 15,000 years ago, edited
by: Leplongeon, A., Goder-Goldberger, M., and Pleurdeau, D., Paris,
177–201, https://books.openedition.org/mnhn/7122?lang=fr (last access 8 June 2023), 2020b.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, M., Fuentes, M.,
Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The
ERA-Interim archive Version 2.0, ERA Report Series, https://www.ecmwf.int/en/elibrary/73682-era-interim-archive-version-20 (last access: 8 June 2023), 2011.
Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S., and Russell, J.:
The environmental context for the origins of modern human diversity: A
synthesis of regional variability in African climate 150,000–30,000 years
ago, J. Hum. Evol., 62, 563–592,
https://doi.org/10.1016/j.jhevol.2012.01.011, 2012.
Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J.-P., Chritz, K. L.,
Harris, J. M., Jehle, G. E., and Cerling, T. E.: Aridity and hominin
environments, P. Natl. Acad. Sci. USA, 114, 7331–7336, https://doi.org/10.1073/pnas.1700597114, 2017.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP amip, v20181109, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.5113, 2018.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé,
C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, L., E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N.,
Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S.,
Madec, G., Madeleine, J., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton,
Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima,
A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M.,
Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and
Evaluation of the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change,
2, 417–424, 2012.
Braconnot, P., Albani, S., Balkanski, Y., Cozic, A., Kageyama, M., Sima, A., Marti, O., and Peterschmitt, J.-Y.: Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model, Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, 2021.
Carto, S. L., Weaver, A. J., Hetherington, R., Lam, Y., and Wiebe, E. C.:
Out of Africa and into an ice age: on the role of global climate change in
the late Pleistocene migration of early modern humans out of Africa, J. Hum.
Evol., 56, 139–151, https://doi.org/10.1016/j.jhevol.2008.09.004, 2009.
Chapman, J. W., Klaassen, R. H. G., Drake, V. A., Fossette, S., Hays, G. C.,
Metcalfe, J. D., Reynolds, A. M., Reynolds, D. R., and Alerstam, T.: Animal
Orientation Strategies for Movement in Flows, Curr. Biol., 21, R861–R870,
https://doi.org/10.1016/j.cub.2011.08.014, 2011.
Comay, O. and Dayan, T.: From micromammals to paleoenvironments, Archaeol.
Anthropol. Sci., 10, 2159–2171, https://doi.org/10.1007/s12520-018-0608-8,
2018.
Cornette, R., Stoetzel, E., Baylac, M., Moulin, S., Hutterer, R., Nespoulet,
R., El Hajraoui, M. A., Denys, C., and Herrel, A.: Shrews of the genus
Crocidura from El Harhoura 2 (Témara, Morocco): The contribution of
broken specimens to the understanding of Late Pleistocene–Holocene
palaeoenvironments in North Africa, Palaeogeogr. Palaeocl., 436, 1–8, https://doi.org/10.1016/j.palaeo.2015.06.020, 2015.
Couvreur, T. L. P., Dauby, G., Blach-Overgaard, A., Deblauwe, V., Dessein,
S., Droissart, V., Hardy, O. J., Harris, D. J., Janssens, S. B., Ley, A. C.,
Mackinder, B. A., Sonké, B., Sosef, M. S. M., Stévart, T., Svenning,
J., Wieringa, J. J., Faye, A., Missoup, A. D., Tolley, K. A., Nicolas, V.,
Ntie, S., Fluteau, F., Robin, C., Guillocheau, F., Barboni, D., and
Sepulchre, P.: Tectonics, climate and the diversification of the tropical
African terrestrial flora and fauna, Biol. Rev., 96, 16–51,
https://doi.org/10.1111/brv.12644, 2020.
deMenocal, P. B.: Plio-Pleistocene African Climate, Science, 270, 53–59,
https://doi.org/10.1126/science.270.5233.53, 1995.
deMenocal, P. B.: African climate change and faunal evolution during the
Pliocene–Pleistocene, Earth Planet. Sc. Lett., 220, 3–24,
https://doi.org/10.1016/S0012-821X(04)00003-2, 2004.
Denys, C., Stoetzel, E., Andrews, P., Bailon, S., Rihane, A., Huchet, J. B.,
Fernandez-Jalvo, Y., and Laroulandie, V.: Taphonomy of Small Predators
multi-taxa accumulations: palaeoecological implications, Hist. Biol., 30,
868–881, https://doi.org/10.1080/08912963.2017.1347647, 2018.
Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S., and White, K.
H.: Ancient watercourses and biogeography of the Sahara explain the peopling
of the desert, P. Natl. Acad. Sci. USA, 108, 458–462,
https://doi.org/10.1073/pnas.1012231108, 2011.
Drake, N. A., Breeze, P., and Parker, A.: Palaeoclimate in the Saharan and
Arabian Deserts during the Middle Palaeolithic and the potential for hominin
dispersals, Quatern. Int., 300, 48–61,
https://doi.org/10.1016/j.quaint.2012.12.018, 2013.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013.
Duplessy, J.-C. and Ramstein, G.: Paléonclimatologie, tome II:
enquêter sur les climats anciens, ISBN EDP Sciences 978-2-7598-0741-3,
ISBN CNRS Éditions 978-2-271-07599-4, 2013.
Ebrahimi-Khusfi, Z., Mirakbari, M., and Khosroshahi, M.: Vegetation response
to changes in temperature, rainfall, and dust in arid environments, Environ.
Monit. Assess., 192, 691, https://doi.org/10.1007/s10661-020-08644-0, 2020.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fernandez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and
Humphrey, L.: Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene,
Tanzania), J. Hum. Evol., 34, 137–172, 1998.
Fyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K.,
Díaz, S., Enquist, B. J., Farfan-Rios, W., Gloor, E., Guerrieri, R.,
Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O., Salinas,
N., Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., and Malhi, Y.:
Solar radiation and functional traits explain the decline of forest primary
productivity along a tropical elevation gradient, Ecol. Lett., 20, 730–740,
https://doi.org/10.1111/ele.12771, 2017.
Ghawar, W., Zaätour, W., Chlif, S., Bettaieb, J., Chelghaf, B., Snoussi,
M.-A., and Salah, A. B.: Spatiotemporal dispersal of Meriones shawi
estimated by radio-telemetry, Int. J. Multidiscip. Res. Dev., 2, 211–216,
2015.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E.
L.: Effects of Size and Temperature on Metabolic Rate, Science, 293,
2248–2251, 2001.
Hanon, R., Patou-Mathis, M., Péan, S., and Prat, S.: Paleobiodiversity
and large mammal associations during the late Pliocene and the Early
Pleistocene in South Africa, Quaternaire, 30, 243–256,
https://doi.org/10.4000/quaternaire.12131, 2019.
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves,
J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations
to improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015.
Haywood, A. M., Dowsett, H. J., Dolan, A. M., Rowley, D., Abe-Ouchi, A., Otto-Bliesner, B., Chandler, M. A., Hunter, S. J., Lunt, D. J., Pound, M., and Salzmann, U.: The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design, Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, 2016.
Hijmans, R. J. and van Etten, J.: raster: Geographic analysis and modeling
with raster data, R package version 2.0-12, https://cran.r-project.org/web/packages/raster/index.html (last access: 8 June 2023), 2012.
Hooghiemstra, H., Stalling, H., Agwu, C. O. C., and Dupont, L. M.:
Vegetational and climatic changes at the northern fringe of the sahara
250,000–5000 years BP: evidence from 4 marine pollen records located
between Portugal and the Canary Islands, Rev. Palaeobot. Palyno., 74,
1–53, https://doi.org/10.1016/0034-6667(92)90137-6, 1992.
Hourdin, F., Rio, C., Grandpeix, J., Madeleine, J., Cheruy, F., Rochetin,
N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M., Mellul, L.,
Traore, A., Dufresne, J., Boucher, O., Lefebvre, M., Millour, E., Vignon,
E., Jouhaud, J., Diallo, F. B., Lott, F., Gastineau, G., Caubel, A.,
Meurdesoif, Y., and Ghattas, J.: LMDZ6A: The Atmospheric Component of the
IPSL Climate Model With Improved and Better Tuned Physics, J. Adv. Model.
Earth Sy., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892, 2020.
Hovenden, M. J., Vander Schoor, J. K., and Osanai, Y.: Relative humidity has
dramatic impacts on leaf morphology but little effect on stomatal index or
density in Nothofagus cunninghamii (Nothofagaceae), Aust. J. Bot., 60, 700,
https://doi.org/10.1071/BT12110, 2012.
Jacobs, Z., Roberts, R. G., Nespoulet, R., El Hajraoui, M. A., and
Debénath, A.: Single-grain OSL chronologies for Middle Palaeolithic
deposits at El Mnasra and El Harhoura 2, Morocco: Implications for Late
Pleistocene human–environment interactions along the Atlantic coast of
northwest Africa, J. Hum. Evol., 62, 377–394,
https://doi.org/10.1016/j.jhevol.2011.12.001, 2012.
Janati-Idrissi, N., Falgueres, C., Nespoulet, R., El Hajraoui, M. A.,
Debénath, A., Bejjit, L., Bahain, J.-J., Michel, P., Garcia, T., Boudad,
L., El Hammouti, K., and Oujaa, A.: Datation par ESR-U/th combinées de
dents fossiles des grottes d'El Mnasra et d'El Harhoura 2, région de
Rabat-Temara. Implications chronologiques sur le peuplement du Maroc
atlantique au Pléistocène supérieur et son, Quaternaire, 23,
25–35, https://doi.org/10.4000/quaternaire.6127, 2012.
Jeffrey, A.: Exploring palaeoaridity using stable oxygen and carbon isotopes
in small mammal teeth: a case study from two Late Pleistocene archaeological
cave sites in Morocco, North Africa, https://ora.ox.ac.uk/objects/uuid:5443f540-1049-4f89-8240-970afd5e59f5 (last access: 8 June 2023), 2016.
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and
recent developments, Philos. T. R. Soc. A, 374,
20150202, https://doi.org/10.1098/rsta.2015.0202, 2016.
Joussaume, S. and Braconnot, P.: Sensitivity of paleoclimate simulation
results to season definitions, J. Geophys. Res.-Atmos., 102,
1943–1956, https://doi.org/10.1029/96JD01989, 1997.
Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M.-A.,
Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O.,
Roy, T., and Woillez, M.-N.: Mid-Holocene and Last Glacial Maximum climate
simulations with the IPSL model – part I: comparing IPSL_CM5A
to IPSL_CM4, Clim. Dynam., 40, 2447–2468,
https://doi.org/10.1007/s00382-012-1488-8, 2013.
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Kassambara, A. and Mundt, F.: Factoextra: Extract and Visualize the Results
of Multivariate Data Analyses, R Package Version 1.0.7, https://cran.r-project.org/web/packages/factoextra/index.html (last access: 8 June 2023), 2020.
Kutzbach, J. E. and Otto-Bliesner, B. L.: The Sensitivity of the
African-Asian Monsoonal Climate to Orbital Parameter Changes for 9000 Years
B.P. in a Low-Resolution General Circulation Model, J. Atmos. Sci., 39, 1177–1188, https://doi.org/10.1175/1520-0469(1982)039<1177:TSOTAA>2.0.CO;2,
1982.
Lê, S., Josse, J., and Husson, F.: FactoMineR: an R Package for
multivariate analysis, J. Stat. Softw., 25, 1–18,
https://doi.org/10.18637/jss.v025.i01, 2008.
Le Houérou, H. N.: Climate, flora and fauna changes in the Sahara over
the past 500 million years, J. Arid Environ., 37, 619–647,
https://doi.org/10.1006/jare.1997.0315, 1997.
Le Mézo, P., Beaufort, L., Bopp, L., Braconnot, P., and Kageyama, M.: From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates, Clim. Past, 13, 759–778, https://doi.org/10.5194/cp-13-759-2017, 2017.
Lin, G.: Research on stable isotope and carbon cycle, 1st ed., chap. 4,
in: Stable Isotope Ecology, Beijing, 89–123, ISBN 978-1-4899-9359-5,
ISBN 978-0-387-33745-6, 2013.
Lionello, P., Malanotte, P., and Boscolo, R. (Eds.): Mediterranean Climate
Variability, Elsevier., Elsevier, Amsterdam, ISBN 9780080460796, 2006.
Longinelli, A. and Selmo, E.: Isotopic composition of precipitation in
Italy: a first overall map, J. Hydrol., 270, 75–88,
https://doi.org/10.1016/S0022-1694(02)00281-0, 2003.
Marquer, L., Otto, T., Ben Arous, E., Stoetzel, E., Campmas, E., Zazzo, A.,
Tombret, O., Falgueres, C., El Hajraoui, M. A., and Nespoulet, R.: The first
use of olives in Africa around 100,000 years ago, Nat. Plants, 8, 204–208,
2022.
Marti, O., Braconnot, P., Dufresne, J.-L., Bellier, J., Benshila, R., Bony,
S., Brockmann, P., Cadule, P., Caubel, A., Codron, F., de Noblet, N.,
Denvil, S., Fairhead, L., Fichefet, T., Foujols, M.-A., Friedlingstein, P.,
Goosse, H., Grandpeix, J.-Y., Guilyardi, E., Hourdin, F., Idelkadi, A.,
Kageyama, M., Krinner, G., Lévy, C., Madec, G., Mignot, J., Musat, I.,
Swingedouw, D., and Talandier, C.: Key features of the IPSL ocean atmosphere
model and its sensitivity to atmospheric resolution, Clim. Dynam., 34, 1–26,
https://doi.org/10.1007/s00382-009-0640-6, 2010.
Martínez-Blancas, A. and Martorell, C.: Changes in niche
differentiation and environmental filtering over a hydric stress gradient,
J. Plant Ecol., 13, 185–194, https://doi.org/10.1093/jpe/rtz061, 2020.
Matthews, T.: Predators, prey and the palaeoenvironment, South Afr. J.
Sci., 95, 22–24, 2000.
McNeil, J. N.: Behavioral Ecology of Pheromone-Mediated Communication in
Moths and Its Importance in the Use of Pheromone Traps, Annu. Rev.
Enthomology, 36, 407–30, 1991.
Michel, P., Campmas, É., Stoetzel, E., Nespoulet, R., Abdeljalil
El Hajraoui, M., and Amani, F.: La macrofaune du Pléistocène
supérieur d'El Harhoura 2 (Témara, Maroc): données
préliminaires, L'Anthropologie, 113, 283–312,
https://doi.org/10.1016/j.anthro.2009.04.003, 2009.
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems, J.
Appl. Ecol., 9, 747, https://doi.org/10.2307/2401901, 1972.
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C., and Martineau, F.:
Oxygen isotope compositions of phosphate from arvicoline teeth and
Quaternary climatic changes, Gigny, French Jura, Quaternary Res., 62, 172–182,
https://doi.org/10.1016/j.yqres.2004.06.001, 2004.
Nespoulet, R. and El Hajraoui, M. A.: Mission archéologique El Harhoura-Témara: Rapport d’activités, Paris: Ministère des Affaires Etrangères et Européennes (France), Casablanca: Ministère de la culture (Maroc), 2012.
Neuwirth, E.: RColorBrewer: ColorBrewer palettes, R package version 1.1-2, https://cran.r-project.org/web/packages/RColorBrewer/index.html (last access: 8 June 2023),
2014.
O'Leary, M. H.: Carbon Isotopes in Photosynthesis, BioScience, 38, 328–336,
https://doi.org/10.2307/1310735, 1988.
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M., Scussolini, P., Tzedakis, P. C., Williams, C. J. R., Wolff, E., Abe-Ouchi, A., Braconnot, P., Ramos Buarque, S., Cao, J., de Vernal, A., Guarino, M. V., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P. A., Nisancioglu, K. H., O'ishi, R., Salas y Mélia, D., Shi, X., Sicard, M., Sime, L., Stepanek, C., Tomas, R., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., and Zheng, W.: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, 2021.
Paz, H., Pineda-García, F., and Pinzón-Pérez, L. F.: Root depth
and morphology in response to soil drought: comparing ecological groups
along the secondary succession in a tropical dry forest, Oecologia, 179,
551–561, https://doi.org/10.1007/s00442-015-3359-6, 2015.
Pebesma, E. and Bivand, R.: S Classes and Methods for Spatial Data: the sp
Package, https://cran.r-project.org/web/packages/sp/index.html (last access: 8 June 2023), 2005.
Pellegrino, A. C., Peñaflor, M. F. G. V., Nardi, C., Bezner-Kerr, W.,
Guglielmo, C. G., Bento, J. M. S., and McNeil, J. N.: Weather Forecasting by
Insects: Modified Sexual Behaviour in Response to Atmospheric Pressure
Changes, PLoS ONE, 8, e75004, https://doi.org/10.1371/journal.pone.0075004,
2013.
Pickering, R., Herries, A. I. R., Woodhead, J. D., Hellstrom, J. C., Green,
H. E., Paul, B., Ritzman, T., Strait, D. S., Schoville, B. J., and Hancox,
P. J.: U–Pb-dated flowstones restrict South African early hominin record to
dry climate phases, Nature, 565, 226–229,
https://doi.org/10.1038/s41586-018-0711-0, 2019.
R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, 2018.
Royer, A., Lécuyer, C., Montuire, S., Amiot, R., Legendre, S.,
Cuenca-Bescós, G., Jeannet, M., and Martineau, F.: What does the oxygen
isotope composition of rodent teeth record?, Earth Planet. Sc. Lett., 361,
258–271, https://doi.org/10.1016/j.epsl.2012.09.058, 2013.
Sampson, P. D., Streissguth, A. P., and Bookstein, F. L.: Neurobehavioral
Effects of Prenatal Alcohol: Part II. Partial Least Squares Analysis I,
Neurotoxicol. Teratol., 11, 477–491, 1989.
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014.
Schulzweida, U.: CDO User Guide (Version 1.9.8), Zenodo, https://doi.org/10.5281/zenodo.3539275, 2019.
Sicard, M., Kageyama, M., Charbit, S., Braconnot, P., and Madeleine, J.-B.: An energy budget approach to understand the Arctic warming during the Last Interglacial, Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, 2022.
Smiley, T. M., Cotton, J. M., Badgley, C., and Cerling, T. E.: Small-mammal
isotope ecology tracks climate and vegetation gradients across western North
America, Oikos, 125, 1100–1109, https://doi.org/10.1111/oik.02722, 2016.
Sobrino, J. A. and Raissouni, N.: Toward remote sensing methods for land
cover dynamic monitoring: Application to Morocco, Int. J. Remote Sens., 21,
353–366, https://doi.org/10.1080/014311600210876, 2000.
Stoetzel, E.: Les microvertébrés du site d'occupation humaine d'El
Harhoura 2 (Pleistocene supérieur – Holocène, Maroc):
systématique, évolution, taphonomie et paléoécologie, https://hal.science/tel-02961302 (last access: 8 June 2023),
2009.
Stoetzel, E., Marion, L., Nespoulet, R., El Hajraoui, M. A., and Denys, C.:
Taphonomy and palaeoecology of the late Pleistocene to middle Holocene small
mammal succession of El Harhoura 2 cave (Rabat-Témara, Morocco), J. Hum.
Evol., 60, 1–33, https://doi.org/10.1016/j.jhevol.2010.07.016, 2011.
Stoetzel, E., Bougariane, B., Campmas, E., Ouchaou, B., and Michel, P.:
Chapitre V, Faunes et paléoenvironnements., in: Préhistoire de la
région de Rabat-Témara., vol. 3, Rabat, 35–51, https://hal.science/hal-01652882 (last access: 8 June 2023), 2012a.
Stoetzel, E., Denys, C., Bailon, S., El Hajraoui, M. A., and Nespoulet, R.:
Taphonomic Analysis of Amphibian and Squamate Remains from El Harhoura 2
(Rabat-Témara, Morocco): Contributions to Palaeoecological and
Archaeological Interpretations: Taphonomic Study of Amphibian and Squamate
Fossil Remains, Int. J. Osteoarchaeol., 22, 616–635,
https://doi.org/10.1002/oa.1275, 2012b.
Stoetzel, E., Campmas, E., Michel, P., Bougariane, B., Ouchaou, B., Amani,
F., El Hajraoui, M. A., and Nespoulet, R.: Context of modern human
occupations in North Africa: Contribution of the Témara caves data,
Quatern. Int., 320, 143–161, https://doi.org/10.1016/j.quaint.2013.05.017,
2014.
Stoetzel, E., Lalis, A., Nicolas, V., Aulagnier, S., Benazzou, T., Dauphin,
Y., El Hajraoui, M. A., El Hassani, A., Fahd, S., Fekhaoui, M., Geigl,
E.-M., Lapointe, F.-J., Leblois, R., Ohler, A., Nespoulet, R., and Denys,
C.: Quaternary terrestrial microvertebrates from mediterranean northwestern
Africa: State-of-the-art focused on recent multidisciplinary studies, Quaternary
Sci. Rev., 224, 105966, https://doi.org/10.1016/j.quascirev.2019.105966,
2019.
Streissguth, A. P., Bookstein, F. L., Sampson, P. D., and Barr, H. M.: The
enduring effects of prenatal alcohol exposure on child development: Birth
through seven years, a partial least squares solution, The University of
Michigan Press, ISBN 10 0472104551,
ISBN 13 9780472104550, 1993.
Tanner, E. V. J., Kapos, V., and Healey, J. R.: Hurricane Effects on Forest
Ecosystems in the Caribbean, Biotropica, 23, 513,
https://doi.org/10.2307/2388274, 1991.
Terray, L.: LeaTerray/cp-2022-81: cp-2022-81 (Repository), Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.8017964, 2023.
Tieszen, L. L.: Natural variations in the carbon isotope values of plants:
Implications for archaeology, ecology, and paleoecology, J. Archaeol. Sci.,
18, 227–248, https://doi.org/10.1016/0305-4403(91)90063-U, 1991.
Trauth, M. H., Larrasoaña, J. C., and Mudelsee, M.: Trends, rhythms and
events in Plio-Pleistocene African climate, Quaternary Sci. Rev., 28, 399–411,
https://doi.org/10.1016/j.quascirev.2008.11.003, 2009.
Warnes, G., Bolker, B., Gorjanc, G., Grothendieck, G., Korosec, A., Lumley,
T., MacQueen, D., Magnusson, A., and Rogers, J.: gdata: Various R
programming tools for data manipulation, https://cran.r-project.org/web/packages/gdata/index.html (last access: 8 June 2023), 2005.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a
Correlation Matrix, (Version 0.90), https://cran.r-project.org/web/packages/corrplot/index.html (last access: 8 June 2023), 2021.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer, ISBN 978-0-387-98141-3, 2015.
Yom-Tov, Y. and Geffen, E.: Geographic variation in body size: the effects
of ambient temperature and precipitation, Oecologia, 148, 213–218,
https://doi.org/10.1007/s00442-006-0364-9, 2006.
Short summary
The reconstruction of paleoenvironments has long been a subject of great interest, particularly to study past biodiversity. Paleoenvironmental proxies often show inconsistencies, and age estimations can vary depending on the method used. We demonstrate the ability of paleoclimate simulations to address these discrepancies, illustrating the strong potential of our cross-disciplinary consistency approach to refine the context of archeological and paleontological sites.
The reconstruction of paleoenvironments has long been a subject of great interest, particularly...