Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states
Dakota E. Holmes
Department of Geography, School of Geography, Archaeology, and Irish Studies, National University of Ireland Galway, Galway, Ireland
Ryan Institute for Environmental, Marine, and Energy Research, Galway, Ireland
Tali L. Babila
Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
Ulysses Ninnemann
Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
Gordon Bromley
Department of Geography, School of Geography, Archaeology, and Irish Studies, National University of Ireland Galway, Galway, Ireland
Ryan Institute for Environmental, Marine, and Energy Research, Galway, Ireland
Shane Tyrrell
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
iCRAG Irish Centre for Research in Applied Geosciences, Dublin, Ireland
Greig A. Paterson
Department of Earth, Ocean, and Ecological Sciences, University of Liverpool, Liverpool, UK
Michelle J. Curran
Department of Geography, School of Geography, Archaeology, and Irish Studies, National University of Ireland Galway, Galway, Ireland
Ryan Institute for Environmental, Marine, and Energy Research, Galway, Ireland
Department of Geography, School of Geography, Archaeology, and Irish Studies, National University of Ireland Galway, Galway, Ireland
Ryan Institute for Environmental, Marine, and Energy Research, Galway, Ireland
iCRAG Irish Centre for Research in Applied Geosciences, Dublin, Ireland
Related authors
No articles found.
Gordon Bromley, Greg Balco, Margaret Jackson, Allie Balter-Kennedy, and Holly Thomas
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-21, https://doi.org/10.5194/cp-2024-21, 2024
Revised manuscript under review for CP
Short summary
Short summary
We constructed a geologic record of East Antarctic Ice Sheet thickness from deposits at Otway Massif to assess directly how Earth’s largest ice sheet responds to warmer-than-present climate. Our record confirms the long-term dominance of a cold polar climate but lacks a clear ice sheet response to the Mid Pliocene Warm Period, a common analogue for the future. Instead, an absence of moraines from the Late Miocene-Early Pliocene suggests the ice sheet was less extensive than present at that time.
Annique van der Boon, Andrew J. Biggin, Greig A. Paterson, and Janine L. Kavanagh
Geosci. Commun., 5, 55–66, https://doi.org/10.5194/gc-5-55-2022, https://doi.org/10.5194/gc-5-55-2022, 2022
Short summary
Short summary
We present the Magnetic to the Core project, which communicated palaeomagnetism to members of the general public through hands-on experiments. The impact of the project was tested with an interactive quiz, which shows that this outreach event was successful in impacting visitors’ learning. We hope our Magnetic to the Core project can serve as an inspiration for other Earth science laboratories looking to engage a wide audience and measure the success and impact of their outreach activities.
Allie Balter-Kennedy, Gordon Bromley, Greg Balco, Holly Thomas, and Margaret S. Jackson
The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, https://doi.org/10.5194/tc-14-2647-2020, 2020
Short summary
Short summary
We describe new geologic evidence from Antarctica that demonstrates changes in East Antarctic Ice Sheet (EAIS) extent over the past ~ 15 million years. Our data show that the EAIS was a persistent feature in the Transantarctic Mountains for much of that time, including some (but not all) times when global temperature may have been warmer than today. Overall, our results comprise a long-term record of EAIS change and may provide useful constraints for ice sheet models and sea-level estimates.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pleistocene
Monsoon-driven changes in aeolian and fluvial sediment input to the central Red Sea recorded throughout the last 200 000 years
Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy
Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP)
Contrasting late-glacial paleoceanographic evolution between the upper and lower continental slope of the western South Atlantic
Modal shift in North Atlantic seasonality during the last deglaciation
Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data
Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions
Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels
Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core
A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin
Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka)
Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary
Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II
Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Patrick A. Rafter, Juan-Carlos Herguera, and John R. Southon
Clim. Past, 14, 1977–1989, https://doi.org/10.5194/cp-14-1977-2018, https://doi.org/10.5194/cp-14-1977-2018, 2018
Short summary
Short summary
Carbon’s radioactive isotope (radiocarbon) is a useful tool for oceanographers investigating carbon cycling in the modern ocean and ice age oceans (using foraminifera microfossils). Here we used sediment cores with excellent age constraints and abundant foraminifera microfossils to examine interspecies radiocarbon differences. All species demonstrate the same extreme radiocarbon depletion, and we argue that these observations represent important changes in seawater carbon chemistry.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Cited articles
Adkins, J. F., Boyle, E. A., Keigwin, L., and Cortijo, E.:
Variability of the North Atlantic thermohaline circulation during the last interglacial period, Nature, 390, 154–156, 1997.
Alonso-Garcia, M., Sierro, F. J., and Flores, J. A.:
Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800–400 ka) and their implications for ocean circulation, Palaeogeogr. Palaeocl., 311, 268–280, 2011.
Alvarez-Solas, J., Charbit, S., Ritz, C., Paillard, D., Ramstein, G., and Dumas, C.:
Links between ocean temperature and iceberg discharge during Heinrich events, Nat. Geosci., 3, 122–126, 2010.
Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R. A.:
Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model, P. Natl. Acad. Sci. USA, 104 3713–3718, 2007.
Anderson, D. M.:
Attenuation of millennial-scale events by bioturbation in marine sediments, Paleoceanography, 16, 352–357, 2001.
Arz, H. W., Gerhardt, S., Pätzold, J., and Röhl, U.:
Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene, Geology, 29, 239–242, https://doi.org/10.1130/0091-7613(2001)029<0239:MSCOSA>2.0.CO;2, 2001.
Austin, W. E. and Hibbert, F. D.:
Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies, Quaternary Sci. Rev., 36, 28–37, 2012.
Bailey, I., Foster, G. L., Wilson, P. A., Jovane, L., Storey, C. D., Trueman, C. N., and Becker, J.:
Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum, Earth Planet. Sc. Lett., 341, 222–233, 2012.
Ballalai, J. M., Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Johnstone, H. J., Kuhnert, H., Claudio, M. R., Toledo, F., and Costa, K. B.:
Tracking spread of the Agulhas Leakage into the western South Atlantic and its northward transmission during the Last Interglacial, Paleoceanography and Paleoclimatology, 34, 1744–1760, 2019.
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.:
Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, https://doi.org/10.1038/nature14330, 2015.
Barker, S., Knorr, G., Conn, S., Lordsmith, S., Newman, D., and Thornalley, D.:
Early interglacial legacy of deglacial climate instability, Paleoceanography and Paleoclimatology, 34, 1455–1475, 2019.
Barrows, T. T. and Juggins, S.:
Sea-surface temperatures around the Australian margin and Indian Ocean during the Last Glacial Maximum, Quaternary Sci. Rev., 24, 1017–1047, 2005.
Bassinot, F. C., Labeyrie, L. D., Vinvent, E., X., Q., Shackleton, N. J., and Lancelot, Y.:
The astronomical theory of climate and the age of the Brunhes-Maztuyama magnetic reversal, Earth Planet. Sc. Lett., 126, 91–108, 1994.
Bassis, J. N., Petersen, S. V., and Mac Cathles, L.:
Heinrich events triggered by ocean forcing and modulated by isostatic adjustment, Nature, 542, 332–334, 2017.
Bauch, H. A., Erlenkeuser, H., Helmke, J. P., and Struck, U.:
A paleoclimatic evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic (Nordic seas), Glob. Planet. Change, 24, 27–39, 2000.
Baumann, K.-H., Lackschewitz, K. S., Mangerud, J., Spielhagen, R. F., Wolf-Welling, T. C., Henrich, R., and Kassens, H.:
Reflection of Scandinavian ice sheet fluctuations in Norwegian Sea sediments during the past 150,000 years, Quaternary Res., 43, 185–197, 1995.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.:
Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, 2015.
Berger, W. H. and Wefer, G.:
On the dynamics of the ice ages: Stage-11 paradox, mid-Brunhes climate shift, and 100-ky cycle, Geophysical Monograph-American Geophysical Union, 137, 41–60, 2003.
Bianchi, G. G. and McCave, I. N.:
Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland, Nature, 397, 515–517, 1999.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.:
A pervasive millenial-scale cycle in North Atlantic Holocene and Glacial climates, Science, 278, 1257–1266, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.:
Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, 2001.
Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S.:
The North Atlantic s 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger Cycles and the Little Ice Age, in: Mechanisms of global climate change at millennial time scales, edited by: Clark, P. U., Webb, R. S., and Keigwin, L. D., American Geophysical Union, Washington, DC, 1999.
Born, A. and Levermann, A.:
The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation, Geochem. Geophy. Geosy., 11, Q06011, https://doi.org/10.1029/2009GC003024, 2010.
Born, A., Nisancioglu, K. H., and Braconnot, P.:
Sea ice induced changes in ocean circulation during the Eemian, Clim. Dynam., 35, 1361–1371, 2010.
Born, A., Nisancioglu, K. H., and Risebrobakken, B.:
Late Eemian warming in the Nordic Seas as seen in proxy data and climate models, Paleoceanography, 26, PA2207, https://doi.org/10.1029/2010PA002027, 2011.
Brown, N. and Galbraith, E. D.: Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing, Clim. Past, 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016, 2016.
Caesar, L., McCarthy, G., Thornalley, D., Cahill, N., and Rahmstorf, S.:
Current Atlantic Meridional Overturning Circulation weakest in last millennium, Nat. Geosci., 2021. 1–3, 2021.
Came, R. E., Oppo, D. W., and McManus, J. F.: Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 ky, Geology, 35, 315–318, https://doi.org/10.1130/G23455A.1, 2007.
Channell, J. E., Hodell, D. A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J. S., Mazaud, A., and Röhl, U.:
A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP sites U1302–U1303, Orphan Knoll, Labrador Sea), Earth Planet. Sc. Lett., 317, 218–230, 2012.
CLIMAP Project Members: Planktic foraminifera counts in surface sediment samples, PANGAEA, https://doi.org/10.1594/PANGAEA.51927, 2009.
Curry, W. B. and Oppo, D. W.:
Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the last glacial cycle, Paleoceanography, 12, 1–14, 1997.
de Vernal, A. and Hillaire-Marcel, C.:
Natural Variability of Greenland Climate, Vegetation, and Ice Volume During the Past Million Years, Science, 320, 1622–1625, 2008.
Denton, G. H., Anderson, R. F., Toggweiler, J., Edwards, R., Schaefer, J., and Putnam, A.:
The last glacial termination, Science, 328, 1652–1656, 2010.
Dickson, A. J., Leng, M. J., and Maslin, M. A.: Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: implications for atmospheric CO2, Clim. Past, 4, 333–344, https://doi.org/10.5194/cp-4-333-2008, 2008.
Dickson, A. J., Beer, C. J., Dempsey, C., Maslin, M. A., Bendle, J. A., McClymont, E. L., and Pancost, R. D.:
Oceanic forcing of the Marine Isotope Stage 11 interglacial, Nat. Geosci., 2, 428–433, https://doi.org/10.1038/ngeo527, 2009.
Dickson, R. R. and Brown, J.:
The production of North Atlantic Deep Water: Sources, rates, and pathways, J. Geophysical Res., 99, 12319–312341, 1994.
Doherty, J. M. and Thibodeau, B.:
Cold water in a warm world: Investigating the origin of the Nordic seas' unique surface properties during MIS 11, Frontiers in Marine Science, 5, 251, https://doi.org/10.3389/fmars.2018.00251, 2018.
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard–Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas, Paleoceanography, 28, 491–502, 2013.
Drijfhout, S., Gleeson, E., Dijkstra, H. A., and Livina, V.:
Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation, P. Natl. Acad. Sci. USA, 110, 19713–19718, 2013.
Droxler, A. W., Poore, R. Z., and Burckle, L. H.:
Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, American Geophysical Union, Washington, DC, 2003.
Ellett, D. and Roberts, D.:
The overflow of Norwegian Sea deep water across the Wyville–Thomson Ridge, 20, 819–835, https://doi.org/10.1016/0011-7471(73)90004-1, 1973.
Ellet, D. J., Edwards, A., and Bowers, R.:
The hydrography of the Rockall Channel – an overview, P. Roy. Soc. Edinb., 88, 61–84, 1986.
Elliot, M., Labeyrie, L., and Duplessy, J.-C.:
Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka), Quaternary Sci. Rev., 21, 1153–1165, 2002.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and Morgan, V. I.:
Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 4115–4128, 1996.
Ferretti, P., Crowhurst, S. J., Naafs, B. D. A., and Barbante, C.:
The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability, Quaternary Sci. Rev., 108, 95–110, 2015.
Fronval, T. and Jansen, E.:
Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions, Paleoceanography, 12, 443–462, 1997.
Galaasen, E. V., Ninnemann, U. S., Kessler, A., Irvalý, N., Rosenthal, Y., Tjiputra, J., Bouttes, N., Roche, D. M., Kleiven, H. K. F., and Hodell, D. A.:
Interglacial instability of North Atlantic deep water ventilation, Science, 367, 1485–1489, 2020.
Galbraith, E. and de Lavergne, C.:
Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages, Clim. Dynam., 52, 653–679, 2019.
Ganopolski, A. and Rahmstorf, S.:
Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001.
Ganopolski, A., Winkelmann, R., and Schellnhuber, H. J.:
Critical insolation–CO2 relation for diagnosing past and future glacial inception, Nature, 529, 200–203, 2016.
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H., Schmieder, F., and Röhl, U.:
Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008.
Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J.-C., Jansen, E., Labeyrie, L., Landais, A., Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.: Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, 2012.
Grant, K., Rohling, E., Ramsey, C. B., Cheng, H., Edwards, R., Florindo, F., Heslop, D., Marra, F., Roberts, A., and Tamisiea, M. E.:
Sea-level variability over five glacial cycles, Nat. Commun., 5, 5076, https://doi.org/10.1038/ncomms6076, 2014.
Grossmann, I. and Klotzbach, P. J.:
A review of North Atlantic modes of natural variability and their driving mechanisms, J. Geophys. Res.-Atmos., 114, D24107, https://doi.org/10.1029/2009JD012728, 2009.
Hansen, B. and Østerhus, S.:
North atlantic–nordic seas exchanges, Prog. Oceanogr., 45, 109–208, 2000.
Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., and Rohling, E. J.:
Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages, Quaternary Sci. Rev., 24, 999–1016, 2005.
Heinz, D. C.:
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE T. Geosci. Remote, 39, 529–545, 2001.
Helmke, J. P. and Bauch, H. A.:
Comparison of glacial and interglacial conditions between the polar and subpolar North Atlantic region over the last five climatic cycles, Paleoceanography, 18, 1036, https://doi.org/10.1029/2002PA000794, 2003.
Henry, L., McManus, J., Curry, W., Roberts, N., Piotrowski, A., and Keigwin, L.:
North Atlantic ocean circulation and abrupt climate change during the last glaciation, Science, 353, 470–474, 2016.
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P. C., Margari, V., Channell, J. E., Kamenov, G., Maclachlan, S., and Rothwell, G.:
Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 ka, Paleoceanography, 28, 185–199, 2013.
Hodell, D. A., Channell, J. E., Curtis, J. H., Romero, O. E., and Röhl, U.: Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼ 640 ka)?, Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Hutson, W. H.:
The Agulhas Current during the late Pleistocene: Analysis of modern faunal analogs, Science, 207, 64–66, 1980.
Irvalý, N., Ninnemann, U. S., Kleiven, H. K. F., Galaasen, E. V., Morley, A., and Rosenthal, Y.:
Evidence for regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last interglacial, Quaternary Sci. Rev., 150, 184–199, 2016.
Irvalý, N., Galaasen, E. V., Ninnemann, U. S., Rosenthal, Y., Born, A., and Kleiven, H. K. F.:
A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene, P. Natl. Acad. Sci. USA, 117, 190–195, 2020.
Jansen, E., Fronval, T., Rack, F., and Channell, J. E.:
Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr, Paleoceanography and Paleoclimatology, 15, 709–721, 2000.
Jensen, M. F., Nisancioglu, K. H., and Spall, M. A.:
Large changes in sea ice triggered by small changes in Atlantic water temperature, J. Climate, 31, 4847–4863, 2018.
Johannessen, O. M., Muench, R. D., and Overland, J. E. (Eds.): The Polar Oceans and Their Role in Shaping the Global Environment, Am. Geophys. Union, https://doi.org/10.1029/GM085, 1994.
Johnson, C.:
Tracing Wyville Thomson Ridge overflow water in the Rockall trough, 2012, Aberdeen University, https://pureadmin.uhi.ac.uk/ws/portalfiles/portal/3062543/Clare_Johnson.pdf (last access: 29 April 2022), 2012.
Johnson, C., Sherwin, T., Cunningham, S., Dumont, E., Houpert, L., and Holliday, N. P.:
Transports and pathways of overflow water in the Rockall Trough, Deep-Sea Res. Pt. I, 122, 48–59, 2017.
Jones, E., Ewing, M., Ewing, J., and Eittreim, S.:
Influences of Norwegian Sea overflow water on sedimentation in the northern North Atlantic and Labrador Sea, J. Geophys. Res., 75, 1655–1680, 1970.
Jonkers, L., Barker, S., Hall, I. R., and Prins, M. A.:
Correcting for the influence of ice-rafted detritus on grain size-based paleocurrent speed estimates, Paleoceanography, 30, 1347–1357, 2015.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., and Chappellaz, J.:
Orbital and millennial Antarctic climate variability over the past 800,000 years, science, 317, 793–796, 2007.
Juggins, S.: Rioja: analysis of Quaternary science data, R package version (0.9-15.1), https://cran.r-project.org/package=rioja (last access: 29 April 2022), 2017.
Justino, F. B. and Machado, J. P.:
Climate feedbacks induced by the North Atlantic freshwater forcing in a coupled model of intermediate complexity, Revista Brasileira de Meteorologia, 25, 103–113, 2010.
Kandiano, E. S. and Bauch, H. A.:
Phase relationship and surface water mass change in the Northeast Atlantic during Marine Isotope Stage 11 (MIS 11), Quaternary Res., 68, 445–455, 2007.
Kandiano, E. S., Bauch, H. A., Fahl, K., Helmke, J. P., Röhl, U., Pérez-Folgado, M., and Cacho, I.:
The meridional temperature gradient in the eastern North Atlantic during MIS 11 and its link to the ocean–atmosphere system, Palaeogeogr. Palaeocl., 333, 24–39, 2012.
Kandiano, E. S., Meer, M. T., Bauch, H. A., Helmke, J., Damsté, J. S. S., and Schouten, S.:
A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean, Geophys. Res. Lett., 43, 10929–10937, https://doi.org/10.1002/2016GL070294, 2016.
Kandiano, E. S., Van Der Meer, M. T., Schouten, S., Fahl, K., Damsté, J. S. S., and Bauch, H. A.: Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11, Sci. Rep., 7, 46192, https://doi.org/10.1038/srep46192, 2017.
Kessler, A., Bouttes, N., Roche, D. M., Ninnemann, U. S., and Tjiputra, J.:
Dynamics of spontaneous (multi) centennial-scale variations of the Atlantic meridional overturning circulation strength during the last interglacial, Paleoceanography and Paleoclimatology, 35, e2020PA003913, https://doi.org/10.1029/2020PA003913, 2020.
Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., and Yeager, S.:
Stochastic atmospheric forcing as a cause of Greenland climate transitions, J. Climate, 28, 7741–7763, 2015.
Knudsen, M. F., Riisager, P., Jacobsen, B. H., Muscheler, R., Snowball, I., and Seidenkrantz, M.-S.:
Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be, Geophs. Res. Lett., 36, L16701, https://doi.org/10.1029/2009GL039439, 2009.
Kostov, Y., Johnson, H. L., and Marshall, D. P.:
AMOC sensitivity to surface buoyancy fluxes: the role of air-sea feedback mechanisms, Clim. Dynam., 53, 4521–4537, 2019.
Kucera, M.:
Chapter six planktonic foraminifera as tracers of past oceanic environments, Developments in Marine Geology, 1, 213–262, 2007.
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and Weinelt, M.:
Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO), Quaternary Sci. Rev., 24, 813–819, 2005a.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., and Cortijo, E.:
Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, 2005b.
Lean, J. L.:
Cycles and trends in solar irradiance and climate, WIREs Climate Change, 1, 111–122, 2010.
Lebreiro, S. M., Voelker, A. H., Vizcaino, A., Abrantes, F., Alt-Epping, U., Jung, S., Thouveny, N., and Gràcia, E.:
Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr), Quaternary Sci. Rev., 28, 3211–3223, 2009.
Li, C. and Born, A.:
Coupled atmosphere-ice-ocean dynamics in Dansgaard–Oeschger events, Quaternary Sci. Rev., 203, 1–20, 2019.
Lisiecki, L. E. and Raymo, M. E.:
A Pliocene-Pleistocene stack of 57 globally distributed benthic ä18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lockwood, M., Harrison, R. G., Woollings, T., and Solanki, S. K.:
Are cold winters in Europe associated with low solar activity?, Environmental Research Letters, 5, 024001, https://doi.org/10.1088/1748-9326/5/2/024001, 2010.
Lohmann, G., Rimbu, N., and Dima, M.:
Climate signature of solar irradiance variations: analysis of long-term instrumental, historical, and proxy data, Int. J. Climatol., 24, 1045–1056, 2004.
Lohmann, J. and Ditlevsen, P. D.:
Risk of tipping the overturning circulation due to increasing rates of ice melt, P. Natl. Acad. Sci. USA, 118, e2017989118, https://doi.org/10.1073/pnas.2017989118, 2021.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years, Nature, 453, 383–386, 2008.
Lynch-Stieglitz, J., Curry, W. B., Oppo, D. W., Ninneman, U. S., Charles, C. D., and Munson, J.:
Meridional overturning circulation in the South Atlantic at the last glacial maximum, Geochem. Geophy. Geosy., 7, Q10N03, https://doi.org/10.1029/2005GC001226, 2006.
Macfarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., Van Ommen, T., Smith, A., and Elkins, J.:
Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.:
Holocene climate variability, Quaternary Res., 62, 243–255, 2004.
Mcmanus, J., Oppo, D., Cullen, J., and Healey, S.:
Marine isotope stage 11 (MIS 11): analog for Holocene and future Climate?, in: Earth's climate and orbital eccentricity: the marine isotope stage 11 question, AGU, 137, 69–85, https://doi.org/10.1029/137GM06, 2003.
McManus, J. F., Oppo, D. W., and Cullen, J. L.:
A 0.5-million-year record of millennial-scale climate variability in the North Atlantic, Science, 283, 971–974, 1999.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.:
2.8 Million Years of Arctic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, 2012.
Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.:
An ice–climate oscillatory framework for Dansgaard–Oeschger cycles, Nature Reviews Earth & Environment, 1, 677–693, 2020.
Mokeddem, Z., McManus, J. F., and Oppo, D. W.:
Oceanographic dynamics and the end of the last interglacial in the subpolar North Atlantic, P. Natl. Acad. Sci. USA, 111, 11263–11268, 2014.
Morley, A., Rosenthal, Y., and deMenocal, P.:
Ocean-atmosphere climate shift during the mid-to-late Holocene transition, Earth Planet. Sc. Lett., 388, 18–26, 2014.
Moros, M., Endler, R., Lackschewitz, K. S., Wallrave-Adams, H.-J., Mienert, J., and Lemke, W.:
Pysical properties of Reykjanes Ridge sediments and their linkage to high-resolution Greenland Ice Sheet Project 2 ice-core data, Paleoceanography, 12, 687–695, 1997.
Moros, M., Andrews, J. T., Eberl, D. D., and Jansen, E.:
Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes, Paleoceanography, 21, PA2017, https://doi.org/10.1029/2005PA001214, 2006.
Mudelsee, M.:
Ramp function regression: a tool for quantifying climate transitions, Comput. Geosci., 26, 293–307, 2000.
Müller, U. C. and Pross, J.:
Lesson from the past: present insolation minimum holds potential for glacial inception, Quaternary Sci. Rev., 26, 3025–3029, 2007.
Muschitiello, F., D'Andrea, W. J., Schmittner, A., Heaton, T. J., Balascio, N. L., DeRoberts, N., Caffee, M. W., Woodruff, T. E., Welten, K. C., and Skinner, L. C.:
Deep-water circulation changes lead North Atlantic climate during deglaciation, Nat. Commun., 10, 1272, https://doi.org/10.1038/s41467-019-09237-3, 2019.
Nehrbass-Ahles, C., Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A., Schmidely, L., Silva, L., Teste, G., and Grilli, R.:
Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions, Science, 369, 1000–1005, 2020.
New, A. L. and Smythe-Wright, D.:
Aspects of the circulation in the Rockall Trough, Cont. Shelf Res., 21, 777–810, 2001.
Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo, R., Rufino, M., Lopes, C., Abrantes, F., and Goni, M. F. S.:
The complexity of millennial-scale variability in southwestern Europe during MIS 11, Quaternary Res., 86, 373–387, 2016.
Oppo, D. W. and Lehman, S. J.:
Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years, Paleoceanography, 10, 901–910, 1995.
Oppo, D. W., McManus, J. F., and Cullen, J. L.:
Abrupt climate events 500,000 to 340,000 years ago: evidence from subpolar North Atlantic sediments, Science, 279, 1335–1338, 1998.
Ottera, O. H., Bentsen, M., Drange, H., and Suo, L.:
External forcing as a metronome for Atlantic multidecadal variability, Nat. Geosci., 3, 688–694, 2010.
Paillard, D., Labeyrie, L., and Yiou, P.:
Macintosh program performs time-series analysis, Eos T. Am. Geophys. Un., 77, p. 379, 1996.
Past Interglacials Working Group of PAGES: Interglacials of the last 800 000 years, Rev. Geophys., 54, 162–219, https://doi.org/10.1002/2015RG000482, 2016.
Paterson, G. A. and Heslop, D.:
New methods for unmixing sediment grain size data, Geochem. Geophy. Geosy., 16, 4494–4506, 2015.
Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.:
Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water, Quaternary Sci. Rev., 129, 296–307, 2015.
Perner, K., Moros, M., Otterå, O. H., Blanz, T., Schneider, R. R., and Jansen, E.:
An oceanic perspective on Greenland's recent freshwater discharge since 1850, Sci. Rep., 9, 1–10, 2019.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.:
Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Pflaumann, U., Sarnthein, M., Chapman, M., d'Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., Kreveld, S. v., Vautravers, M., Vogelsang, E., and Weinelt, M.:
Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18, 1065, https://doi.org/10.1029/2002PA000774, 2003.
Poli, M., Thunell, R., and Rio, D.:
Millennial-scale changes in North Atlantic Deep Water circulation during marine isotope stages 11 and 12: Linkage to Antarctic climate, Geology, 28, 807–810, 2000.
Prell, W., Martin, A., Cullen, J., and Trend, M.:
The Brown University Foraminiferal Data Base (BFD), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.96900, 1999.
Prell, W. L.:
Stability of low-latitude sea-surface temperatures: an evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. Final report, Brown Univ., Providence, RI (USA), Dept. of Geological Sciences, 1985.
Prins, M. A., Bouwer, L. M., Beets, C. J., Troelstra, S. R., Weltje, G. J., Kruk, R. W., Kuijpers, A., and Vroon, P. Z.:
Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distribution, Geology, 30, 555–558, 2002.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., and Schaffernicht, E. J.:
Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480, 2015.
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., and Toucanne, S.:
An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages, Quaternary Sci. Rev., 111, 94–106, 2015.
Raymo, M. E., Oppo, D. W., Flower, B. P., Hodell, D. A., McManus, J. F., Venz, K. A., Kleiven, K. F., and McIntyre, K.:
Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene, Paleoceanography, 19, PA2008, https://doi.org/10.1029/2003PA000921, 2004.
R Core Team: A language and environment for statistical computing (version 3.5.1) [software], R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/index.html (last access: 29 April 2022), 2019.
Rind, D., Schmidt, G. A., Jonas, J., Miller, R., Nazarenko, L., Kelley, M., and Romanski, J.:
Multicentury instability of the Atlantic meridional circulation in rapid warming simulations with GISS ModelE2, J. Geophys. Res.-Atmos., 123, 6331–6355, 2018.
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K.:
A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas, Paleoceanography, 18, 1017, https://doi.org/10.1029/2002PA000764, 2003.
Riveiros, N. V., Waelbroeck, C., Skinner, L., Duplessy, J.-C., McManus, J. F., Kandiano, E. S., and Bauch, H. A.:
The “MIS 11 paradox” and ocean circulation: Role of millennial scale events, Earth Planet. Sc. Lett., 371, 258–268, 2013.
Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.:
MIS-11 duration key to disappearance of the Greenland ice sheet, Nat. Commun., 8, 16008, https://doi.org/10.1038/ncomms16008, 2017.
Robinson, S. G. and McCave, I. N.:
Orbital forcing of bottom-current enhanced sedimentation on Feni Drift, NE Atlantic, during the mid-Pleistocene, Paleoceanography, 9, 943–972, 1994.
Rodrigues, T., Voelker, A., Grimalt, J., Abrantes, F., and Naughton, F.:
Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability, Paleoceanography, 26, PA1204, https://doi.org/10.1029/2010PA001927, 2011.
Rothwell, R. G.: Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences, in: Micro-XRF studies of sediment cores, Springer, https://doi.org/10.1007/978-94-017-9849-5_1, 2015.
Sánchez-Goñi, M., Rodrigues, T., Hodell, D. A., Polanco-Martinez, J. M., Alonso-Garcia, M., Hernandez-Almeida, I., Desprat, S., and Ferretti, P.:
Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial, Earth Planet. Sc. Lett., 448, 81–93, 2016.
Santos, T. P., Franco, D. R., Barbosa, C. F., Belem, A. L., Dokken, T., and Albuquerque, A. L. S.:
Millennial-to centennial-scale changes in sea surface temperature in the tropical South Atlantic throughout the Holocene, Palaeogeogr. Palaeocl., 392, 1–8, 2013.
Schaefer, J. M., Finkel, R. C., Balco, G., Alley, R. B., Caffee, M. W., Briner, J. P., Young, N. E., Gow, A. J., and Schwartz, R.:
Greenland was nearly ice-free for extended periods during the Pleistocene, Nature, 540, 252–255, https://doi.org/10.1038/nature20146, 2016.
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., and Waple, A.:
Solar forcing of regional climate change during the Maunder Minimum, Science, 294, 2149–2151, 2001.
Siccha, M. and Kucera, M.:
ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples, Scientific data, 4, 1–12, 2017.
Sicre, M. A., Hall, I. R., Mignot, J., Khodri, M., Ezat, U., Truong, M. X., Eiríksson, J., and Knudsen, K. L.:
Sea surface temperature variability in the subpolar Atlantic over the last two millennia, Paleoceanography, 26, PA4218, https://doi.org/10.1029/2011PA002169, 2011.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W., Meinen, C. S., Baringer, M. O., Moat, B. I., and Duchez, A.:
Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Science, 10, 29–38, 2014.
Smilenova, A., Gula, J., Le Corre, M., Houpert, L., and Reecht, Y.:
A persistent deep anticyclonic vortex in the Rockall Trough sustained by anticyclonic vortices shed from the slope current and wintertime convection, J. Geophys. Res.-Oceans, 125, e2019JC015905, https://doi.org/10.1029/2019JC015905, 2020.
Solignac, S., Seidenkrantz, M.-S., Jessen, C., Kuijpers, A., Gunvald, A. K., and Olsen, J.:
Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts, Holocene, 21, 539–552, 2011.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Srokosz, M. and Bryden, H.:
Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises, Science, 348, 6241, https://doi.org/10.1126/science.1255575, 2015.
Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B. D. A.:
Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS 16–9), Paleoceanography, 24, PA2203, https://doi.org/10.1029/2008PA001639, 2009.
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., and Servonnat, J.:
Natural forcing of climate during the last millennium: fingerprint of solar variability, Clim. Dynam., 36, 1349–1364, https://doi.org/10.1007/s00382-010-0803-5, 2010.
Thibodeau, B., Bauch, H. A., and Pedersen, T. F.:
Stratification-induced variations in nutrient utilization in the Polar North Atlantic during past interglacials, Earth Planet. Sc. Lett., 457, 127–135, 2017.
Thornalley, D. J., Barker, S., Becker, J., Hall, I. R., and Knorr, G.:
Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions, Paleoceanography, 28, 253–262, 2013a.
Thornalley, D. J. R., Blaschek, M., Davies, F. J., Praetorius, S., Oppo, D. W., McManus, J. F., Hall, I. R., Kleiven, H., Renssen, H., and McCave, I. N.: Long-term variations in Iceland–Scotland overflow strength during the Holocene, Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, 2013b.
Thornalley, D. J., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., and Spooner, P. T.:
Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years, Nature, 556, 227–230, https://doi.org/10.1038/s41586-018-0007-4, 2018.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.:
Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic, Nature, 457, 711–714, 2009.
Tuenter, E., Weber, S., Hilgen, F., and Lourens, L.:
Sea-ice feedbacks on the climatic response to precession and obliquity forcing, Geophysical research letters, 32, L24704, https://doi.org/10.1029/2005GL024122, 2005.
Tzedakis, P. C., Wolff, E. W., Skinner, L. C., Brovkin, V., Hodell, D. A., McManus, J. F., and Raynaud, D.: Can we predict the duration of an interglacial?, Clim. Past, 8, 1473–1485, https://doi.org/10.5194/cp-8-1473-2012, 2012.
van Kreveld, S., Sarnthein, M., Erlenkeuser, H., Grootes, P., Jung, S., Nadeau, M. J., Pflaumann, U., and Voelker, A.:
Potential links between surging ice sheets, circulation changes, and the Dansgaard–Oeschger cycles in the Irminger Sea, 60–18 kyr, Paleoceanography, 15, 425–442, 2000.
Vettoretti, G. and Peltier, W. R.:
Interhemispheric air temperature phase relationships in the nonlinear Dansgaard–Oeschger oscillation, Geophys. Res. Lett., 42, 1180–1189, 2015.
Vogel, H., Meyer-Jacob, C., Melles, M., Brigham-Grette, J., Andreev, A. A., Wennrich, V., Tarasov, P. E., and Rosén, P.: Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia, Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, 2013.
Yin, Q. and Berger, A.:
Interglacial analogues of the Holocene and its natural near future, Quaternary Sci. Rev., 120, 28–46, 2015.
Yin, Q., Wu, Z., Berger, A., Goosse, H., and Hodell, D.:
Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials, Science, 373, 1035–1040, 2021.
Zhang, X., Barker, S., Knorr, G., Lohmann, G., Drysdale, R., Sun, Y., Hodell, D., and Chen, F.:
Direct astronomical influence on abrupt climate variability, Nat. Geosci., 14, 819–826, https://doi.org/10.1038/s41561-021-00846-6, 2021.
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic...