Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
University of Massachusetts Amherst, Amherst, MA, 01003, USA
now at: University at Buffalo, Buffalo, NY, 14260, USA
William C. Daniels
University of Massachusetts Amherst, Amherst, MA, 01003, USA
Isla S. Castañeda
University of Massachusetts Amherst, Amherst, MA, 01003, USA
Julie Brigham-Grette
University of Massachusetts Amherst, Amherst, MA, 01003, USA
Related authors
No articles found.
Lydie M. Dupont, Thibaut Caley, and Isla S. Castañeda
Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, https://doi.org/10.5194/cp-15-1083-2019, 2019
Short summary
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
Daniel R. Miller, M. Helen Habicht, Benjamin A. Keisling, Isla S. Castañeda, and Raymond S. Bradley
Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, https://doi.org/10.5194/cp-14-1653-2018, 2018
Short summary
Short summary
We measured biomarker production over a year in a small inland lake in the northeastern USA. Understanding biomarkers in the modern environment helps us improve reconstructions of past climate from lake sediment records. We use these results to interpret a 900-year decadally resolved temperature record from this lake. Our record highlights multi-decadal oscillations in temperature superimposed on a long-term cooling trend, providing novel insight into climate dynamics of the region.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Beth E. Caissie, Julie Brigham-Grette, Mea S. Cook, and Elena Colmenero-Hidalgo
Clim. Past, 12, 1739–1763, https://doi.org/10.5194/cp-12-1739-2016, https://doi.org/10.5194/cp-12-1739-2016, 2016
Short summary
Short summary
This paper presents the first millennial-scale reconstruction of Marine Isotope Stage (MIS) 11 (~400 ka) from the subarctic Pacific Ocean. We use diatoms, calcareous nannofossils, grain size, and carbon and nitrogen isotopes to examine changing productivity and sea ice. These change in sync with other regional and global records. Initially, MIS 11 is highly productive, due to increased upwelling. Sea ice declines gradually during this warm period, but is present throughout.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, https://doi.org/10.5194/cp-9-2459-2013, 2013
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
R. M. D'Anjou, J. H. Wei, I. S. Castañeda, J. Brigham-Grette, S. T. Petsch, and D. B. Finkelstein
Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, https://doi.org/10.5194/cp-9-567-2013, 2013
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
Can machine learning algorithms improve upon classical palaeoenvironmental reconstruction models?
Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa
Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments
Different facets of dry–wet patterns in south-western China over the past 27 000 years
The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity
The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-69, https://doi.org/10.5194/cp-2023-69, 2023
Revised manuscript accepted for CP
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model MEMLM for reconstructing palaeoenvironments from microfossil assemblages. The machine learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation but they can catastrophically fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Jacek Pawlak
Clim. Past, 17, 1051–1064, https://doi.org/10.5194/cp-17-1051-2021, https://doi.org/10.5194/cp-17-1051-2021, 2021
Short summary
Short summary
Presently, central Europe is under the influence of two types of climate, transitional and continental. The 60 ka long multiproxy speleothem dataset from Slovakia records the climate of the Last Interglacial cycle and its transition to the Last Glacial. The interpretation of stable isotopic composition and trace element content proxies helps to distinguish which factor had the strongest influence on the δ18O record shape: the local temperature, the humidity or the source effect.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
A. Zander and A. Hilgers
Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, https://doi.org/10.5194/cp-9-719-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
T. Kluge, H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spötl
Clim. Past, 9, 377–391, https://doi.org/10.5194/cp-9-377-2013, https://doi.org/10.5194/cp-9-377-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
A. Alexandre, J. Crespin, F. Sylvestre, C. Sonzogni, and D. W. Hilbert
Clim. Past, 8, 307–324, https://doi.org/10.5194/cp-8-307-2012, https://doi.org/10.5194/cp-8-307-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., and
Mörth, M.: Impacts of paleohydrological changes on n-alkane biomarker
compositions of a Holocene peat sequence in the eastern European Russian
Arctic, Org. Geochem., 42, 1065–1075, 2011.
Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R.
F., Molina-Kescher, M., and Pahnke, K.: Breakup of last glacial deep
stratification in the South Pacific, Science, 359, 900–904, 2018.
Berends, C. J., de Boer, B., and van de Wal, R. S. W.: Reconstructing the evolution of ice sheets, sea level, and atmospheric CO2 during the past 3.6 million years, Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, 2021.
Berger, A. and Loutre, M.-F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Billups, K., York, K., and Bradtmiller, L. I.: Water column stratification
in the Antarctic zone of the Southern Ocean during the mid-Pleistocene
climate transition, Paleoceanography and Paleoclimatology, 33, 432–442,
2018.
Bray, E. and Evans, E.: Distribution of n-paraffins as a clue to
recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, 1961.
Brigham-Grette, J., Melles, M., and Minyuk, P.: Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia,
J. Paleolimnol., 37, 1–16, 2007.
Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P.,
DeConto, R., Koenig, S., Nowaczyk, N., Wennrich, V., and Rosén, P.:
Pliocene warmth, polar amplification, and stepped Pleistocene cooling
recorded in NE Arctic Russia, Science, 340, 1421–1427, 2013.
Buckles, L. K., Weijers, J. W., Verschuren, D., and Damsté, J. S. S.:
Sources of core and intact branched tetraether membrane lipids in the
lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa, Geochim. Cosmochim. Ac., 140, 106–126, 2014.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179, 2013.
Castañeda, I. S. and Schouten, S.: A review of molecular organic
proxies for examining modern and ancient lacustrine environments, Quaternary Sci. Rev., 30, 2851–2891, 2011.
Castañeda, I. S., Werne, J. P., Johnson, T. C., and Filley, T. R.: Late
Quaternary vegetation history of southeast Africa: the molecular isotopic
record from Lake Malawi, Palaeogeogr. Palaeocl., 275, 100–112, 2009.
Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition
by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, 1998.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin,
V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene
transition: characteristics, mechanisms, and implications for long-term
changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184,
2006.
Cohen, A. S., Stone, J. R., Beuning, K. R., Park, L. E., Reinthal, P. N.,
Dettman, D., Scholz, C. A., Johnson, T. C., King, J. W., and Talbot, M. R.:
Ecological consequences of early Late Pleistocene megadroughts in tropical
Africa, P. Natl. Acad. Sci. USA, 104, 16422–16427, 2007.
Cremer, H., Wagner, B., Juschus, O., and Melles, M.: A microscopical study
of diatom phytoplankton in deep crater Lake El'gygytgyn, Northeast Siberia,
Algological Studies, 116, 147–169, 2005.
Da, J., Zhang, Y. G., Li, G., Meng, X., and Ji, J.: Low CO2 levels of the entire Pleistocene epoch, Nat. Commun., 10, 1–9, 2019.
Dang, X., Ding, W., Yang, H., Pancost, R. D., Naafs, B. D. A., Xue, J., Lin, X., Lu, J., and Xie, S.: Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils, Org. Geochem., 119, 72–79, 2018.
Daniels, W. C., Russell, J. M., Giblin, A. E., Welker, J. M., Klein, E. S.,
and Huang, Y.: Hydrogen isotope fractionation in leaf waxes in the Alaskan
Arctic tundra, Geochim. Cosmochim. Ac., 213, 216–236, 2017.
Daniels, W. C., Castañeda, I. S., Salacup, J. M., Habicht, M. H., Lindberg, K. R., and Brigham-Grette, J.: Archaeal lipids reveal climate-driven changes in microbial ecology at Lake El'gygytgyn (Far East Russia) during the Plio-Pleistocene, J. Quaternary Sci., https://doi.org/10.1002/jqs.3347, 2021.
D'Anjou, R. M., Wei, J. H., Castañeda, I. S., Brigham-Grette, J., Petsch, S. T., and Finkelstein, D. B.: High-latitude environmental change during MIS 9 and 11: biogeochemical evidence from Lake El'gygytgyn, Far East Russia, Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, 2013.
Davy, R., Chen, L., and Hanna, E.: Arctic amplification metrics,
Int. J. Climatol., 38, 4384–4394, 2018.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
palaeoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112, 2014.
Detlef, H., Belt, S., Sosdian, S., Smik, L., Lear, C., Hall, I.,
Cabedo-Sanz, P., Husum, K., and Kender, S.: Sea ice dynamics across the
Mid-Pleistocene transition in the Bering Sea, Nat. Commun., 9, 1–11, 2018.
de Wet, G. A.: Arctic and North Atlantic paleo-environmental reconstructions from lake sediments, PhD thesis, University of Massachusetts, https://doi.org/10.7275/10552243.0, 2017.
de Wet, G. A., Castañeda, I. S., DeConto, R. M., and Brigham-Grette, J.: A high-resolution mid-Pleistocene temperature record from Arctic Lake
El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?, Earth Planet. Sc. Lett., 436, 56–63, https://doi.org/10.1016/j.epsl.2015.12.021, 2016.
Dipre, G. R., Polyak, L., Kuznetsov, A. B., Oti, E. A., Ortiz, J. D.,
Brachfeld, S. A., Xuan, C., Lazar, K. B., and Cook, A. E.: Plio-Pleistocene
sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma, arktos, 4, 1–23, 2018.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156,
1322–1335, 1967.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D., and Piotrowski, A. M.: Evolution of ocean temperature and ice
volume through the mid-Pleistocene climate transition, Science, 337,
704–709, 2012.
Feng, X., Zhao, C., D'Andrea, W. J., Liang, J., Zhou, A., and Shen, J.:
Temperature fluctuations during the Common Era in subtropical southwestern
China inferred from brGDGTs in a remote alpine lake, Earth Planet. Sc. Lett., 510, 26–36, 2019.
Ferretti, P., Crowhurst, S. J., Hall, M. A., and Cacho, I.: North Atlantic
millennial-scale climate variability 910 to 790 ka and the role of the
equatorial insolation forcing, Earth Planet. Sc. Lett., 293, 28–41, 2010.
Ford, H. L. and Raymo, M. E.: Regional and global signals in seawater
δ18O records across the mid-Pleistocene transition, Geology, 48, 113–117, 2020.
Francke, A., Wennrich, V., Sauerbrey, M., Juschus, O., Melles, M., and Brigham-Grette, J.: Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia, Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, 2013.
Gagosian, R. B. and Peltzer, E. T.: The importance of atmospheric input of
terrestrial organic material to deep sea sediments, Org. Geochem., 10, 661–669, 1986.
Gray, W. R., Rae, J. W., Wills, R. C., Shevenell, A. E., Taylor, B., Burke,
A., Foster, G. L., and Lear, C. H.: Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean, Nat. Geosci., 11, 340–344, 2018.
Haltia, E. M. and Nowaczyk, N. R.: Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic, Clim. Past, 10, 623–642, https://doi.org/10.5194/cp-10-623-2014, 2014.
Hammer, Ø., Harper, D. A., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, 9 pp., 2001.
Han, W., Fang, X., and Berger, A.: Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record, Quaternary Res., 78, 174–184, 2012.
Haneda, Y., Okada, M., Kubota, Y., and Suganuma, Y.: Millennial-scale
hydrographic changes in the northwestern Pacific during marine isotope stage 19: teleconnections with ice melt in the North Atlantic, Earth Planet. Sc. Lett., 531, 115936, https://doi.org/10.1016/j.epsl.2019.115936, 2020.
Hasenfratz, A. P., Jaccard, S. L., Martínez-García, A., Sigman, D. M., Hodell, D. A., Vance, D., Bernasconi, S. M., Kleiven, H. K. F., Haumann, F. A., and Haug, G. H.: The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle, Science, 363, 1080–1084, 2019.
Head, M. J. and Gibbard, P. L.: Early–Middle Pleistocene transitions:
linking terrestrial and marine realms, Quatern. Int., 389, 7–46, 2015.
Heslop, D., Dekkers, M., and Langereis, C.: Timing and structure of the
mid-Pleistocene transition: records from the loess deposits of northern
China, Palaeogeogr. Palaeocl., 185, 133–143, 2002.
Holland, A. R., Petsch, S. T., Castañeda, I. S., Wilkie, K. M., Burns, S. J., and Brigham-Grette, J.: A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3, Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, 2013.
Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J.
F.: Atmospheric carbon dioxide concentration across the mid-Pleistocene
transition, Science, 324, 1551–1554, 2009.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6, 2016.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Damsté, J.
S. S., and Schouten, S.: An improved method to determine the absolute
abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org. Geochem., 37, 1036–1041, 2006.
Huybers, P. and Wunsch, C.: Obliquity pacing of the late Pleistocene
glacial terminations, Nature, 434, 491–494, 2005.
Jian, Z., Wang, Y., Dang, H., Lea, D. W., Liu, Z., Jin, H., and Yin, Y.:
Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics, P. Natl. Acad. Sci. USA, 117, 7044–7051, 2020.
Just, J., Sagnotti, L., Nowaczyk, N. R., Francke, A., and Wagner, B.:
Recordings of fast paleomagnetic reversals in a 1.2 ma greigite-rich
sediment archive from lake ohrid, balkans, J. Geophys. Res.-Sol. Ea., 124, 12445–12464, 2019.
Kawamura, K., Ishimura, Y., and Yamazaki, K.: Four years' observations of
terrestrial lipid class compounds in marine aerosols from the western North
Pacific, Global Biogeochem. Cy., 17, 1003, https://doi.org/10.1029/2001GB001810, 2003.
Keisling, B. A., Castañeda, I. S., and Brigham-Grette, J.: Hydrological
and temperature change in Arctic Siberia during the intensification of
Northern Hemisphere Glaciation, Earth Planet. Sc. Lett., 457, 136–148, 2017.
Kender, S., Ravelo, A. C., Worne, S., Swann, G. E., Leng, M. J., Asahi, H.,
Becker, J., Detlef, H., Aiello, I. W., and Andreasen, D.: Closure of the
Bering Strait caused mid-Pleistocene transition cooling, Nat. Commun., 9, 1–11, 2018.
Kim, S., Takahashi, K., Khim, B.-K., Kanematsu, Y., Asahi, H., and Ravelo,
A. C.: Biogenic opal production changes during the Mid-Pleistocene
transition in the Bering Sea (IODP Expedition 323 Site U1343), Quaternary
Res., 81, 151–157, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and
Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, 2004.
Lattaud, J., Lo, L., Huang, J. J., Chou, Y. M., Gorbarenko, S. A., Sinninghe Damsté, J. S., and Schouten, S.: A Comparison of Late Quaternary Organic Proxy-Based Paleotemperature Records of the Central Sea of Okhotsk, Paleoceanography and Paleoclimatology, 33, 732–744, 2018.
Lattaud, J., Lo, L., Zeeden, C., Liu, Y.-J., Song, S.-R., Van Der Meer, M.
T., Damsté, J. S. S., and Schouten, S.: A multiproxy study of past
environmental changes in the Sea of Okhotsk during the last 1.5 Ma, Org. Geochem., 132, 50–61, 2019.
Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., and Haywood, A. M.: High-amplitude variations in North Atlantic sea surface temperature
during the early Pliocene warm period, Paleoceanography, 24, PA2218, https://doi.org/10.1029/2008PA001669, 2009.
Layer, P. W.: Argon-40/argon-39 age of the El'gygytgyn impact event,
Chukotka, Russia, Meteorit. Planet. Sci., 35, 591–599, 2000.
Li, B., Wang, J., Huang, B., Li, Q., Jian, Z., Zhao, Q., Su, X., and Wang,
P.: South China Sea surface water evolution over the last 12 Myr: A
south-north comparison from Ocean Drilling Program Sites 1143 and 1146,
Paleoceanography, 19, PA1009, https://doi.org/10.1029/2003PA000906, 2004.
Lindberg, K. R., Daniels, W. C., Castañeda, I. S., and Brigham-Grette, J.: NOAA/WDS Paleoclimatology – Lake El’gygytgyn, Russia Biomarker Data During the Mid-Pleistocene Transition, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/z73y-mx49, 2021.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, W. and Huang, Y.: Compound specific ratios and molecular
distributions of higher plant leaf waxes as novel paleoenvironmental
indicators in the Chinese Loess Plateau, Org. Geochem., 36, 851–860,
2005.
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, 1976.
Lozhkin, A. V. and Anderson, P. M.: Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic, Clim. Past, 9, 1211–1219, https://doi.org/10.5194/cp-9-1211-2013, 2013.
Maiorano, P., Marino, M., and Flores, J.-A.: The warm interglacial Marine
Isotope Stage 31: Evidences from the calcareous nannofossil assemblages at
Site 1090 (Southern Ocean), Mar. Micropaleontol., 71, 166–175, 2009.
Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde,
R., and Haug, G. H.: Subpolar link to the emergence of the modern equatorial Pacific cold tongue, Science, 328, 1550–1553, 2010.
Martínez-Sosa, P. and Tierney, J. E.: Lacustrine brGDGT response to
microcosm and mesocosm incubations, Org. Geochem., 127, 12–22, 2019.
Martínez-Sosa, P., Tierney, J. E., Stefanescu, I. C., Crampton-Flood, E. D., Shuman, B. N., and Routson, C.: A global Bayesian temperature calibration for lacustrine brGDGTs, Geochim. Cosmochim. Ac., 305, 87–105, 2021.
Maslin, M. A., and Ridgwell, A. J.: Mid-Pleistocene revolution and the ‘eccentricity myth’, Geological Society, London, Special Publications, 247, 19–34, 2005.
McClymont, E. L. and Rosell-Melé, A.: Links between the onset of modern
Walker circulation and the mid-Pleistocene climate transition, Geology, 33,
389–392, 2005.
McClymont, E. L., Rosell-Melé, A., Haug, G. H., and Lloyd, J. M.:
Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for mid-Pleistocene ice sheet growth, Paleoceanography, 23, PA4214, https://doi.org/10.1029/2008PA001622, 2008.
McClymont, E. L., Sosdian, S. M., Rosell-Melé, A., and Rosenthal, Y.:
Pleistocene sea-surface temperature evolution: Early cooling, delayed
glacial intensification, and implications for the mid-Pleistocene climate
transition, Earth-Sci. Rev., 123, 173–193, 2013.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich,
V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., and Cook,
T. L.: 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE
Russia, Science, 337, 315–320, 2012.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes,
Org. Geochem., 34, 261–289, 2003.
Miller, D. R., Habicht, M. H., Keisling, B. A., Castañeda, I. S., and Bradley, R. S.: A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs), Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, 2018.
Miller, G. H., Brigham-Grette, J., Alley, R., Anderson, L., Bauch, H. A.,
Douglas, M., Edwards, M., Elias, S., Finney, B., and Fitzpatrick, J. J.:
Temperature and precipitation history of the Arctic, Quaternary Sci.
Rev., 29, 1679–1715, 2010.
Müller, J., Romero, O., Cowan, E. A., McClymont, E. L., Forwick, M.,
Asahi, H., März, C., Moy, C. M., Suto, I., and Mix, A.: Cordilleran
ice-sheet growth fueled primary productivity in the Gulf of Alaska,
northeast Pacific Ocean, Geology, 46, 307–310, 2018.
Niebauer, H. J.: Effects of El Nino-Southern Oscillation and North Pacific
weather patterns on interannual variability in the subarctic Bering Sea,
J. Geophys. Res., 93, 5051–5068, 1988.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and
meteorology of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, 2007.
Nolan, M., Cassano, E. N., and Cassano, J. J.: Synoptic climatology and recent climate trends at Lake El'gygytgyn, Clim. Past, 9, 1271–1286, https://doi.org/10.5194/cp-9-1271-2013, 2013.
Nowaczyk, N. R., Haltia, E. M., Ulbricht, D., Wennrich, V., Sauerbrey, M. A., Rosén, P., Vogel, H., Francke, A., Meyer-Jacob, C., Andreev, A. A., and Lozhkin, A. V.: Chronology of Lake El'gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses, Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, 2013.
O'Connor, K. F., Berke, M. A., and Ziolkowski, L. A.: Hydrogen isotope
fractionation in modern plants along a boreal-tundra transect in Alaska,
Org. Geochem., 147, 104064, https://doi.org/10.1016/j.orggeochem.2020.104064, 2020.
Paillard, D.: The timing of Pleistocene glaciations from a simple
multiple-state climate model, Nature, 391, 378–381, 1998.
Past Interglacial Working Group of PAGES: Interglacials of the last 800,000
years, Rev. Geophys., 54, 162–219, 2016.
Pearson, E. J., Juggins, S., Talbot, H. M., Weckström, J., Rosén,
P., Ryves, D. B., Roberts, S. J., and Schmidt, R.: A lacustrine
GDGT-temperature calibration from the Scandinavian Arctic to Antarctic:
Renewed potential for the application of GDGT-paleothermometry in lakes,
Geochim. Cosmochim. Ac., 75, 6225–6238, 2011.
Peltzer, E.: Organic geochemistry of aerosols over the Pacific Ocean,
Chemical Oceanography, 10, 281–338, 1989.
Pena, L. D. and Goldstein, S. L.: Thermohaline circulation crisis and
impacts during the mid-Pleistocene transition, Science, 345, 318–322, 2014.
Peterse, F., Vonk, J. E., Holmes, R. M., Giosan, L., Zimov, N., and
Eglinton, T. I.: Branched glycerol dialkyl glycerol tetraethers in Arctic
lake sediments: Sources and implications for paleothermometry at high
latitudes, J. Geophys. Res.-Biogeo., 119, 1738–1754, 2014.
Poirier, R. K. and Billups, K.: The intensification of northern component
deepwater formation during the mid-Pleistocene climate transition,
Paleoceanography, 29, 1046–1061, 2014.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–332,
2009.
Poynter, J., Farrimond, P., Robinson, N., and Eglinton, G.: Aeolian-derived
higher plant lipids in the marine sedimentary record: Links with
palaeoclimate, in: Paleoclimatology and paleometeorology: modern and past
patterns of global atmospheric transport, Springer, 435–462, https://doi.org/10.1007/978-94-009-0995-3_18, 1989.
Prokopenko, A. A., Hinnov, L. A., Williams, D. F., and Kuzmin, M. I.:
Orbital forcing of continental climate during the Pleistocene: a complete
astronomically tuned climatic record from Lake Baikal, SE Siberia,
Quaternary Sci. Rev., 25, 3431–3457, 2006.
Raberg, J. H., Harning, D. J., Crump, S. E., de Wet, G., Blumm, A., Kopf, S., Geirsdóttir, Á., Miller, G. H., and Sepúlveda, J.: Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments, Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, 2021.
Raymo, M.: The timing of major climate terminations, Paleoceanography, 12,
577–585, 1997.
Rodríguez-Sanz, L., Mortyn, P. G., Martínez-Garcia, A.,
Rosell-Melé, A., and Hall, I. R.: Glacial Southern Ocean freshening at
the onset of the middle Pleistocene climate transition, Earth Planet. Sc. Lett., 345, 194–202, 2012.
Rommerskirchen, F., Eglinton, G., Dupont, L., Güntner, U., Wenzel, C.,
and Rullkötter, J.: A north to south transect of Holocene southeast
Atlantic continental margin sediments: Relationship between aerosol
transport and compound-specific δ13C land plant biomarker and pollen records, Geochem. Geophy. Geosy., 4, 1101, https://doi.org/10.1029/2003GC000541, 2003.
Roy, M., Clark, P. U., Raisbeck, G. M., and Yiou, F.: Geochemical
constraints on the regolith hypothesis for the middle Pleistocene
transition, Earth Planet. Sc. Lett., 227, 281–296, 2004.
Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J., and Sinninghe
Damsté, J. S.: Distributions of 5-and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations, Org. Geochem., 117, 56–69, 2018.
Saltzman, B. and Verbitsky, M. Y.: Multiple instabilities and modes of
glacial rhythmicity in the Plio-Pleistocene: a general theory of late
Cenozoic climatic change, Clim. Dynam., 9, 1–15, 1993.
Scargle, J. D.: Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835–853, 1982.
Schefuß, E., Ratmeyer, V., Stuut, J.-B. W., Jansen, J. F., and
Damsté, J. S. S.: Carbon isotope analyses of n-alkanes in dust from the
lower atmosphere over the central eastern Atlantic, Geochim. Cosmochim. Ac., 67, 1757–1767, 2003.
Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A.,
Overpeck, J. T., Talbot, M. R., Brown, E. T., Kalindekafe, L., and Amoako,
P. Y.: East African megadroughts between 135 and 75 thousand years ago and
bearing on early-modern human origins, P. Natl. Acad. Sci. USA, 104, 16416–16421, 2007.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damste, J. S.:
Distributional variations in marine crenarchaeotal membrane lipids: a new
tool for reconstructing ancient sea water temperatures?, Earth Planet.
Sc. Lett., 204, 265–274, 2002.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly
from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Shanahan, T. M., Hughen, K. A., and Van Mooy, B. A.: Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes, Org. Geochem., 64, 119–128, 2013.
Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S.,
and Geenevasen, J. A.: Newly discovered non-isoprenoid glycerol dialkyl
glycerol tetraether lipids in sediments, Chem. Commun., 1683–1684, 2000.
Sosdian, S. and Rosenthal, Y.: Deep-sea temperature and ice volume changes
across the Pliocene-Pleistocene climate transitions, Science, 325, 306–310,
2009.
Stroynowski, Z., Abrantes, F., and Bruno, E.: The response of the Bering Sea gateway during the mid-pleistocene transition, Palaeogeogr. Palaeocl., 485, 974–985, 2017.
Sun, Q., Chu, G., Liu, M., Xie, M., Li, S., Ling, Y., Wang, X., Shi, L.,
Jia, G., and Lü, H.: Distributions and temperature dependence of
branched glycerol dialkyl glycerol tetraethers in recent lacustrine
sediments from China and Nepal, J. Geophys. Res., 116, G01008, https://doi.org/10.1029/2010JG001365, 2011.
Teitler, L., Florindo, F., Warnke, D. A., Filippelli, G. M., Kupp, G., and
Taylor, B.: Antarctic Ice Sheet response to a long warm interval across
Marine Isotope Stage 31: A cross-latitudinal study of iceberg-rafted debris, Earth Planet. Sc. Lett., 409, 109–119, 2015.
Thomas, E. K., Castañeda, I., McKay, N., Briner, J., Salacup, J.,
Nguyen, K., and Schweinsberg, A.: A wetter Arctic coincident with
hemispheric warming 8,000 years ago, Geophys. Res. Lett., 45,
10637–10647, 2018.
Tulenko, J. P., Lofverstrom, M., and Briner, J. P.: Ice sheet influence on
atmospheric circulation explains the patterns of Pleistocene alpine glacier
records in North America, Earth Planet. Sc. Lett., 534, 116115, https://doi.org/10.1016/j.epsl.2020.116115, 2020.
Verschuren, D., Damsté, J. S. S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M., and Haug, G. H.: Half-precessional dynamics of monsoon rainfall near the East African Equator, Nature, 462, 637–641, 2009.
Wagner, B., Wilke, T., Krastel, S., Zanchetta, G., Sulpizio, R., Reicherter, K., Leng, M. J., Grazhdani, A., Trajanovski, S., and Francke, A.: The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid, Scientific Drilling, 17, 19–29, 2014.
Wara, M., Ravelo, A., and Delaney, M.: Reconstruction of eastern and western tropical Pacific sea surface temperatures and oxygen isotopic composition of surface seawater, 5 Ma to present, AGU Fall Meeting Abstracts, 2002, PP62A-0330, 2002.
Wei, J. H., Finkelstein, D. B., Brigham-Grette, J., Castañeda, I. S.,
and Nowaczyk, N.: Sediment colour reflectance spectroscopy as a proxy for
wet/dry cycles at Lake El'gygytgyn, Far East Russia, during Marine Isotope
Stages 8 to 12, Sedimentology, 61, 1793–1811, 2014.
Weijers, J. W., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71,
703–713, 2007.
Wennrich, V., Francke, A., Dehnert, A., Juschus, O., Leipe, T., Vogt, C., Brigham-Grette, J., Minyuk, P. S., Melles, M., and El'gygytgyn Science Party: Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples, Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, 2013.
Wennrich, V., Minyuk, P. S., Borkhodoev, V., Francke, A., Ritter, B., Nowaczyk, N. R., Sauerbrey, M. A., Brigham-Grette, J., and Melles, M.: Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data, Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, 2014.
Wennrich, V., Andreev, A. A., Tarasov, P. E., Fedorov, G., Zhao, W.,
Gebhardt, C. A., Meyer-Jacob, C., Snyder, J. A., Nowaczyk, N. R., and
Schwamborn, G.: Impact processes, permafrost dynamics, and climate and
environmental variability in the terrestrial Arctic as inferred from the
unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia–A review,
Quaternary Sci. Rev., 147, 221–244, 2016.
Wilkie, K. M. K., Chapligin, B., Meyer, H., Burns, S., Petsch, S., and Brigham-Grette, J.: Modern isotope hydrology and controls on δD of plant leaf waxes at Lake El'gygytgyn, NE Russia, Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, 2013.
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO2 and regolith
removal, Science Advances, 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337, 2019.
Worne, S., Kender, S., Swann, G. E., Leng, M. J., and Ravelo, A. C.: Reduced upwelling of nutrient and carbon-rich water in the subarctic Pacific during the Mid-Pleistocene Transition, Palaeogeogr. Palaeocl., 555, 109845, https://doi.org/10.1016/j.palaeo.2020.109845, 2020.
Worne, S., Stroynowski, Z., Kender, S., and Swann, G. E.: Sea-ice response
to climate change in the Bering Sea during the Mid-Pleistocene Transition,
Quaternary Sci. Rev., 259, 106918, https://doi.org/10.1016/j.quascirev.2021.106918, 2021.
Wu, F., Fang, X., and Miao, Y.: Aridification history of the West Kunlun
Mountains since the mid-Pleistocene based on sporopollen and microcharcoal
records, Palaeogeogr. Palaeocl., 547, 109680, https://doi.org/10.1016/j.palaeo.2020.109680, 2020.
Yehudai, M., Kim, J., Pena, L. D., Jaume-Seguí, M., Knudson, K. P.,
Bolge, L., Malinverno, A., Bickert, T., and Goldstein, S. L.: Evidence for a Northern Hemispheric trigger of the 100,000-y glacial cyclicity, P. Natl. Acad. Sci. USA, 118, e2020260118, https://doi.org/10.1073/pnas.2020260118, 2021.
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., and Huang, C.-Y.: Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr, Quaternary Sci. Rev., 25, 575–594,
2006.
Zhao, B., Castañeda, I. S., Bradley, R. S., Salacup, J. M., Gregory, A., Daniels, W. C., and Schneider, T.: Development of an in situ branched GDGT calibration in Lake 578, southern Greenland, Org. Geochem., 152, 104168, https://doi.org/10.1016/j.orggeochem.2020.104168, 2021.
Zhao, W., Tarasov, P. E., Lozhkin, A. V., Anderson, P. M., Andreev, A. A.,
Korzun, J. A., Melles, M., Nedorubova, E. Y., and Wennrich, V.:
High-latitude vegetation and climate changes during the Mid-Pleistocene
Transition inferred from a palynological record from Lake El'gygytgyn, NE
Russian Arctic, Boreas, 47, 137–149, 2018.
Zhou, X., Yang, J., Wang, S., Xiao, G., Zhao, K., Zheng, Y., Shen, H., and
Li, X.: Vegetation change and evolutionary response of large mammal fauna
during the Mid-Pleistocene Transition in temperate northern East Asia,
Palaeogeogr. Palaeocl., 505, 287–294, 2018.
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates....