Articles | Volume 18, issue 9
https://doi.org/10.5194/cp-18-2077-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2077-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recession or resilience? Long-range socioeconomic consequences of the 17th century volcanic eruptions in northern Fennoscandia
Institute of History, University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Markus Stoffel
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
Christophe Corona
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
Geolab, Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
Related authors
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-69, https://doi.org/10.5194/cp-2024-69, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Public granaries served as key infrastructures to improve food security in agrarian societies. The granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE were used to identify years with bad and good grain harvests, which have been further confronted with documentary data and climatic reconstructions. Data used represent the new source of proxy data for historical-climatological research.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-69, https://doi.org/10.5194/cp-2024-69, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Public granaries served as key infrastructures to improve food security in agrarian societies. The granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE were used to identify years with bad and good grain harvests, which have been further confronted with documentary data and climatic reconstructions. Data used represent the new source of proxy data for historical-climatological research.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Virginia Ruiz-Villanueva, Alexandre Badoux, Dieter Rickenmann, Martin Böckli, Salome Schläfli, Nicolas Steeb, Markus Stoffel, and Christian Rickli
Earth Surf. Dynam., 6, 1115–1137, https://doi.org/10.5194/esurf-6-1115-2018, https://doi.org/10.5194/esurf-6-1115-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Christine Moos, Luuk Dorren, and Markus Stoffel
Nat. Hazards Earth Syst. Sci., 17, 291–304, https://doi.org/10.5194/nhess-17-291-2017, https://doi.org/10.5194/nhess-17-291-2017, 2017
Short summary
Short summary
The goal of this study was to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. This was done based on 3-D rockfall simulations for different forest and non-forest scenarios on a virtual slope. The rockfall frequency and intensity below forested slopes is significantly reduced. Statistical models provide information on how specific forest and terrain parameters influence this reduction and they allow prediction and quantification of the forest effect.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
M. Jochner, J. M. Turowski, A. Badoux, M. Stoffel, and C. Rickli
Earth Surf. Dynam., 3, 311–320, https://doi.org/10.5194/esurf-3-311-2015, https://doi.org/10.5194/esurf-3-311-2015, 2015
Short summary
Short summary
The export of coarse particulate organic matter (CPOM) from mountain catchments seems to be strongly linked to rising discharge, but the mechanism leading to this is unclear. We show that log jams in a steep headwater stream are an effective barrier for CPOM export. Exceptional discharge events play a dual role: First, they destroy existing jams, releasing stored material. Second, they intensify channel--hillslope coupling, thereby recruiting logs to the channel, around which new jams can form.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
Related subject area
Subject: Feedback and Forcing | Archive: Historical Records | Timescale: Holocene
Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea
A. Naderi Beni, H. Lahijani, R. Mousavi Harami, K. Arpe, S. A. G. Leroy, N. Marriner, M. Berberian, V. Andrieu-Ponel, M. Djamali, A. Mahboubi, and P. J. Reimer
Clim. Past, 9, 1645–1665, https://doi.org/10.5194/cp-9-1645-2013, https://doi.org/10.5194/cp-9-1645-2013, 2013
Cited articles
Auchmann, R., Brönnimann, S., Breda, L., Bühler, M., Spadin, R., and Stickler, A.: Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland, Clim. Past, 8, 325–335, https://doi.org/10.5194/cp-8-325-2012, 2012.
a
Bankoff, G.: Comparing vulnerabilities: toward charting an historical trajectory of disasters, Hist. Soc. Res., 32, 103–114, https://doi.org/10.12759/hsr.32.2007.3.103-114, 2007. a
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years, Nature, 393, 450–455, https://doi.org/10.1038/30943, 1998. a, b
Brönnimann, S. and Krämer, D.: Tambora and the “Year Without a Summer” of 1816. A Perspective on Earth and Human Systems Science, Geographica Bernensia, 90, 48 pp., https://doi.org/10.4480/GB2016.G90.01, 2016. a
Büntgen, U., Arseneault, D., Boucher, É., Churakova, O. V., Gennaretti, F., Crivellaro, A., Hughes, M. K., Kirdyanov, A. V., Klippel, L., Krusic, P. J.,
Linderholm, H. W., Ljungqvist, F. C., Ludescher, J., McCormick, M., Myglan, V. S., Nicolussi, K., Piermattei, A., Oppenheimer, C., Reinig, F., Sigl, M., Vaganov, E. A., and Esper, J.: Prominent role of volcanism in Common Era climate variability and human history, Dendrochronologia, 64, 125757, https://doi.org/10.1016/j.dendro.2020.125757, 2020. a
Campbell, B. M.: Global climates, the 1257 Mega-eruption of Samalas Volcano, Indonesia, and the English food crisis of 1258, T. Roy. Hist. Soc., 27, 87–121, https://doi.org/10.1017/S0080440117000056, 2017. a
Cole-Dai, J.: Volcanoes and climate, WIREs Clim Change, 1, 824–839, https://doi.org/10.1002/wcc.76, 2010. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An ensemble version of the E-OBS temperature and precipitation data sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018 (data available at: https://www.ecad.eu/download/ensembles/download.php, last access: 29 August 2022). a, b
Curtis, D. R. and Dijkman, J.: The escape from famine in the Northern Netherlands: A reconsideration using the 1690s harvest failures and a broader Northwest European perspective, Seventeenth Cent., 34, 229–258, https://doi.org/10.1080/0268117X.2017.1410494, 2019. a
D'Arrigo, R., Wilson, R., and Anchukaitis, K. J.: Volcanic cooling signal in tree ring temperature records for the past millennium, J. Geophys. Res.-Atmos., 118, 9000–9010, https://doi.org/10.1002/jgrd.50692, 2013. a, b
D'Arrigo, R., Klinger, P., Newfield, T., Rydval, M., and Wilson, R.: Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to cope, J. Volcanol. Geoth. Res., 389, 106746, https://doi.org/10.1016/j.jvolgeores.2019.106746, 2020. a, b, c
Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegy, F., Cui, J., de Luna, K., Guzowski, P., Hambrecht, G., Huhtamaa, H., Izdebski, A., Kleemann, K., Moesswilde, E., Neupane, N., Newfield, T., Pei, Q., Xoplaki, E., and Zappia, N.: Towards a rigorous understanding of societal responses to climate change, Nature, 591, 539–550, https://doi.org/10.1038/s41586-021-03190-2, 2021. a, b, c
Demarée, G. R. and Ogilvie, A. E.: Bons Baisers d’Islande: Climatic, environmental, and human dimensions impacts of the Lakagígar eruption (1783–1784) in Iceland, in: History and Climate, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T. D., and Briffa, K. R., Springer, 219–246, https://doi.org/10.1007/978-1-4757-3365-5_11, 2001. a
Dijkman, J.: Bread for the poor: Poor relief and the mitigation of the food crises of the 1590s and the 1690s in Berkel, Holland, in: Famines During the 'Little Ice Age' (1300–1800), edited by: Collet, D. and Schuh, M., Springer, 171–193, https://doi.org/10.1007/978-3-319-54337-6_9, 2018. a
Esper, J., Büntgen, U., Timonen, M., and Frank, D. C.: Variability and extremes of northern Scandinavian summer temperatures over the past two millennia, Global Planet. Change, 88, 1–9, https://doi.org/10.1016/j.gloplacha.2012.01.006, 2012 (data available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: 29 August 2022). a, b
Esper, J., Schneider, L., Krusic, P. J., Luterbacher, J., Büntgen, U., Timonen, M., Sirocko, F., and Zorita, E.: European summer temperature response to annually dated volcanic eruptions over the past nine centuries, B. Volcanol., 75, 736, https://doi.org/10.1007/s00445-013-0736-z, 2013. a
Fei, J., Zhang, D. D., and Lee, H. F.: 1600 AD Huaynaputina eruption (Peru), abrupt cooling, and epidemics in China and Korea, Adv. Meteorol., 2016, 3217038, https://doi.org/10.1155/2016/3217038, 2016. a
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S., Casty, C., and Wanner, H.: European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992, 2007. a
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008. a
Grattan, J., Michnowicz, S., and Rabartin, R.: The long shadow: understanding the influence of the Laki fissure eruption on human mortality in Europe, in: Living under the shadow: cultural impacts of volcanic eruptions, edited by: Grattan, J. and Torrence, R., Routledge, 153–175, ISBN: 9781598742695, 2007. a
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P.,
Eckert, N., Sielenou, P. D., Daux, V., Churakova, O. V., Davi, N., Edouard, J.-L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J., Beniston, M., Masson-Delmotte, V., and Oppenheimer, C.: Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records, Nat. Geosci., 10, 123–128, https://doi.org/10.1038/ngeo2875, 2017. a
Guillet, S., Corona, C., Ludlow, F., Oppenheimer, C., and Stoffel, M.: Climatic and societal impacts of a “forgotten” cluster of volcanic eruptions in 1108–1110 CE, Scientific Reports, 10, 6715, https://doi.org/10.1038/s41598-020-63339-3, 2020. a
Haldon, J.: Cooling and societal change, Nat. Geosci., 9, 191–192, https://doi.org/10.1038/ngeo2659, 2016. a
Haldon, J., Eisenberg, M., Mordechai, L., Izdebski, A., and White, S.: Lessons from the past, policies for the future: resilience and sustainability in past crises, Environ. Syst. Decis., 40, 287–297, https://doi.org/10.1007/s10669-020-09778-9, 2020. a
Hallenberg, M., Holm, J., and Johansson, D.: Organization, legitimation, participation: State formation as a dynamic process – The Swedish example, c. 1523–1680, Scand. J. Hist., 33, 247–268, https://doi.org/10.1080/03468750802150242, 2008. a, b
Helama, S. and Holopainen, J.: Spring temperature variability relative to the North Atlantic Oscillation and sunspots – a correlation analysis with a Monte Carlo implementation, Palaeogeogr. Palaeocl., 326, 128–134, https://doi.org/10.1016/j.palaeo.2012.02.013, 2012. a
Helama, S., Melvin, T. M., and Briffa, K. R.: Regional curve standardization: State of the art, The Holocene, 27, 172–177, https://doi.org/10.1177/0959683616652709, 2017. a
Huhtamaa, H.: Combining written and tree-ring evidence to trace past food crises: A case study from Finland, in: Famines During the “Little Ice Age” (1300–1800), edited by: Collet, D. and Maximilian, S., Springer, 43–66, https://doi.org/10.1007/978-3-319-54337-6_3, 2018a. a, b, c
Huhtamaa, H.: “Kewät kolkko, talwi tuima” – Ilmasto, sää ja sadot nälkävuosien taustalla, in: Nälkävuodet 1867–1868, edited by: Jussila, T. and Rantanen, L., Suomalaisen Kirjallisuuden Seura,
33–65, ISBN: 9789518580150, 2018b. a
Huhtamaa, H. and Helama, S.: Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland, J. Hist. Geogr., 57, 40–51, https://doi.org/10.1016/j.jhg.2017.05.011, 2017. a, b
Huhtamaa, H. and Ljungqvist, F. C.: Climate in Nordic historical research – a research review and future perspectives, Scand. J. Hist., 46, 665–695, https://doi.org/10.1080/03468755.2021.1929455, 2021. a
Huhtamaa, H., Helama, S., Leijonhufvud, L., and Ljungqvist, F. C.: Combining the archives of nature and society: Tree rings and tithes, PAGES Magazine, 28, 20–21, https://doi.org/10.22498/pages.28.2.50, 2020. a
Jespersen, K. J. V.: Social consequences, in: The Cambridge History of Scandinavia: Volume 2, 1520–1870, edited by: Kouri, E. I. and Olesen, J. E., Cambridge University Press, 192–210, https://doi.org/10.1017/CHO9781139031639.013, 2016. a
Johanson, V. F.: Finlands agrarpolitiska historia: en skildring av det finländska lantbrukets ekonomiska betingelser. Från 1600-talet till år 1870, Suomen Maataloustieteellinen Seura, 1924 (in Swedish). a
Jones, P., Moberg, A., Osborn, T., and Briffa, K.: Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere, in: Volcanism and the Earth's Atmosphere, edited by: Robock, A. and Oppenheimer,
C., American Geophysical Union, Geoph. Monog. Series, 139, 239–254, https://doi.org/10.1029/139GM15, 2003. a
Kajander, J.: Methodological aspects on river cryophenology exemplified by a tricentennial break-up time series from Tornio, Geophysica, 29, 73–95, 1993. a
Katajala, K.: Suomalainen kapina: Talonpoikaislevottomuudet ja poliittisen kulttuurin muutos Ruotsin ajalla (n. 1150–1800), Suomalaisen Kirjallisuuden Seura, ISBN: 9517463065, 2002 (in Finnish). a
Kirchhefer, A. J.: Reconstruction of summer temperatures from tree-rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway, The Holocene, 11, 41–52, https://doi.org/10.1191/095968301670181592, 2001 (data available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: 29 August 2022). a, b
Kostick, C. and Ludlow, F.: Medieval History, Explosive Volcanism, and the Geoengineering Debate, in: Making the Medieval Relevant, edited by: Jones, C., Kostick, C., and Oschema, K., De Gruyter, Berlin, 45–98, https://doi.org/10.1515/9783110546316-003, 2020. a
Lappalainen, J. T.: Valtiopäiviltä väenottopaikalle. Suomen jalkaväen rekrytointi 1638–1649, Tiede ja ase, 45, 62–84, 1987 (in Finnish). a
Le Roy Ladurie, E. and Goy, J.: Tithe and Agrarian History from the Fourteenth to the Nineteenth Century: An Essay in Comparative History, Cambridge University Press, ISBN: 0521239745, 1982. a
Leijonhufvud, L.: Grain tithes and manorial yields in early modern Sweden, PhD thesis, Swedish University of Agricultural Sciences, ISBN: 9157658293, 2001. a
Ljungqvist, F. C., Seim, A., and Huhtamaa, H.: Climate and society in European history, WIREs Clim Change, 12, e691, https://doi.org/10.1002/wcc.691, 2021. a
Luterbacher, J. and Pfister, C.: The year without a summer, Nat. Geosci., 8, 246–248, https://doi.org/10.1038/ngeo2404, 2015. a, b
Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H.: Reconstruction of monthly NAO and EU indices back to AD 1675, Geophys. Res. Lett., 26, 2745–2748, https://doi.org/10.1029/1999GL900576, 1999. a
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P., Davies, T., Portis, D., Gonzalez-Rouco, J., Von Storch, H., Gyalistras, D., Casty, C., and Wanner, H.: Extending North Atlantic oscillation reconstructions back to 1500, Atmos. Sci. Lett., 2, 114–124, https://doi.org/10.1006/asle.2002.0047, 2001. a
Mäkelä-Alitalo, A.: Verotus, autioituminen ja väenotot, in: Suomen maatalouden historia 1, edited by: Rasila, V., Jutikkala, E., and Mäkelä-Alitalo, A., Suomalaisen Kirjallisuuden Seura, 183–206, ISBN: 9517464800, 2003 (in Finnish). a
Melvin, T. M., Grudd, H., and Briffa, K. R.: Potential bias in 'updating' tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data, The Holocene, 23, 364–373, https://doi.org/10.1177/0959683612460791, 2013 (data available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: 29 August 2022). a, b
Myrdal, J.: Food, war, and crisis: The seventeenth century Swedish empire, in: Rethinking Environmental History, edited by: Hornborg, A., McNeill, J. R., and Martinez-Alier, J., AltaMira Press Lanham, MD, 79–98, ISBN: 9780759110281, 2007. a
Olsson, M. and Svensson, P.: Agricultural growth and institutions: Sweden, 1700–1860, Eur. Rev. Econ. Hist., 14, 275–304, https://doi.org/10.1017/S1361491610000067, 2010. a
Oppenheimer, C.: Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815, Prog. Phys. Geog., 27, 230–259, https://doi.org/10.1191/0309133303pp379ra, 2003. a
Oppenheimer, C.: Eruption politics, Nat. Geosci, 8, 244–245, https://doi.org/10.1038/ngeo2408, 2015. a, b
Riede, F.: Volcanic activity and human society, Quatern. Int., 394, 1–5, https://doi.org/10.1016/j.quaint.2015.08.090, 2016. a
Riede, F.: Past-forwarding ancient calamities. Pathways for making archaeology relevant in disaster risk reduction research, Humanities, 6, 79, https://doi.org/10.3390/h6040079, 2017. a
Riede, F.: Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets, Quatern. Int., 499, 266–277, https://doi.org/10.1016/j.quaint.2018.01.027, 2019. a, b
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000. a, b
Robock, A. and Free, M. P.: Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res., 100, 11549–11567, https://doi.org/10.1029/95JD00825, 1995. a
Robock, A. and Mao, J.: The volcanic signal in surface temperature observations, J. Climate, 8, 1086–1103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2, 1995. a, b
Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L., and Kaufman, D. S.: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model, J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008JD011222, 2009. a
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V. S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer temperatures back to AD 600 based on a wood density network, Geophys. Res. Lett., 42, 4556–4562, https://doi.org/10.1002/2015GL063956, 2015 (data available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: 29 August 2022). a, b
Schweingruber, F. H., Bartholin, T., Schaur, E., and Briffa, K. R.: Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland), Boreas, 17, 559–566, https://doi.org/10.1111/j.1502-3885.1988.tb00569.x, 1988 (data available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: 29 August 2022). a, b
Seppel, M.: Feeding the motherland: grain exports from the Swedish Baltic provinces during the Great Famine of 1696–1697, Scandinavian Economic History Review, 63, 215–234, https://doi.org/10.1080/03585522.2015.1081855, 2015. a
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for the past 2,500 years, Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015. a, b, c, d
Soens, T.: Resilient societies, vulnerable people: coping with North Sea floods before 1800, Past Present, 241, 143–177, https://doi.org/10.1093/pastj/gty018, 2018. a
Solantie, R.: Ilmasto ja sen määräämät luonnonolot Suomen asutuksen ja maatalouden historiassa, PhD thesis, University of Jyväskylä, ISBN: 9789513950095, 2012 (in Finnish). a
Solar, P. M.: Poor relief and English economic development before the industrial revolution, Econ. Hist. Rev., 48, 1–22, https://doi.org/10.2307/2597868, 1995. a
Sonderegger, S.: Active Manorial Lords and Peasant Farmers in the Economic Life of the Late Middle Ages: Results from New Swiss and German Research, in: Peasants, Lords, and State: Comparing Peasant Conditions in Scandinavia and the Eastern Alpine Region, 1000–1750, edited by: Ivarsen, T., Myknig, J. R., and Sonderegger, S., Brill, 292–318, https://doi.org/10.1163/9789004433458_012, ISBN: 9789004429703, 2020. a
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526, 2015. a, b
Stoffel, M., Corona, C., Ludlow, F., Sigl, M., Huhtamaa, H., Garnier, E., Helama, S., Guillet, S., Crampsie, A., Kleemann, K., Camenisch, C., McConnell, J., and Gao, C.: Climatic, weather, and socio-economic conditions corresponding to the mid-17th-century eruption cluster, Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, 2022. a, b, c
Stothers, R. B.: Climatic and demographic consequences of the massive volcanic eruption of 1258, Clim. Change, 45, 361–374, https://doi.org/10.1023/A:1005523330643, 2000. a
Swingedouw, D., Mignot, J., Ortega, P., Khodri, M., Menegoz, M., Cassou, C., and Hanquiez, V.: Impact of explosive volcanic eruptions on the main climate variability modes, Global Planet. Change, 150, 24–45, https://doi.org/10.1016/j.gloplacha.2017.01.006, 2017. a
Teerijoki, I.: Nälkävuosien turva? Pitäjänmakasiinit Suomessa 1700-luvulla, Suomen historiallinen Seura, ISBN: 9518915776, 1993 (in Finnish). a
Timmreck, C.: Modeling the climatic effects of large explosive volcanic eruptions, WIREs Clim Change, 3, 545–564, https://doi.org/10.1002/wcc.192, 2012.
a
Tuomenvirta, H., Alexandersson, H., Drebs, A., Frich, P., and Nordli, P. O.: Trends in Nordic and Arctic temperature extremes and ranges, J. Climate, 13, 977–990, https://doi.org/10.1175/1520-0442(2000)013<0977:TINAAT>2.0.CO;2, 2000. a
Ulkuniemi, M. and Thomasson, L.: Ljungo Tuomaanpojan lainsuomennokset: Maanlain ja kaupunginlain teksti, Suomalaisen Kirjallisuuden Seura, ISBN: 9516830374, 1975 (in Finnish). a
van Bavel, B. and Rijpma, A.: How important were formalized charity and social spending before the rise of the welfare state? A long-run analysis of selected western E uropean cases, 1400–1850, Econ. Hist. Rev., 69, 159–187, https://doi.org/10.1111/ehr.12111, 2016. a
Venzke, E., Wunderman, R., McClelland, L., Simkin, T., Luhr, J., Siebert, L., Mayberry, G., and Sennert, S.: Global Volcanism Program, Volcanoes of the World, v. 4.9.1, Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013. a
Villstrand, N. E.: Adaptation or Protestation: Local Community Facing the Conscription of Infantry for the Swedish Armed Forces, 1620–1679, in: A Revolution from Above? The Power State of 16th and 17th Century Scandinavia, edited by: Jespersen, L., Odense University Press, 253–313, ISBN: 8778384079, 2000. a
Virrankoski, P.: Pohjois-Pohjanmaan ja Lapin historia: 3, Pohjois-Pohjanmaa ja Lappi 1600-luvulla, Pohjois-Pohjanmaan, Kainuun ja Lapin maakuntaliittojen yhteinen historiatoimikunta, 1973 (in Finnish). a
Voipio, V.: Katovuosi 1601 vaikutuksineen Varsinais-Suomessa, Hist. Arkist., 24, 1–37, 1914. a
Warde, P.: Global crisis or global coincidence?, Past Present, 228, 287–301, https://doi.org/10.1093/pastj/gtv028, 2015. a
White, S., Moreno-Chamarro, E., Zanchettin, D., Huhtamaa, H., Degroot, D., Stoffel, M., and Corona, C.: The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region, Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, 2022. a, b, c
Witham, C. S. and Oppenheimer, C.: Mortality in England during the 1783–4 Laki Craters eruption, B. Volcanol., 67, 15–26, https://doi.org/10.1007/s00445-004-0357-7, 2004. a
Zanchettin, D., Bothe, O., Graf, H. F., Lorenz, S. J., Luterbacher, J., Timmreck, C., and Jungclaus, J. H.: Background conditions influence the decadal climate response to strong volcanic eruptions, J. Geophys. Res.-Atmos., 118, 4090–4106, https://doi.org/10.1002/jgrd.50229, 2013a. a, b
Zanchettin, D., Timmreck, C., Bothe, O., Lorenz, S. J., Hegerl, G., Graf, H.-F., Luterbacher, J., and Jungclaus, J. H.: Delayed winter warming: A robust decadal response to strong tropical volcanic eruptions?, Geophys. Res. Lett., 40, 204–209, https://doi.org/10.1029/2012GL054403, 2013b. a
Co-editor-in-chief
Huhtamaa et al. assess the socioeconomic consequences of 17th century volcanic eruptions in Fennoscandia. They find that while all the eruptions led to poor grain harvest in the region through their climatic impact, the socioeconomic response varied. They suggest that the micro-regional socioeconomic system modulated the socioeconomic response to each eruption. Such a framework should be used to further our understanding of the impact of volcanic eruptions on societal crises.
Huhtamaa et al. assess the socioeconomic consequences of 17th century volcanic eruptions in...
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century...