Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode
Nicky M. Wright
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National
University, Canberra, ACT 2601, Australia
current address: School of Geosciences, University of Sydney, Sydney, NSW 2006, Australia
Claire E. Krause
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate System Science, Australian
National University, Canberra, ACT 2601, Australia
current address: Geoscience Australia, Canberra, ACT 2609, Australia
Steven J. Phipps
Ikigai Research, Sandy Bay, TAS 7006, Australia
Ghyslaine Boschat
Bureau of Meteorology and ARC Centre of Excellence for Climate
Extremes, Melbourne, VIC 3001, Australia
Nerilie J. Abram
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National
University, Canberra, ACT 2601, Australia
Related authors
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Laura Velasquez-Jimenez and Nerilie J. Abram
Clim. Past, 20, 1125–1139, https://doi.org/10.5194/cp-20-1125-2024, https://doi.org/10.5194/cp-20-1125-2024, 2024
Short summary
Short summary
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate the effects of calculation method and data used to calculate the SAM index and how it influences the relationship between the SAM and climate. We propose a method to calculate a natural SAM index that facilitates consistency between studies, including when using different data resolutions, avoiding distortion of SAM impacts and allowing for more reliable results of past and future SAM trends.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Yaowen Zheng, Lenneke M. Jong, Steven J. Phipps, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, and Tas D. van Ommen
Clim. Past, 17, 1973–1987, https://doi.org/10.5194/cp-17-1973-2021, https://doi.org/10.5194/cp-17-1973-2021, 2021
Short summary
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Pearse J. Buchanan, Richard J. Matear, Zanna Chase, Steven J. Phipps, and Nathan L. Bindoff
Geosci. Model Dev., 12, 1491–1523, https://doi.org/10.5194/gmd-12-1491-2019, https://doi.org/10.5194/gmd-12-1491-2019, 2019
Short summary
Short summary
Oceanic sediment cores are commonly used to understand past climates. The composition of the sediments changes with the ocean above it. An understanding of oceanographic conditions that existed many thousands of years ago, in some cases many millions of years ago, can therefore be extracted from sediment cores. We simulate two chemical signatures (13C and 15N) of sediment cores in a model. This study assesses the model before it is applied to reinterpret the sedimentary record.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Steven J. Phipps, Christopher J. Fogwill, and Christian S. M. Turney
The Cryosphere, 10, 2317–2328, https://doi.org/10.5194/tc-10-2317-2016, https://doi.org/10.5194/tc-10-2317-2016, 2016
Short summary
Short summary
We explore the effects of melting of the East Antarctic Ice Sheet on the Southern Ocean. Using a climate model, we find that melting changes the ocean circulation and causes warming of more than 1 °C at depth. We also discover the potential existence of a "domino effect", whereby the initial warming spreads westwards around the Antarctic continent. Melting of just one sector could therefore destabilise the wider Antarctic Ice Sheet, leading to substantial increases in global sea level.
Tessa R. Vance, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Carly R. Tozer, Ailie J. E. Gallant, Nerilie J. Abram, Tas D. van Ommen, Duncan A. Young, Cyril Grima, Don D. Blankenship, and Martin J. Siegert
Clim. Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016, https://doi.org/10.5194/cp-12-595-2016, 2016
Short summary
Short summary
This study details a systematic approach to finding a new high-resolution East Antarctic ice core site. The study initially outlines seven criteria that a new site must fulfil, encompassing specific accumulation, ice dynamics and atmospheric circulation aspects. We then use numerous techniques including Antarctic surface mass balance syntheses, ground-truthing of satellite data by airborne radar surveys and reanalysis products to pinpoint promising regions.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
R. J. Matear, A. Lenton, D. Etheridge, and S. J. Phipps
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1093-2015, https://doi.org/10.5194/cpd-11-1093-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
Global climate models provide an important tool for simulating the earth's climate. Here we present a simulation of the climate of the Last Glacial Maximum, which was obtained by setting atmospheric greenhouse gas concentrations and the earth's orbital parameters to the 21 000 years before present values. We simulate an ocean behaviour that agrees with paleoclimate reconstructions supporting our ability to model the climate system and use the model to explore the impacts on the carbon cycle.
U. Heikkilä, X. Shi, S. J. Phipps, and A. M. Smith
Clim. Past, 10, 687–696, https://doi.org/10.5194/cp-10-687-2014, https://doi.org/10.5194/cp-10-687-2014, 2014
U. Heikkilä, S. J. Phipps, and A. M. Smith
Clim. Past, 9, 2641–2649, https://doi.org/10.5194/cp-9-2641-2013, https://doi.org/10.5194/cp-9-2641-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
Dynamic interaction between lakes, climate, and vegetation across northern Africa during the mid-Holocene
Insights into the Australian mid-Holocene climate using downscaled climate models
Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
Quantifying effects of Earth orbital parameters and greenhouse gases on mid-Holocene climate
Contribution of lakes in sustaining the Sahara greening during the mid-Holocene
Did the Bronze Age deforestation of Europe affect its climate? A regional climate model study using pollen-based land cover reconstructions
Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project
CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum
Investigating hydroclimatic impacts of the 168–158 BCE volcanic quartet and their relevance to the Nile River basin and Egyptian history
Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1)
Mid-Holocene climate of the Tibetan Plateau and hydroclimate in three major river basins based on high-resolution regional climate simulations
Comparison of the green-to-desert Sahara transitions between the Holocene and the last interglacial
Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa
Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY
The long-standing dilemma of European summer temperatures at the mid-Holocene and other considerations on learning from the past for the future using a regional climate model
Mid-Holocene monsoons in South and Southeast Asia: dynamically downscaled simulations and the influence of the Green Sahara
The remote response of the South Asian Monsoon to reduced dust emissions and Sahara greening during the middle Holocene
Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model
Technical note: Characterising and comparing different palaeoclimates with dynamical systems theory
Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
CMIP6/PMIP4 simulations of the mid-Holocene and Last Interglacial using HadGEM3: comparison to the pre-industrial era, previous model versions and proxy data
Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM
Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation
Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations
Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations
Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation
Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene
Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions
Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations
Modeling precipitation δ18O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales
Mid-to-late Holocene temperature evolution and atmospheric dynamics over Europe in regional model simulations
Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere
The biogeophysical climatic impacts of anthropogenic land use change during the Holocene
The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle
Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
The impact of Sahara desertification on Arctic cooling during the Holocene
Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model
Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon
Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration
Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations
Mid-Holocene ocean and vegetation feedbacks over East Asia
A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation
Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum
Can an Earth System Model simulate better climate change at mid-Holocene than an AOGCM? A comparison study of MIROC-ESM and MIROC3
Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity
The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024, https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Short summary
We close the terrestrial water cycle across the Sahara and Sahel by integrating a new endorheic-lake model into a climate model. A factor analysis of mid-Holocene simulations shows that both dynamic lakes and dynamic vegetation individually contribute to a precipitation increase over northern Africa that is collectively greater than that caused by the interaction between lake and vegetation dynamics. Thus, the lake–vegetation interaction causes a relative drying response across the entire Sahel.
Andrew L. Lowry and Hamish A. McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1211, https://doi.org/10.5194/egusphere-2024-1211, 2024
Short summary
Short summary
We present simulations of the mid-Holocene and pre-industrial climate of Australia using coarse (2°) and finer (0.44°) resolution climate models. These simulations are compared to bioclimatic representation of the palaeoclimate of the mid-Holocene. The finer resolution simulations reduce the bias between the model and the bioclimatic results and highlight the improved value of using finer resolution models to simulate the palaeoclimate.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Yibo Kang and Haijun Yang
Clim. Past, 19, 2013–2026, https://doi.org/10.5194/cp-19-2013-2023, https://doi.org/10.5194/cp-19-2013-2023, 2023
Short summary
Short summary
We simulated the climate difference between the mid-Holocene (MH) and the preindustrial (PI) periods and quantified the effects of Earth orbital parameters (ORBs) and greenhouse gases (GHGs) on the climate difference. We think the insignificant difference in the Atlantic meridional overturning circulation between the MH and PI periods has resulted from the competing effects of the ORBs and the GHGs on the climate.
Yuheng Li, Kanon Kino, Alexandre Cauquoin, and Taikan Oki
Clim. Past, 19, 1891–1904, https://doi.org/10.5194/cp-19-1891-2023, https://doi.org/10.5194/cp-19-1891-2023, 2023
Short summary
Short summary
Our study using the isotope-enabled climate model MIROC5-iso model shows that lakes may have contributed to the Green Sahara during the mid-Holocene period (6000 years ago). The lakes induced cyclonic circulation response, enhancing the near-surface monsoon westerly flow and potentially humidifying the northwestern Sahara with the stronger West African Monsoon moving northward. Our findings provide valuable insights into understanding the presence of the Green Sahara during this period.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Chris Brierley, Kaustubh Thirumalai, Edward Grindrod, and Jonathan Barnsley
Clim. Past, 19, 681–701, https://doi.org/10.5194/cp-19-681-2023, https://doi.org/10.5194/cp-19-681-2023, 2023
Short summary
Short summary
Year-to-year variations in the weather conditions over the Indian Ocean have important consequences for the substantial fraction of the Earth's population that live near it. This work looks at how these variations respond to climate change – both past and future. The models rarely agree, suggesting a weak, uncertain response to climate change.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Ram Singh, Kostas Tsigaridis, Allegra N. LeGrande, Francis Ludlow, and Joseph G. Manning
Clim. Past, 19, 249–275, https://doi.org/10.5194/cp-19-249-2023, https://doi.org/10.5194/cp-19-249-2023, 2023
Short summary
Short summary
This work is a modeling effort to investigate the hydroclimatic impacts of a volcanic
quartetduring 168–158 BCE over the Nile River basin in the context of Ancient Egypt's Ptolemaic era (305–30 BCE). The model simulated a robust surface cooling (~ 1.0–1.5 °C), suppressing the African monsoon (deficit of > 1 mm d−1 over East Africa) and agriculturally vital Nile summer flooding. Our result supports the hypothesized relation between volcanic eruptions, hydroclimatic shocks, and societal impacts.
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023, https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
Yiling Huo, William Richard Peltier, and Deepak Chandan
Clim. Past, 18, 2401–2420, https://doi.org/10.5194/cp-18-2401-2022, https://doi.org/10.5194/cp-18-2401-2022, 2022
Short summary
Short summary
Understanding the hydrological changes on the Tibetan Plateau (TP) during the mid-Holocene (MH; a period with warmer summers than today) will help us understand expected future changes. This study analyses the hydroclimates over the headwater regions of three major rivers originating on the TP using dynamically downscaled climate simulations. Model–data comparisons show that the dynamic downscaling significantly improves both the present-day and MH regional climate simulations of the TP.
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022, https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this
greenstate to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Short summary
Palaeoenvironmental records only provide a fragmentary picture of the lake and wetland extent in North Africa during the mid-Holocene. Therefore, we investigate the possible range of mid-Holocene precipitation changes caused by an estimated small and maximum lake extent and a maximum wetland extent. Results show a particularly strong monsoon precipitation response to lakes and wetlands over the Western Sahara and an increased monsoon precipitation when replacing lakes with vegetated wetlands.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Yiling Huo, William Richard Peltier, and Deepak Chandan
Clim. Past, 17, 1645–1664, https://doi.org/10.5194/cp-17-1645-2021, https://doi.org/10.5194/cp-17-1645-2021, 2021
Short summary
Short summary
Regional climate simulations were constructed to more accurately capture regional features of the South and Southeast Asian monsoon during the mid-Holocene. Comparison with proxies shows that our high-resolution simulations outperform those with the coarser global model in reproducing the monsoon rainfall anomalies. Incorporating the Green Sahara climate conditions over northern Africa into our simulations further strengthens the monsoon precipitation and leads to better agreement with proxies.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019, https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Short summary
Using the global aerosol–climate model ECHAM-HAM-SALSA, the effect of humans on European climate in the Roman Empire was quantified. Both land use and novel estimates of anthropogenic aerosol emissions were considered. We conducted simulations with fixed sea-surface temperatures to gain a first impression about the anthropogenic impact. While land use effects induced a regional warming for one of the reconstructions, aerosol emissions led to a cooling associated with aerosol–cloud interactions.
Pascale Braconnot, Dan Zhu, Olivier Marti, and Jérôme Servonnat
Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, https://doi.org/10.5194/cp-15-997-2019, 2019
Short summary
Short summary
This study discusses a simulation of the last 6000 years realized with a climate model in which the vegetation and carbon cycle are fully interactive. The long-term southward shift in Northern Hemisphere tree line and Afro-Asian monsoon rain are reproduced. The results show substantial change in tree composition with time over Eurasia and the role of trace gases in the recent past. They highlight the limitations due to model setup and multiple preindustrial vegetation states.
Mi Yan and Jian Liu
Clim. Past, 15, 265–277, https://doi.org/10.5194/cp-15-265-2019, https://doi.org/10.5194/cp-15-265-2019, 2019
Liang Ning, Jian Liu, Raymond S. Bradley, and Mi Yan
Clim. Past, 15, 41–52, https://doi.org/10.5194/cp-15-41-2019, https://doi.org/10.5194/cp-15-41-2019, 2019
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018, https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary
Short summary
We find a rapid increase in simulated dust deposition between 6 and
4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Xinyu Wen, Zhengyu Liu, Zhongxiao Chen, Esther Brady, David Noone, Qingzhao Zhu, and Jian Guan
Clim. Past, 12, 2077–2085, https://doi.org/10.5194/cp-12-2077-2016, https://doi.org/10.5194/cp-12-2077-2016, 2016
Short summary
Short summary
In this paper, we challenge the usefulness of temperature effect and amount effect, the basic assumptions in past climate reconstruction using a stable water isotope proxy, in East Asia on multiple timescales. By modeling several time slices in the past 22 000 years using an isotope-enabled general circulation model, we suggest great caution when interpreting δ18O records in this area as indicators of surface temperature and/or local monsoonal precipitation, especially on a millennial timescale.
Emmanuele Russo and Ulrich Cubasch
Clim. Past, 12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, https://doi.org/10.5194/cp-12-1645-2016, 2016
Short summary
Short summary
In this study we use a RCM for three different goals.
Proposing a model configuration suitable for paleoclimate studies; evaluating the added value of a regional climate model for paleoclimate studies; investigating temperature evolution of the European continent during mid-to-late Holocene.
Results suggest that the RCM seems to produce results in better agreement with reconstructions than its driving GCM. Simulated temperature evolution seems to be too sensitive to changes in insolation.
Yurui Zhang, Hans Renssen, and Heikki Seppä
Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, https://doi.org/10.5194/cp-12-1119-2016, 2016
Short summary
Short summary
We explore how forcings contributed to climate change during the early Holocene that marked the final transition to the warm and stable stage. Our results indicate that 1) temperature at the Holocene onset was lower than in the preindustrial over the northern extratropics with the exception in Alaska, and the magnitude of this cooling varies regionally as a response to varying climate forcings and diverse mechanisms, and 2) the rate of the early Holocene warming was also spatially heterogeneous.
M. Clare Smith, Joy S. Singarayer, Paul J. Valdes, Jed O. Kaplan, and Nicholas P. Branch
Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, https://doi.org/10.5194/cp-12-923-2016, 2016
Short summary
Short summary
We used climate modelling to estimate the biogeophysical impacts of agriculture on the climate over the last 8000 years of the Holocene. Our results show statistically significant surface temperature changes (mainly cooling) from as early as 7000 BP in the JJA season and throughout the entire annual cycle by 2–3000 BP. The changes were greatest in the areas of land use change but were also seen in other areas. Precipitation was also affected, particularly in Europe, India, and the ITCZ region.
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.
S. C. Lewis and A. N. LeGrande
Clim. Past, 11, 1347–1360, https://doi.org/10.5194/cp-11-1347-2015, https://doi.org/10.5194/cp-11-1347-2015, 2015
P. J. Bartlein, M. E. Edwards, S. W. Hostetler, S. L. Shafer, P. M. Anderson, L. B. Brubaker, and A. V. Lozhkin
Clim. Past, 11, 1197–1222, https://doi.org/10.5194/cp-11-1197-2015, https://doi.org/10.5194/cp-11-1197-2015, 2015
Short summary
Short summary
The ongoing warming of the Arctic is producing changes in vegetation and hydrology that, coupled with rising sea level, could mediate global changes. We explored this possibility using regional climate model simulations of a past interval of warming in Beringia and found that the regional-scale changes do strongly mediate the responses to global changes, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in climate change.
F. J. Davies, H. Renssen, M. Blaschek, and F. Muschitiello
Clim. Past, 11, 571–586, https://doi.org/10.5194/cp-11-571-2015, https://doi.org/10.5194/cp-11-571-2015, 2015
J. R. Alder and S. W. Hostetler
Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, https://doi.org/10.5194/cp-11-449-2015, 2015
G.-S. Chen, Z. Liu, and J. E. Kutzbach
Clim. Past, 10, 1269–1275, https://doi.org/10.5194/cp-10-1269-2014, https://doi.org/10.5194/cp-10-1269-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
A. Perez-Sanz, G. Li, P. González-Sampériz, and S. P. Harrison
Clim. Past, 10, 551–568, https://doi.org/10.5194/cp-10-551-2014, https://doi.org/10.5194/cp-10-551-2014, 2014
Z. Tian and D. Jiang
Clim. Past, 9, 2153–2171, https://doi.org/10.5194/cp-9-2153-2013, https://doi.org/10.5194/cp-9-2153-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
R. O'ishi and A. Abe-Ouchi
Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, https://doi.org/10.5194/cp-9-1571-2013, 2013
R. Ohgaito, T. Sueyoshi, A. Abe-Ouchi, T. Hajima, S. Watanabe, H.-J. Kim, A. Yamamoto, and M. Kawamiya
Clim. Past, 9, 1519–1542, https://doi.org/10.5194/cp-9-1519-2013, https://doi.org/10.5194/cp-9-1519-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
M. Berger, J. Brandefelt, and J. Nilsson
Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, https://doi.org/10.5194/cp-9-969-2013, 2013
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and
England, M. H.: Evolution of the Southern Annular Mode during the past
millennium, Nat. Clim. Change, 4, 564–569, 2014.
Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to
southern annular mode trends, J. Climate, 19, 2896–2905, 2006.
Arblaster, J. M., Meehl, G. A., and Karoly, D. J.: Future climate change in
the Southern Hemisphere: Competing effects of ozone and greenhouse gases,
Geophys. Res. Lett., 38, L02701, https://doi.org/10.1029/2010GL045384, 2011.
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K.-L.: A
pause in Southern Hemisphere circulation trends due to the Montreal
Protocol, Nature, 579, 544–548, 2020.
Barnes, E. A. and Polvani, L.: Response of the midlatitude jets, and of
their variability, to increased greenhouse gases in the CMIP5 models,
J. Climate, 26, 7117–7135, 2013.
Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J.,
Kromer, B., Muscheler, R., Solanki, S. K., and Usoskin, I.: Eleven-year
solar cycles over the last millennium revealed by radiocarbon in tree rings,
Nat. Geosci., 14, 10–15, 2021.
Butler, A. H., Thompson, D. W., and Birner, T.: Isentropic slopes,
downgradient eddy fluxes, and the extratropical atmospheric circulation
response to tropical tropospheric heating, J. Atmos. Sci., 68, 2292–2305, 2011.
Crosta, X., Etourneau, J., Orme, L. C., Dalaiden, Q., Campagne, P.,
Swingedouw, D., Goosse, H., Massé, G., Miettinen, A., McKay, R. M.,
Dunbar, R. B., Escutia, C., and Ikehara, M.: Multi-decadal trends in
Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years,
Nat. Geosci., 14, 156–160, https://doi.org/10.1038/s41561-021-00697-1, 2021.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M.,
Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection
stationarity, variability and trends of the Southern Annular Mode (SAM)
during the last millennium, Clim. Dynam., 51, 2321–2339, https://doi.org/10.1007/s00382-017-4015-0, 2018.
Fan, K. and Wang, H.: Antarctic oscillation and the dust weather frequency in North China, Geophys. Res. Lett., 31, L10201, https://doi.org/10.1029/2004GL019465, 2004.
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: variability,
trends, and climate impacts across the Southern Hemisphere, WIREs Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020.
Fogt, R. L., Perlwitz, J., Monaghan, A. J., Bromwich, D. H., Jones, J. M.,
and Marshall, G. J.: Historical SAM variability. Part II: Twentieth-century
variability and trends from reconstructions, observations, and the IPCC AR4
models, J. Climate, 22, 5346–5365, 2009.
Fyfe, J., Boer, G., and Flato, G.: The Arctic and Antarctic Oscillations and
their projected changes under global warming, Geophys. Res. Lett., 26, 1601–1604, 1999.
Gillett, N. and Fyfe, J.: Annular mode changes in the CMIP5 simulations,
Geophys. Res. Lett., 40, 1189-1193, 2013.
Gillett, N. P. and Thompson, D. W.: Simulation of recent Southern Hemisphere
climate change, Science, 302, 273–275, 2003.
Gillett, N. P., Kell, T. D., and Jones, P.: Regional climate impacts of the
Southern Annular Mode, Geophys. Res. Lett., 33, L23704, https://doi.org/10.1029/2006GL027721, 2006.
Gong, D. and Wang, S.: Definition of Antarctic oscillation index, Geophys. Res. Lett., 26, 459–462, 1999.
Goyal, R., Sen Gupta, A., Jucker, M., and England, M. H.: Historical and
projected changes in the Southern Hemisphere surface westerlies, Geophys.
Res. Lett., 48, e2020GL090849, https://doi.org/10.1029/2020GL090849, 2021.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., and Hood, L.: Solar influences on
climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S.,
Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged
response to the 11 year solar cycle in observed winter Atlantic/European
weather patterns, J. Geophys. Res.-Atmos., 118, 13405–413420, 2013.
Grise, K. M., Polvani, L. M., Tselioudis, G., Wu, Y., and Zelinka, M. D.:
The ozone hole indirect effect: Cloud-radiative anomalies accompanying the
poleward shift of the eddy-driven jet in the Southern Hemisphere,
Geophys. Res. Lett., 40, 3688–3692, 2013.
Hendon, H. H., Thompson, D. W., and Wheeler, M. C.: Australian rainfall and
surface temperature variations associated with the Southern Hemisphere
annular mode, J. Climate, 20, 2452–2467, 2007.
Hessl, A., Allen, K. J., Vance, T., Abram, N. J., and Saunders, K. M.:
Reconstructions of the southern annular mode (SAM) during the last
millennium, Prog. Phys. Geog., 41, 834–849, 2017.
Huiskamp, W. and McGregor, S.: Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework, Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, 2021.
Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P. D., and
Visbeck, M.: Historical SAM variability. Part I: Century-length seasonal
reconstructions, J. Climate, 22, 5319–5345, 2009.
Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O.,
Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., and Eisenman, I.:
Assessing recent trends in high-latitude Southern Hemisphere surface
climate, Nat. Clim. Change, 6, 917–926, 2016.
Judge, P. G., Lockwood, G. W., Radick, R. R., Henry, G. W., Shapiro, A. I.,
Schmutz, W., and Lindsey, C.: Confronting a solar irradiance reconstruction
with solar and stellar data, Astron. Astrophys., 544, A88, https://doi.org/10.1051/0004-6361/201218903, 2012.
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.
Kuroda, Y.: On the Origin of the Solar Cycle Modulation of the Southern
Annular Mode, J. Geophys. Res.-Atmos., 123, 1959–1969,
https://doi.org/10.1002/2017JD027091, 2018.
Kuroda, Y. and Kodera, K.: Solar cycle modulation of the Southern Annular
Mode, Geophys. Res. Lett., 32, L13802, https://doi.org/10.1029/2005GL022516, 2005.
Kuroda, Y. and Shibata, K.: Simulation of solar-cycle modulation of the
Southern Annular Mode using a chemistry-climate model, Geophys. Res. Lett., 33, L05703, https://doi.org/10.1029/2005GL025095, 2006.
Kuroda, Y., Deushi, M., and Shibata, K.: Role of solar activity in the
troposphere-stratosphere coupling in the Southern Hemisphere winter,
Geophys. Res. Lett., 34, L21704, https://doi.org/10.1029/2007GL030983, 2007.
Kushner, P. J., Held, I. M., and Delworth, T. L.: Southern Hemisphere
atmospheric circulation response to global warming, J. Climate, 14,
2238–2249, 2001.
Lean, J. and Rind, D.: Climate forcing by changing solar radiation, J.
Climate, 11, 3069–3094, https://doi.org/10.1175/1520-0442(1998)011<3069:CFBCSR>2.0.CO;2, 1998.
Lim, E.-P. and Simmonds, I.: Effect of tropospheric temperature change on
the zonal mean circulation and SH winter extratropical cyclones, Clim.
Dynam., 33, 19–32, 2009.
Lu, H., Jarvis, M. J., Gray, L. J., and Baldwin, M. P.: High- and
low-frequency 11-year solar cycle signatures in the Southern Hemispheric
winter and spring, Q. J. Roy. Meteor. Soc., 137, 1641–1656, https://doi.org/10.1002/qj.852, 2011.
Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., and Zhu, S.:
Changing response of the North Atlantic/European winter climate to the 11
year solar cycle, Environ. Res. Lett., 13, 034007,
https://doi.org/10.1088/1748-9326/aa9e94, 2018.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:Titsam>2.0.Co;2, 2003.
Meehl, G. A., Washington, W. M., Wigley, T., Arblaster, J. M., and Dai, A.:
Solar and greenhouse gas forcing and climate response in the twentieth
century, J. Climate, 16, 426–444, 2003.
Meehl, G. A., Arblaster, J. M., Branstator, G., and van Loon, H.: A Coupled
Air–Sea Response Mechanism to Solar Forcing in the Pacific Region, J. Climate, 21, 2883–2897, https://doi.org/10.1175/2007jcli1776.1, 2008.
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.:
Amplifying the Pacific climate system response to a small 11-year solar
cycle forcing, Science, 325, 1114–1118, 2009.
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H.,
Tebaldi, C., Sanderson, B. N., Lamarque, J.-F., Conley, A., and Strand, W.
G.: Climate system response to external forcings and climate change
projections in CCSM4, J. Climate, 25, 3661–3683, 2012.
Miller, R. L., Schmidt, G. A., and Shindell, D. T.: Forced annular
variations in the 20th century Intergovernmental Panel on Climate Change
Fourth Assessment Report models, J. Geophys. Res., 111, D18101, https://doi.org/10.1029/2005JD006323, 2006.
Neukom, R., Schurer, A. P., Steiger, N. J., and Hegerl, G. C.: Possible
causes of data model discrepancy in the temperature history of the last
Millennium, Scientific Reports, 8, 7572, https://doi.org/10.1038/s41598-018-25862-2, 2018.
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C.,
Casado, M., and Yiou, P.: A model-tested North Atlantic Oscillation
reconstruction for the past millennium, Nature, 523, 71–74,
https://doi.org/10.1038/nature14518, 2015.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate Variability
and Change since 850 CE: An Ensemble Approach with the Community Earth
System Model, B. Am. Meteorol. Soc., 97, 735–754, https://doi.org/10.1175/bams-d-14-00233.1, 2016.
PAGES2k Consortium: A global multiproxy database for temperature reconstructions of the Common Era, Scientific Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k Consortium: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era, Nat. Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation, Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011, 2011.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings, Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012, 2012.
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R.,
Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and van Ommen, T.
D.: Paleoclimate Data–Model Comparison and the Role of Climate Forcings
over the Past 1500 Years, J. Climate, 26, 6915–6936, https://doi.org/10.1175/jcli-d-12-00108.1, 2013.
Polvani, L. M., Waugh, D. W., Correa, G. J., and Son, S.-W.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere, J. Climate, 24, 795–812, 2011a.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.-W.: Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere, J. Climate, 24, 795–812, https://doi.org/10.1175/2010jcli3772.1, 2011b.
Raphael, M. N. and Holland, M. M.: Twentieth century simulation of the
southern hemisphere climate in coupled models. Part 1: large scale
circulation variability, Clim. Dynam., 26, 217–228, https://doi.org/10.1007/s00382-005-0082-8, 2006.
Rind, D., Lean, J., Lerner, J., Lonergan, P., and Leboissitier, A.:
Exploring the stratospheric/tropospheric response to solar forcing, J. Geophys. Res., 113, D24103, https://doi.org/10.1029/2008JD010114, 2008.
Roscoe, H. K. and Haigh, J. D.: Influences of ozone depletion, the solar
cycle and the QBO on the Southern Annular Mode, Q. J. Roy. Meteor. Soc., 133, 1855–1864, https://doi.org/10.1002/qj.153, 2007.
Saunders, K. M., Roberts, S. J., Perren, B., Butz, C., Sime, L., Davies, S., Van Nieuwenhuyze, W., Grosjean, M., and Hodgson, D. A.: Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing, Nat. Geosci., 11, 650–655, https://doi.org/10.1038/s41561-018-0186-5, 2018.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schurer, A. P., Tett, S. F., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108, 2014.
Sen Gupta, A. and England, M. H.: Coupled ocean–atmosphere–ice response to
variations in the southern annular mode, J. Climate, 19, 4457–4486, 2006.
Shapiro, A., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M.,
Shapiro, A., and Nyeki, S.: A new approach to the long-term reconstruction
of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173, 2011.
Shindell, D. T. and Schmidt, G. A.: Southern Hemisphere climate response to
ozone changes and greenhouse gas increases, Geophys. Res. Lett., 31, L18209, https://doi.org/10.1029/2004GL020724, 2004.
Son, S. W., Tandon, N. F., Polvani, L. M., and Waugh, D. W.: Ozone hole and
Southern Hemisphere climate change, Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671, 2009.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009.
Swart, N. and Fyfe, J. C.: Observed and simulated changes in the Southern
Hemisphere surface westerly wind-stress, Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810, 2012.
Thompson, D. W. and Solomon, S.: Interpretation of recent Southern Hemisphere climate change, Science, 296, 895–899, 2002.
Thompson, D. W. and Wallace, J. M.: Annular modes in the extratropical
circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016, 2000.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749, https://doi.org/10.1038/ngeo1296, 2011.
Villalba, R., Lara, A., Masiokas, M. H., Urrutia, R., Luckman, B. H.,
Marshall, G. J., Mundo, I. A., Christie, D. A., Cook, E. R., and Neukom, R.:
Unusual Southern Hemisphere tree growth patterns induced by changes in the
Southern Annular Mode, Nat. Geosci., 5, 793–798, 2012.
Visbeck, M.: A station-based southern annular mode index from 1884 to 2005,
J. Climate, 22, 940–950, 2009.
Wang, G. and Cai, W.: Climate-change impact on the 20th-century relationship
between the Southern Annular Mode and global mean temperature, Scientific
Reports, 3, 1–6, 2013.
Wang, Y.-M., Lean, J., and Sheeley Jr, N.: Modeling the Sun's magnetic field
and irradiance since 1713, Astrophys. J., 625, 522, https://doi.org/10.1086/429689, 2005.
Wright, N. M., Krause, C. E., Phipps, S. J., Boschat, G., and Abram, N. J.: Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode, Zenodo [data set], https://doi.org/10.5281/zenodo.6585285, 2022.
Yang, D., Arblaster, J. M., Meehl, G. A., England, M. H., Lim, E.-P., Bates,
S., and Rosenbloom, N.: Role of tropical variability in driving decadal
shifts in the Southern Hemisphere summertime eddy-driven jet, J. Climate, 33, 5445–5463, 2020.
Zheng, F., Li, J., Clark, R. T., and Nnamchi, H. C.: Simulation and
projection of the Southern Hemisphere annular mode in CMIP5 models, J. Climate, 26, 9860–9879, 2013.
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM...