Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode
Nicky M. Wright
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National
University, Canberra, ACT 2601, Australia
current address: School of Geosciences, University of Sydney, Sydney, NSW 2006, Australia
Claire E. Krause
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate System Science, Australian
National University, Canberra, ACT 2601, Australia
current address: Geoscience Australia, Canberra, ACT 2609, Australia
Steven J. Phipps
Ikigai Research, Sandy Bay, TAS 7006, Australia
Ghyslaine Boschat
Bureau of Meteorology and ARC Centre of Excellence for Climate
Extremes, Melbourne, VIC 3001, Australia
Nerilie J. Abram
Research School of Earth Sciences, Australian National University,
Canberra, ACT 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National
University, Canberra, ACT 2601, Australia
Related authors
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Andrew D. King, Nerilie J. Abram, Eduardo Alastrué de Asenjo, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2025-903, https://doi.org/10.5194/egusphere-2025-903, 2025
Short summary
Short summary
It is vital that climate changes under net zero emissions are well understood to support decision making processes. Current modelling efforts are insufficient, partly due to limited simulation lengths. We propose a framework for 1000-year-long simulations that attempts to minimise computing resources by leveraging existing simulations. This will ultimately increase understanding of the implications of current climate policies for the Earth System over coming decades and centuries.
Laura Velasquez-Jimenez and Nerilie J. Abram
Clim. Past, 20, 1125–1139, https://doi.org/10.5194/cp-20-1125-2024, https://doi.org/10.5194/cp-20-1125-2024, 2024
Short summary
Short summary
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate the effects of calculation method and data used to calculate the SAM index and how it influences the relationship between the SAM and climate. We propose a method to calculate a natural SAM index that facilitates consistency between studies, including when using different data resolutions, avoiding distortion of SAM impacts and allowing for more reliable results of past and future SAM trends.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Yaowen Zheng, Lenneke M. Jong, Steven J. Phipps, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, and Tas D. van Ommen
Clim. Past, 17, 1973–1987, https://doi.org/10.5194/cp-17-1973-2021, https://doi.org/10.5194/cp-17-1973-2021, 2021
Short summary
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and
England, M. H.: Evolution of the Southern Annular Mode during the past
millennium, Nat. Clim. Change, 4, 564–569, 2014.
Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to
southern annular mode trends, J. Climate, 19, 2896–2905, 2006.
Arblaster, J. M., Meehl, G. A., and Karoly, D. J.: Future climate change in
the Southern Hemisphere: Competing effects of ozone and greenhouse gases,
Geophys. Res. Lett., 38, L02701, https://doi.org/10.1029/2010GL045384, 2011.
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K.-L.: A
pause in Southern Hemisphere circulation trends due to the Montreal
Protocol, Nature, 579, 544–548, 2020.
Barnes, E. A. and Polvani, L.: Response of the midlatitude jets, and of
their variability, to increased greenhouse gases in the CMIP5 models,
J. Climate, 26, 7117–7135, 2013.
Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J.,
Kromer, B., Muscheler, R., Solanki, S. K., and Usoskin, I.: Eleven-year
solar cycles over the last millennium revealed by radiocarbon in tree rings,
Nat. Geosci., 14, 10–15, 2021.
Butler, A. H., Thompson, D. W., and Birner, T.: Isentropic slopes,
downgradient eddy fluxes, and the extratropical atmospheric circulation
response to tropical tropospheric heating, J. Atmos. Sci., 68, 2292–2305, 2011.
Crosta, X., Etourneau, J., Orme, L. C., Dalaiden, Q., Campagne, P.,
Swingedouw, D., Goosse, H., Massé, G., Miettinen, A., McKay, R. M.,
Dunbar, R. B., Escutia, C., and Ikehara, M.: Multi-decadal trends in
Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years,
Nat. Geosci., 14, 156–160, https://doi.org/10.1038/s41561-021-00697-1, 2021.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M.,
Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection
stationarity, variability and trends of the Southern Annular Mode (SAM)
during the last millennium, Clim. Dynam., 51, 2321–2339, https://doi.org/10.1007/s00382-017-4015-0, 2018.
Fan, K. and Wang, H.: Antarctic oscillation and the dust weather frequency in North China, Geophys. Res. Lett., 31, L10201, https://doi.org/10.1029/2004GL019465, 2004.
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: variability,
trends, and climate impacts across the Southern Hemisphere, WIREs Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020.
Fogt, R. L., Perlwitz, J., Monaghan, A. J., Bromwich, D. H., Jones, J. M.,
and Marshall, G. J.: Historical SAM variability. Part II: Twentieth-century
variability and trends from reconstructions, observations, and the IPCC AR4
models, J. Climate, 22, 5346–5365, 2009.
Fyfe, J., Boer, G., and Flato, G.: The Arctic and Antarctic Oscillations and
their projected changes under global warming, Geophys. Res. Lett., 26, 1601–1604, 1999.
Gillett, N. and Fyfe, J.: Annular mode changes in the CMIP5 simulations,
Geophys. Res. Lett., 40, 1189-1193, 2013.
Gillett, N. P. and Thompson, D. W.: Simulation of recent Southern Hemisphere
climate change, Science, 302, 273–275, 2003.
Gillett, N. P., Kell, T. D., and Jones, P.: Regional climate impacts of the
Southern Annular Mode, Geophys. Res. Lett., 33, L23704, https://doi.org/10.1029/2006GL027721, 2006.
Gong, D. and Wang, S.: Definition of Antarctic oscillation index, Geophys. Res. Lett., 26, 459–462, 1999.
Goyal, R., Sen Gupta, A., Jucker, M., and England, M. H.: Historical and
projected changes in the Southern Hemisphere surface westerlies, Geophys.
Res. Lett., 48, e2020GL090849, https://doi.org/10.1029/2020GL090849, 2021.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., and Hood, L.: Solar influences on
climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S.,
Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged
response to the 11 year solar cycle in observed winter Atlantic/European
weather patterns, J. Geophys. Res.-Atmos., 118, 13405–413420, 2013.
Grise, K. M., Polvani, L. M., Tselioudis, G., Wu, Y., and Zelinka, M. D.:
The ozone hole indirect effect: Cloud-radiative anomalies accompanying the
poleward shift of the eddy-driven jet in the Southern Hemisphere,
Geophys. Res. Lett., 40, 3688–3692, 2013.
Hendon, H. H., Thompson, D. W., and Wheeler, M. C.: Australian rainfall and
surface temperature variations associated with the Southern Hemisphere
annular mode, J. Climate, 20, 2452–2467, 2007.
Hessl, A., Allen, K. J., Vance, T., Abram, N. J., and Saunders, K. M.:
Reconstructions of the southern annular mode (SAM) during the last
millennium, Prog. Phys. Geog., 41, 834–849, 2017.
Huiskamp, W. and McGregor, S.: Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework, Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, 2021.
Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P. D., and
Visbeck, M.: Historical SAM variability. Part I: Century-length seasonal
reconstructions, J. Climate, 22, 5319–5345, 2009.
Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O.,
Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., and Eisenman, I.:
Assessing recent trends in high-latitude Southern Hemisphere surface
climate, Nat. Clim. Change, 6, 917–926, 2016.
Judge, P. G., Lockwood, G. W., Radick, R. R., Henry, G. W., Shapiro, A. I.,
Schmutz, W., and Lindsey, C.: Confronting a solar irradiance reconstruction
with solar and stellar data, Astron. Astrophys., 544, A88, https://doi.org/10.1051/0004-6361/201218903, 2012.
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.
Kuroda, Y.: On the Origin of the Solar Cycle Modulation of the Southern
Annular Mode, J. Geophys. Res.-Atmos., 123, 1959–1969,
https://doi.org/10.1002/2017JD027091, 2018.
Kuroda, Y. and Kodera, K.: Solar cycle modulation of the Southern Annular
Mode, Geophys. Res. Lett., 32, L13802, https://doi.org/10.1029/2005GL022516, 2005.
Kuroda, Y. and Shibata, K.: Simulation of solar-cycle modulation of the
Southern Annular Mode using a chemistry-climate model, Geophys. Res. Lett., 33, L05703, https://doi.org/10.1029/2005GL025095, 2006.
Kuroda, Y., Deushi, M., and Shibata, K.: Role of solar activity in the
troposphere-stratosphere coupling in the Southern Hemisphere winter,
Geophys. Res. Lett., 34, L21704, https://doi.org/10.1029/2007GL030983, 2007.
Kushner, P. J., Held, I. M., and Delworth, T. L.: Southern Hemisphere
atmospheric circulation response to global warming, J. Climate, 14,
2238–2249, 2001.
Lean, J. and Rind, D.: Climate forcing by changing solar radiation, J.
Climate, 11, 3069–3094, https://doi.org/10.1175/1520-0442(1998)011<3069:CFBCSR>2.0.CO;2, 1998.
Lim, E.-P. and Simmonds, I.: Effect of tropospheric temperature change on
the zonal mean circulation and SH winter extratropical cyclones, Clim.
Dynam., 33, 19–32, 2009.
Lu, H., Jarvis, M. J., Gray, L. J., and Baldwin, M. P.: High- and
low-frequency 11-year solar cycle signatures in the Southern Hemispheric
winter and spring, Q. J. Roy. Meteor. Soc., 137, 1641–1656, https://doi.org/10.1002/qj.852, 2011.
Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., and Zhu, S.:
Changing response of the North Atlantic/European winter climate to the 11
year solar cycle, Environ. Res. Lett., 13, 034007,
https://doi.org/10.1088/1748-9326/aa9e94, 2018.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:Titsam>2.0.Co;2, 2003.
Meehl, G. A., Washington, W. M., Wigley, T., Arblaster, J. M., and Dai, A.:
Solar and greenhouse gas forcing and climate response in the twentieth
century, J. Climate, 16, 426–444, 2003.
Meehl, G. A., Arblaster, J. M., Branstator, G., and van Loon, H.: A Coupled
Air–Sea Response Mechanism to Solar Forcing in the Pacific Region, J. Climate, 21, 2883–2897, https://doi.org/10.1175/2007jcli1776.1, 2008.
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.:
Amplifying the Pacific climate system response to a small 11-year solar
cycle forcing, Science, 325, 1114–1118, 2009.
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H.,
Tebaldi, C., Sanderson, B. N., Lamarque, J.-F., Conley, A., and Strand, W.
G.: Climate system response to external forcings and climate change
projections in CCSM4, J. Climate, 25, 3661–3683, 2012.
Miller, R. L., Schmidt, G. A., and Shindell, D. T.: Forced annular
variations in the 20th century Intergovernmental Panel on Climate Change
Fourth Assessment Report models, J. Geophys. Res., 111, D18101, https://doi.org/10.1029/2005JD006323, 2006.
Neukom, R., Schurer, A. P., Steiger, N. J., and Hegerl, G. C.: Possible
causes of data model discrepancy in the temperature history of the last
Millennium, Scientific Reports, 8, 7572, https://doi.org/10.1038/s41598-018-25862-2, 2018.
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C.,
Casado, M., and Yiou, P.: A model-tested North Atlantic Oscillation
reconstruction for the past millennium, Nature, 523, 71–74,
https://doi.org/10.1038/nature14518, 2015.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate Variability
and Change since 850 CE: An Ensemble Approach with the Community Earth
System Model, B. Am. Meteorol. Soc., 97, 735–754, https://doi.org/10.1175/bams-d-14-00233.1, 2016.
PAGES2k Consortium: A global multiproxy database for temperature reconstructions of the Common Era, Scientific Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k Consortium: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era, Nat. Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation, Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011, 2011.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings, Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012, 2012.
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R.,
Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and van Ommen, T.
D.: Paleoclimate Data–Model Comparison and the Role of Climate Forcings
over the Past 1500 Years, J. Climate, 26, 6915–6936, https://doi.org/10.1175/jcli-d-12-00108.1, 2013.
Polvani, L. M., Waugh, D. W., Correa, G. J., and Son, S.-W.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere, J. Climate, 24, 795–812, 2011a.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.-W.: Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere, J. Climate, 24, 795–812, https://doi.org/10.1175/2010jcli3772.1, 2011b.
Raphael, M. N. and Holland, M. M.: Twentieth century simulation of the
southern hemisphere climate in coupled models. Part 1: large scale
circulation variability, Clim. Dynam., 26, 217–228, https://doi.org/10.1007/s00382-005-0082-8, 2006.
Rind, D., Lean, J., Lerner, J., Lonergan, P., and Leboissitier, A.:
Exploring the stratospheric/tropospheric response to solar forcing, J. Geophys. Res., 113, D24103, https://doi.org/10.1029/2008JD010114, 2008.
Roscoe, H. K. and Haigh, J. D.: Influences of ozone depletion, the solar
cycle and the QBO on the Southern Annular Mode, Q. J. Roy. Meteor. Soc., 133, 1855–1864, https://doi.org/10.1002/qj.153, 2007.
Saunders, K. M., Roberts, S. J., Perren, B., Butz, C., Sime, L., Davies, S., Van Nieuwenhuyze, W., Grosjean, M., and Hodgson, D. A.: Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing, Nat. Geosci., 11, 650–655, https://doi.org/10.1038/s41561-018-0186-5, 2018.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schurer, A. P., Tett, S. F., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108, 2014.
Sen Gupta, A. and England, M. H.: Coupled ocean–atmosphere–ice response to
variations in the southern annular mode, J. Climate, 19, 4457–4486, 2006.
Shapiro, A., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M.,
Shapiro, A., and Nyeki, S.: A new approach to the long-term reconstruction
of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173, 2011.
Shindell, D. T. and Schmidt, G. A.: Southern Hemisphere climate response to
ozone changes and greenhouse gas increases, Geophys. Res. Lett., 31, L18209, https://doi.org/10.1029/2004GL020724, 2004.
Son, S. W., Tandon, N. F., Polvani, L. M., and Waugh, D. W.: Ozone hole and
Southern Hemisphere climate change, Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671, 2009.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009.
Swart, N. and Fyfe, J. C.: Observed and simulated changes in the Southern
Hemisphere surface westerly wind-stress, Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810, 2012.
Thompson, D. W. and Solomon, S.: Interpretation of recent Southern Hemisphere climate change, Science, 296, 895–899, 2002.
Thompson, D. W. and Wallace, J. M.: Annular modes in the extratropical
circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016, 2000.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K.
M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749, https://doi.org/10.1038/ngeo1296, 2011.
Villalba, R., Lara, A., Masiokas, M. H., Urrutia, R., Luckman, B. H.,
Marshall, G. J., Mundo, I. A., Christie, D. A., Cook, E. R., and Neukom, R.:
Unusual Southern Hemisphere tree growth patterns induced by changes in the
Southern Annular Mode, Nat. Geosci., 5, 793–798, 2012.
Visbeck, M.: A station-based southern annular mode index from 1884 to 2005,
J. Climate, 22, 940–950, 2009.
Wang, G. and Cai, W.: Climate-change impact on the 20th-century relationship
between the Southern Annular Mode and global mean temperature, Scientific
Reports, 3, 1–6, 2013.
Wang, Y.-M., Lean, J., and Sheeley Jr, N.: Modeling the Sun's magnetic field
and irradiance since 1713, Astrophys. J., 625, 522, https://doi.org/10.1086/429689, 2005.
Wright, N. M., Krause, C. E., Phipps, S. J., Boschat, G., and Abram, N. J.: Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode, Zenodo [data set], https://doi.org/10.5281/zenodo.6585285, 2022.
Yang, D., Arblaster, J. M., Meehl, G. A., England, M. H., Lim, E.-P., Bates,
S., and Rosenbloom, N.: Role of tropical variability in driving decadal
shifts in the Southern Hemisphere summertime eddy-driven jet, J. Climate, 33, 5445–5463, 2020.
Zheng, F., Li, J., Clark, R. T., and Nnamchi, H. C.: Simulation and
projection of the Southern Hemisphere annular mode in CMIP5 models, J. Climate, 26, 9860–9879, 2013.
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM...