Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snapshots of mean ocean temperature over the last 700 000 years using noble gases in the EPICA Dome C ice core
Marcel Haeberli
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Daniel Baggenstos
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Jochen Schmitt
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Markus Grimmer
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Adrien Michel
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Laboratoire des Sciences Cryosphérique, EPFL, ENAC IIE CRYOS GR A0 455 (Bâtiment GR), Station 2, 1015 Lausanne, Switzerland
Thomas Kellerhals
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Hubertus Fischer
CORRESPONDING AUTHOR
Climate and Environmental Physics & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Related authors
No articles found.
Lison Soussaintjean, Jochen Schmitt, Joël Savarino, J. Andy Menking, Edward J. Brook, Barbara Seth, Vladimir Lipenkov, Thomas Röckmann, and Hubertus Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3108, https://doi.org/10.5194/egusphere-2025-3108, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Nitrous oxide (N2O) produced in dust-rich Antarctic ice complicates the reconstruction of past atmospheric levels from ice core records. Using isotope analysis, we show that N2O forms from two nitrogen precursors, one being nitrate. For the first time, we demonstrate that the site preference (SP) of N2O reflects the isotopic difference between these precursors, not the production pathway, which challenges the common interpretation of SP.
Christoph Marty, Adrien Michel, Tobias Jonas, Cynthia Steijn, Regula Muelchi, and Sven Kotlarski
EGUsphere, https://doi.org/10.5194/egusphere-2025-413, https://doi.org/10.5194/egusphere-2025-413, 2025
Short summary
Short summary
This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales. Despite this, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based changes.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024, https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better-quality maps. The correction can then be extended backwards and forwards in time for periods when better-quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the past 60 years at a resolution of 1 d and 1 km. This is the first time that such a dataset has been produced.
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Michaela Mühl, Jochen Schmitt, Barbara Seth, James E. Lee, Jon S. Edwards, Edward J. Brook, Thomas Blunier, and Hubertus Fischer
Clim. Past, 19, 999–1025, https://doi.org/10.5194/cp-19-999-2023, https://doi.org/10.5194/cp-19-999-2023, 2023
Short summary
Short summary
Our ice core measurements show that methane, ethane, and propane concentrations are significantly elevated above their past atmospheric background for Greenland ice samples containing mineral dust. The underlying co-production process happens during the classical discrete wet extraction of air from the ice sample and affects previous reconstructions of the inter-polar difference of methane as well as methane stable isotope records derived from dust-rich Greenland ice.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Sarah Shackleton, James A. Menking, Edward Brook, Christo Buizert, Michael N. Dyonisius, Vasilii V. Petrenko, Daniel Baggenstos, and Jeffrey P. Severinghaus
Clim. Past, 17, 2273–2289, https://doi.org/10.5194/cp-17-2273-2021, https://doi.org/10.5194/cp-17-2273-2021, 2021
Short summary
Short summary
In this study, we measure atmospheric noble gases trapped in ice cores to reconstruct ocean temperature during the last glaciation. Comparing the new reconstruction to other climate records, we show that the ocean reached its coldest temperatures before ice sheets reached maximum volumes and atmospheric CO2 reached its lowest concentrations. Ocean cooling played a major role in lowering atmospheric CO2 early in the glaciation, but it only played a minor role later.
Johannes Sutter, Hubertus Fischer, and Olaf Eisen
The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, https://doi.org/10.5194/tc-15-3839-2021, 2021
Short summary
Short summary
Projections of global sea-level changes in a warming world require ice-sheet models. We expand the calibration of these models by making use of the internal architecture of the Antarctic ice sheet, which is formed by its evolution over many millennia. We propose that using our novel approach to constrain ice sheet models, we will be able to both sharpen our understanding of past and future sea-level changes and identify weaknesses in the parameterisation of current continental-scale models.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Jann Schrod, Dominik Kleinhenz, Maria Hörhold, Tobias Erhardt, Sarah Richter, Frank Wilhelms, Hubertus Fischer, Martin Ebert, Birthe Twarloh, Damiano Della Lunga, Camilla M. Jensen, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 12459–12482, https://doi.org/10.5194/acp-20-12459-2020, https://doi.org/10.5194/acp-20-12459-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) concentrations of the last 6 centuries are presented from an ice core in Greenland. The data are accompanied by physical and chemical aerosol data. INPs are correlated to the dust signal from the ice core and seem to follow the annual input of mineral dust. We find no clear trend in the INP concentration. However, modern-day concentrations are higher and more variable than the concentrations of the past. This might have significant atmospheric implications.
Cited articles
Baggenstos, D., Häberli, M., Schmitt, J., Shackleton, S. A., Birner, B.,
Fischer, H., Severinghaus, J., and Kellerhals, T.: The Earth's radiative
imbalance from the Last Glacial Maximum to the present, P. Natl. Acad. Sci. USA, 110, 14881–14886, https://doi.org/10.1073/pnas.1905447116, 2019. a, b, c, d, e
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013. a
Bender, M., Sowers, T., and Lipenkov, V.: On the concentrations of O2, N2,
and Ar in trapped gases from ice cores, J. Geophys. Res.,
100, 18651, https://doi.org/10.1029/94JD02212, 1995. a
Bender, M. L.: Orbital tuning chronology for the Vostok climate record
supported by trapped gas composition, Earth Planet. Sc. Lett.,
204, 275–289, https://doi.org/10.1016/S0012-821X(02)00980-9, 2002. a
Bender, M. L., Barnett, B., Dreyfus, G., Jouzel, J., and Porcelli, D.: The
contemporary degassing rate of 40Ar from the solid Earth, P. Natl. Acad. Sci. USA, 105, 8232–8237, https://doi.org/10.1073/pnas.0711679105,
2008. a, b, c
Bereiter, B., Schwander, J., Lüthi, D., and Stocker, T. F.: Change in CO2
concentration and ratio in ice cores due to molecular diffusion,
Geophys. Res. Lett., 36, L05703, https://doi.org/10.1029/2008GL036737, 2009. a
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F.,
Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett.,
42, 542–549, https://doi.org/10.1002/2014GL061957, 2015. a, b, c, d
Bereiter, B., Kawamura, K., and Severinghaus, J. P.: New methods for measuring
atmospheric heavy noble gas isotope and elemental ratios in ice core
samples, Rapid Commun. Mass Sp., 32, 801–814,
https://doi.org/10.1002/rcm.8099, 2018a. a, b, c
Bintanja, R., Van De Wal, R. S., and Oerlemans, J.: Modelled atmospheric
temperatures and global sea levels over the past million years, Nature, 437,
125–128, https://doi.org/10.1038/nature03975, 2005. a, b
Bréant, C., Landais, A., Orsi, A., Martinerie, P., Extier, T., Prié,
F., Stenni, B., Jouzel, J., Masson-Delmotte, V., and Leuenberger, M.:
Unveiling the Anatomy of Termination 3 Using Water and Air Isotopes in
the Dome C Ice Core, East Antarctica, Quat. Sci. Rev.,
211, 156–165, https://doi.org/10.1016/j.quascirev.2019.03.025, 2019. a, b
Buizert, C., Fudge, T., Roberts, W., Steig, E., Sherriff-Tadano, S., Ritz, C.,
Lefebvre, E., Kawamura, K., Oyabu, I., Motoyama, H., Kahle, E., Jones, T.,
Abe-Ouchi, A., Obase, T., Martin, C., Corr, H., Severinghaus, J., Beaudette,
R., Epifanio, J., Brook, E., Martin, K., Chappellaz, J., Aoki, S., Nakazawa,
T., Sowers, T., Ahn, J., Sigl, M., Severi, M., Dunbar, N., Svensson, A.,
Schwander, J., and Johnsen, S.: A revision of last glacial maximum
temperatures in East Antarctica, submitted to Science, 2020. a, b
Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S.,
Otto-Bliesner, B., Rasmussen, T. L., Sime, L. C., Waelbroeck, C., and Wolff,
E. W.: Temporal and spatial structure of multi-millennial temperature
changes at high latitudes during the Last Interglacial, Quat. Sci. Rev., 103, 116–133,
https://doi.org/10.1016/j.quascirev.2014.08.018, 2014. a
Craig, H. and Wiens, R.: Gravitational enrichment of 84Kr/36Ar
ratios in polar ice caps: A measure of firn thickness and accumulation
temperature, Science, 271, 1708–1710, 1996. a
Craig, H., Horibe, Y., and Sowers, T.: Gravitational Separation of Gases and
Isotopes in Polar Ice Caps, Science, 242, 1675–1678,
https://doi.org/10.1126/science.242.4886.1675, 1988. a
Cuffey, K. M. and Paterson, W. S. B.: The temperatures in ice masses,
Butterworth-Heinemann, Burlington, MA, 704 pp., 2010. a
Deaney, E. L., Barker, S., and van de Flierdt, T.: Timing and nature of AMOC
recovery across Termination 2 and magnitude of deglacial CO2 change, Nat. Commun., 8, 14595, https://doi.org/10.1038/ncomms14595, 2017. a
Dreyfus, G. B., Jouzel, J., Bender, M. L., Landais, A., Masson-Delmotte, V.,
and Leuenberger, M.: Firn Processes and δ15N: Potential for a
Gas-Phase Climate Proxy, Quat. Sci. Rev., 29, 28–42,
https://doi.org/10.1016/j.quascirev.2009.10.012, 2010. a, b
Durand, G., Svensson, A., Persson, A., Gagliardini, O., Gillet-Chaulet, F.,
Sjolte, J., Montagnat, M., and Dahl-Jensen, D.: Evolution of the texture
along the EPICA Dome C ice core, Low Temp. Sci., 68, 91–105,
https://eprints.lib.hokudai.ac.jp/dspace/handle/2115/45436 (last access: 28 March 2021), 2009. a, b
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to
polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019,
https://doi.org/10.1126/science.aaa4019, 2015. a
EPICA community members: Eight glacial cycles from an Antarctic ice core.,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004. a, b, c, d
Fourteau, K., Martinerie, P., Faïn, X., Schaller, C. F., Tuckwell, R. J., Löwe, H., Arnaud, L., Magand, O., Thomas, E. R., Freitag, J., Mulvaney, R., Schneebeli, M., and Lipenkov, V. Ya.: Multi-tracer study of gas trapping in an East Antarctic ice core, The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, 2019. a
Galbraith, E. D., Merlis, T. M., and Palter, J. B.: Destabilization of glacial
climate by the radiative impact of Atlantic Meridional Overturning
Circulation disruptions, Geophys. Res. Lett., 43, 8214–8221,
https://doi.org/10.1002/2016GL069846, 2016. a, b
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017. a
Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C., and Forest,
C. E.: Industrial-era global ocean heat uptake doubles in recent decades,
Nat. Clim. Change, 6, 394–398, https://doi.org/10.1038/nclimate2915, 2016. a
Hamme, R. C. and Severinghaus, J. P.: Trace gas disequilibria during
deep-water formation, Deep Sea-Res. Pt. I, 54, 939–950, https://doi.org/10.1016/j.dsr.2007.03.008, 2007. a
Hamme, R. C., Nicholson, D. P., Jenkins, W. J., and Emerson, S. R.: Using
Noble Gases to Assess the Ocean's Carbon Pumps, Annu. Rev. Mar. Sci., 11, 75–103, https://doi.org/10.1146/annurev-marine-121916-063604,
2019. a
Headly, M. A. and Severinghaus, J. P.: A method to measure Kr/N2 ratios
in air bubbles trapped in ice cores and its application in reconstructing
past mean ocean temperature, J. Geophys. Res.-Atmos.,
112, D19105, https://doi.org/10.1029/2006jd008317, 2007. a
Hoffman, J. S., Clark, P. U., Parnell, A. C., and He, F.: Regional and global
sea-surface temperatures during the last interglaciation, Science, 355, 276–279, https://doi.org/10.1126/science.aai8464, 2017. a
Ikeda, T., Salamatin, A. N., Lipenkov, V. Y., Mae, S., and Hondoh, T.: Spatial
distribution of air molecules within individual clathrate hydrates in polar
ice sheets, in: Annals of Glaciology, Vol. 31, 2000, edited by: Steffen, K.,
Vol. 31 of Annals of Glaciology, 252–256, Int Glaciol Soc; ETH;
Univ Zurich; Schweizer Akad Nat Wissensch; Schweizer Stift Alphine Forsch,
Int glaciological soc, Lensfield rd, Cambridge, England, CB2 1er,
https://doi.org/10.3189/172756400781820390, 2000. a
Ikeda-Fukazawa, T., Fukumizu, K., Kawamura, K., Aoki, S., Nakazawa, T., and
Hondoh, T.: Effects of molecular diffusion on trapped gas composition in
polar ice cores, Earth Planet. Sc. Lett., 229, 183–192,
https://doi.org/10.1016/j.epsl.2004.11.011, 2005. a
IPCC: IPCC Climate Change 2013: The Physical Science Basis, edited by: Stocker, T. F., Dahe, Q., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Yu, X., Bex, V., and Midgley, P. M., Cambridge Univ. Press, Cambridge, 1535 pp., 2013. a
Jenkins, W., Lott, D., and Cahill, K.: A Determination of Atmospheric Helium,
Neon, Argon, Krypton, and Xenon Solubility Concentrations in Water and
Seawater, Mar. Chem., 211, 94–107,
https://doi.org/10.1016/j.marchem.2019.03.007, 2019. a
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus,
J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E.,
Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii,
Y., and Watanabe, O.: Northern Hemisphere forcing of climatic cycles in
Antarctica over the past 360,000 years, Nature, 448, 912–916,
https://doi.org/10.1038/nature06015, 2007. a
Kawamura, K., Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A., Scambos, T., Shields, E., and Shuman, C. A.: Kinetic fractionation of gases by deep air convection in polar firn, Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, 2013. a, b, c, d, e
Kobashi, T., Severinghaus, J. P., and Barnola, J.-M.: 4 ± 1.5 ∘C abrupt
warming 11,270 yr ago identified from trapped air in Greenland ice, Earth
Planet. Sc. Lett., 268, 397–407,
https://doi.org/10.1016/j.epsl.2008.01.032, 2008a. a
Kobashi, T., Severinghaus, J. P., and Kawamura, K.: Argon and nitrogen
isotopes of trapped air in the GISP2 ice core during the Holocene epoch
(0-11,500 B.P.): Methodology and implications for gas loss processes,
Geochim. Cosmochim. Ac., 72, 4675–4686,
https://doi.org/10.1016/j.gca.2008.07.006, 2008b. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014. a
Landais, A., Dreyfus, G., Capron, E., Pol, K., Loutre, M. F., Raynaud, D., Lipenkov, V. Y., Arnaud, L., Masson-Delmotte, V., Paillard, D., Jouzel, J., and Leuenberger, M.: Towards orbital dating of the EPICA Dome C ice core using , Clim. Past, 8, 191–203, https://doi.org/10.5194/cp-8-191-2012, 2012. a
Landais, A., Dreyfus, G., Capron, E., Jouzel, J., Masson-Delmotte, V., Roche,
D. M., Prié, F., Caillon, N., Chappellaz, J., Leuenberger, M., Lourantou,
A., Parrenin, F., Raynaud, D., and Teste, G.: Two-Phase Change in CO2,
Antarctic Temperature and Global Climate during Termination II,
Nat. Geosci., 6, 1062–1065, https://doi.org/10.1038/ngeo1985, 2013. a, b
Lipenkov, V.: Air bubbles and air-hydrate crystals in the Vostok ice core,
Physics of Ice Core Records, 327–358, 2000. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2005PA001164, 2005. a, b
Loose, B., Jenkins, W. J., Moriarty, R., Brown, P., Jullion, L., Naveira
Garabato, A. C., Torres Valdes, S., Hoppema, M., Ballentine, C., and
Meredith, M. P.: Estimating the recharge properties of the deep ocean using
noble gases and helium isotopes, J. Geophys. Res.-Oceans,
121, 5959–5979, https://doi.org/10.1002/2016JC011809, 2016. a
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric, Nature, 453,
383–386, https://doi.org/10.1038/nature06950, 2008. a, b
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379,
https://doi.org/10.1038/nature06949, 2008. a, b
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd,
S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J. M.,
Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen,
J., Mikolajewicz, U., and Otto-Bliesner, B.: EPICA Dome C record of glacial
and interglacial intensities, Quat. Sci. Rev., 29, 113–128,
https://doi.org/10.1016/j.quascirev.2009.09.030, 2010. a, b, c, d, e, f, g, h
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V.,
DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L.,
Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P.,
Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from
Lake El'gygytgyn, NE Russia, Science, 337, 315–320,
https://doi.org/10.1126/science.1222135, 2012. a
Milankovic, M.: Kanon der Erdbestrahlung und seine Anwendung auf das
Eiszeitenproblem. Belgrade, Royal Serbian Acad. Sciences, Spec. Publ. 132,
Sect. Math, Nat. Sci, 33, 633 pp., 1941. a
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25, 2715–2718, https://doi.org/10.1029/98GL01908, 1998. a
Nedelcu, A. F., Faria, S. H., and Kuhs, W. F.: Raman spectra of plate-like
inclusions in the EPICA-DML (Antarctica) ice core, J. Glaciol.,
55, 183–184, https://doi.org/10.3189/002214309788609010, 2009. a, b, c, d
Neff, P. D.: A review of the brittle ice zone in polar ice cores, Ann. Glaciol., 55, 72–82, https://doi.org/10.3189/2014AoG68A023, 2014. a
Nehrbass-Ahles, C., Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A.,
Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J., Hodell, D.,
Fischer, H., and Stocker, T. F.: Abrupt CO2 release to the atmosphere under
glacial and early interglacial climate conditions, Science, 369, 1000–1005,
https://doi.org/10.1126/science.aay8178, 2020. a, b
PAGES Past Interglacials Working Group, o. p.: Interglacials of the last
800,000 years, Rev. Geophys., 54, 162–219,
https://doi.org/10.1002/2015RG000482, 2016. a
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007. a
Parrenin, F., Masson-Delmotte, V., Koehler, P., Raynaud, D., Paillard, D.,
Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J.:
Synchronous change of atmospheric CO2 and antarctic temperature during the
last deglacial warming, Science, 339, 1060–1063,
https://doi.org/10.1126/science.1226368, 2013. a
Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S., and Rasmussen,
S. O.: Beyond the bipolar seesaw: Toward a process understanding of
interhemispheric coupling, Quat. Sci. Rev., 192, 27–46,
https://doi.org/10.1016/j.quascirev.2018.05.005, 2018. a, b
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz,
C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the
past 420,000 years from the Vostok ice core, Antarctica, Nature, 399,
429–436, 1999. a
Ritz, C., Lliboutry, L., and Rado, C.: Analysis of a 870 m Deep Temperature
Profile at Dome C, Ann. Glaciol., 3, 284–289,
https://doi.org/10.3189/S0260305500002937, 1982. a
Ritz, S. P., Stocker, T. F., and Severinghaus, J. P.: Noble gases as proxies
of mean ocean temperature: Sensitivity studies using a climate model of
reduced complexity, Quat. Sci. Rev., 30, 3728–3741,
https://doi.org/10.1016/j.quascirev.2011.09.021, 2011. a, b
Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P.,
Tamisiea, M. E., and Williams, F.: Sea-level and deep-sea-temperature
variability over the past 5.3 million years, Nature, 508, 477–482,
https://doi.org/10.1038/nature13230, 2014. a
Schwander, J.: Gas Diffusion in Firn, in: Chemical Exchange Between the
Atmosphere and Polar Snow, Springer Berlin Heidelberg, Berlin,
Heidelberg, 527–540, https://doi.org/10.1007/978-3-642-61171-1{_}22, 1996. a
Schwander, J., Stauffer, B., and Sigg, A.: Air mixing in firn and the age of
the air at pore close-off, Ann. Glaciol., 10, 141–145,
https://doi.org/10.1017/S0260305500004328, 1988. a
Seltzer, A. M., Pavia, F. J., Ng, J., and Severinghaus, J. P.: Heavy Noble Gas
Isotopes as New Constraints on the Ventilation of the Deep Ocean, Geophys. Res. Lett., 46, 8926–8932, https://doi.org/10.1029/2019GL084089, 2019. a
Severinghaus, J. P. and Battle, M. O.: Fractionation of gases in polar lee
during bubble close-off: New constraints from firn air Ne, Kr and Xe
observations, Earth Planet. Sc. Lett., 244, 474–500,
https://doi.org/10.1016/j.epsl.2006.01.032, 2006. a
Severinghaus, J. P., Grachev, A., Luz, B., and Caillon, N.: A method for
precise measurement of argon 40/36 and krypton/argon ratios in trapped air in
polar ice with applications to past firn thickness and abrupt climate change
in Greenland and at Siple Dome, Antarctica, Geochim. Cosmochim. Ac.,
67, 325–343, https://doi.org/10.1016/s0016-7037(02)00965-1, 2003. a, b
Shackleton, S., Baggenstos, D., Menking, J. A., Dyonisius, M. N., Bereiter, B.,
Bauska, T. K., Rhodes, R. H., Brook, E. J., Petrenko, V. V., McConnell,
J. R., Kellerhals, T., Häberli, M., Schmitt, J., Fischer, H., and
Severinghaus, J. P.: Global ocean heat content in the Last Interglacial,
Nat. Geosci., 13, 77–81, https://doi.org/10.1038/s41561-019-0498-0, 2020. a, b, c, d, e, f, g
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012. a
Sloan, E. D. and Koh, C. A.: Clathrate Hydrates of Natural Gases, Third
Edition, CRC Press, 3 Edn., https://doi.org/10.1201/9781420008494, 2007.
a
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016. a, b
Stolper, D. A., Bender, M. L., Dreyfus, G. B., Yan, Y., and Higgins, J. A.: A
Pleistocene ice core record of atmospheric O2 concentrations, Science, 353,
1427–1430, https://doi.org/10.1126/science.aaf5445, 2016. a
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen,
C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584,
569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020. a, b
Tzedakis, P. C., Hooghiemstra, H., and Pälike, H.: The last 1.35 million
years at Tenaghi Philippon: revised chronostratigraphy and long-term
vegetation trends, Quat. Sci. Rev., 25, 3416–3430,
https://doi.org/10.1016/j.quascirev.2006.09.002, 2006. a
Tzedakis, P. C., Crucifix, M., Mitsui, T., and Wolff, E. W.: A simple rule to
determine which insolation cycles lead to interglacials, Nature, 542,
427–432, https://doi.org/10.1038/nature21364, 2017. a, b, c, d
Uchida, T., Miyamoto, A., Shin'yama, A., and Hondoh, T.: Crystal growth of air
hydrates over 720 ka in Dome Fuji (Antarctica) ice cores: microscopic
observations of morphological changes below 2000 m depth, J. Glaciol., 57, 1017–1026, https://doi.org/10.3189/002214311798843296, 2011. a, b, c, d
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020. a
Weikusat, C., Freitag, J., and Kipfstuhl, S.: Raman spectroscopy of gaseous
inclusions in EDML ice core: first results – microbubbles, J. Glaciol., 58, 761–766, https://doi.org/10.3189/2012JoG11J222, 2012. a, b
Weller, G. and Schwerdtfeger, P.: Thermal properties and heat transfer
processes of the snow of the central Antarctic Plateau, in: International
Association of Scientific Hydrology, Publication No. 86, 284–298, 1970. a
Short summary
Using the temperature-dependent solubility of noble gases in ocean water, we reconstruct global mean ocean temperature (MOT) over the last 700 kyr using noble gas ratios in air enclosed in polar ice cores. Our record shows that glacial MOT was about 3 °C cooler compared to the Holocene. Interglacials before 450 kyr ago were characterized by about 1.5 °C lower MOT than the Holocene. In addition, some interglacials show transient maxima in ocean temperature related to changes in ocean circulation.
Using the temperature-dependent solubility of noble gases in ocean water, we reconstruct global...