Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum
Frerk Pöppelmeier
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute and Oeschger
Center for Climate Change Research, University of Bern, 3012 Bern,
Switzerland
Jeemijn Scheen
Climate and Environmental Physics, Physics Institute and Oeschger
Center for Climate Change Research, University of Bern, 3012 Bern,
Switzerland
Aurich Jeltsch-Thömmes
Climate and Environmental Physics, Physics Institute and Oeschger
Center for Climate Change Research, University of Bern, 3012 Bern,
Switzerland
Thomas F. Stocker
Climate and Environmental Physics, Physics Institute and Oeschger
Center for Climate Change Research, University of Bern, 3012 Bern,
Switzerland
Related authors
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang G. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Jakob Schwander, Thomas Franziskus Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
EGUsphere, https://doi.org/10.5194/egusphere-2024-372, https://doi.org/10.5194/egusphere-2024-372, 2024
Short summary
Short summary
The RADIX optical dust logger is part of the exploratory 20-mm drilling system of the University of Bern. The logger is inserted into the borehole after drilling. The temperature, inclination and compass sensors were successfully tested, but not the dust sensor, because no RADIX hole reached down to the required bubble-free ice. In June 2023, we tested the logger with an adapter for the large East GRIP deep borehole. An excellent dust record was obtained for the Late Glacial/Holocene.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Jakob Schwander, Thomas F. Stocker, Remo Walther, and Samuel Marending
The Cryosphere, 17, 1151–1164, https://doi.org/10.5194/tc-17-1151-2023, https://doi.org/10.5194/tc-17-1151-2023, 2023
Short summary
Short summary
RADIX (Rapid Access Drilling and Ice eXtraction) is a fast-access ice-drilling system for prospecting future deep-drilling sites on glaciers and polar ice sheets. It consists of a 40 mm rapid firn drill, a 20 mm deep drill and a logger. The maximum depth range of RADIX is 3100 m by design. The nominal drilling speed is on the order of 40 m h-1. The 15 mm diameter logger provides data on the hole inclination and direction and measures temperature and dust in the ice surrounding the borehole.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020, https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
Short summary
Variability of sea surface temperatures (SST) in 1200–2000 CE is quite well-known, but the history of deep ocean temperatures is not. Forcing an ocean model with these SSTs, we simulate temperatures in the ocean interior. The circulation changes alter the amplitude and timing of deep ocean temperature fluctuations below 2 km depth, e.g. delaying the atmospheric signal by ~ 200 years in the deep Atlantic. Thus ocean circulation changes are shown to be as important as SST changes at these depths.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Svante Björck, Jesper Sjolte, Karl Ljung, Florian Adolphi, Roger Flower, Rienk H. Smittenberg, Malin E. Kylander, Thomas F. Stocker, Sofia Holmgren, Hui Jiang, Raimund Muscheler, Yamoah K. K. Afrifa, Jayne E. Rattray, and Nathalie Van der Putten
Clim. Past, 15, 1939–1958, https://doi.org/10.5194/cp-15-1939-2019, https://doi.org/10.5194/cp-15-1939-2019, 2019
Short summary
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Niklaus Merz, Andreas Born, Christoph C. Raible, and Thomas F. Stocker
Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, https://doi.org/10.5194/cp-12-2011-2016, 2016
Short summary
Short summary
The last (Eemian) interglacial is studied with a global climate model focusing on Greenland and the adjacent high latitudes. A set of model experiments demonstrates the crucial role of changes in sea ice and sea surface temperatures for the magnitude of Eemian atmospheric warming. Greenland temperatures are found highly sensitive to sea ice changes in the Nordic Seas but rather insensitive to changes in the Labrador Sea. This behavior has important implications for Greenland ice core signals.
Olivier Eicher, Matthias Baumgartner, Adrian Schilt, Jochen Schmitt, Jakob Schwander, Thomas F. Stocker, and Hubertus Fischer
Clim. Past, 12, 1979–1993, https://doi.org/10.5194/cp-12-1979-2016, https://doi.org/10.5194/cp-12-1979-2016, 2016
Short summary
Short summary
A new high-resolution total air content record over the NGRIP ice core, spanning 0.3–120 kyr is presented. In agreement with Antarctic ice cores, we find a strong local insolation signature but also 3–5 % decreases in total air content as a local response to Dansgaard–Oeschger events, which can only partly be explained by changes in surface pressure and temperature. Accordingly, a dynamic response of firnification to rapid climate changes on the Greenland ice sheet must have occurred.
Basil Neff, Andreas Born, and Thomas F. Stocker
Earth Syst. Dynam., 7, 397–418, https://doi.org/10.5194/esd-7-397-2016, https://doi.org/10.5194/esd-7-397-2016, 2016
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
N. Merz, A. Born, C. C. Raible, H. Fischer, and T. F. Stocker
Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, https://doi.org/10.5194/cp-10-1221-2014, 2014
M. Baumgartner, P. Kindler, O. Eicher, G. Floch, A. Schilt, J. Schwander, R. Spahni, E. Capron, J. Chappellaz, M. Leuenberger, H. Fischer, and T. F. Stocker
Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, https://doi.org/10.5194/cp-10-903-2014, 2014
B. Bereiter, H. Fischer, J. Schwander, and T. F. Stocker
The Cryosphere, 8, 245–256, https://doi.org/10.5194/tc-8-245-2014, https://doi.org/10.5194/tc-8-245-2014, 2014
S. Schüpbach, U. Federer, P. R. Kaufmann, S. Albani, C. Barbante, T. F. Stocker, and H. Fischer
Clim. Past, 9, 2789–2807, https://doi.org/10.5194/cp-9-2789-2013, https://doi.org/10.5194/cp-9-2789-2013, 2013
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
A. Born, T. F. Stocker, and A. B. Sandø
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-555-2013, https://doi.org/10.5194/osd-10-555-2013, 2013
Revised manuscript not accepted
B. Bereiter, T. F. Stocker, and H. Fischer
Atmos. Meas. Tech., 6, 251–262, https://doi.org/10.5194/amt-6-251-2013, https://doi.org/10.5194/amt-6-251-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Contrasting the Penultimate Glacial Maximum and the Last Glacial Maximum (140 and 21 ka) using coupled climate–ice sheet modelling
Contrasting responses of summer precipitation to orbital forcing in Japan and China over the past 450 kyr
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Last Glacial Maximum climate and atmospheric circulation over the Australian region from climate models
Uncertainties originating from GCM downscaling and bias correction with application to the MIS-11c Greenland Ice Sheet
Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1
A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps
Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka
On the importance of moisture conveyor belts from the tropical eastern Pacific for wetter conditions in the Atacama Desert during the mid-Pliocene
Modeled storm surge changes in a warmer world: the Last Interglacial
No changes in overall AMOC strength in interglacial PMIP4 time slices
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3
Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model
The role of land cover in the climate of glacial Europe
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Evaluation of Arctic warming in mid-Pliocene climate simulations
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
An empirical evaluation of bias correction methods for palaeoclimate simulations
Hypersensitivity of glacial summer temperatures in Siberia
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Understanding the Australian Monsoon change during the Last Glacial Maximum with a multi-model ensemble
Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM
The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology
Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics
Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia
Global sensitivity analysis of the Indian monsoon during the Pleistocene
Interaction of ice sheets and climate during the past 800 000 years
Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth
Impact of geomagnetic excursions on atmospheric chemistry and dynamics
Assessing the impact of Laurentide Ice Sheet topography on glacial climate
Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation
Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation
Why could ice ages be unpredictable?
Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3
Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model
A new global reconstruction of temperature changes at the Last Glacial Maximum
Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM
Modelling large-scale ice-sheet–climate interactions following glacial inception
Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial
The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024, https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Short summary
We present a climate simulation using version 2.3 of the Meteorological Research Institute's Coupled General Circulation Model (MRI-CGCM2.3) to examine the impact of insolation changes on East Asian summer monsoon variability over the past 450 kyr. We show that changes in summer insolation over East Asia led to distinct climatic responses in China and Japan, driven by altered atmospheric circulation due to the intensification of the North Pacific subtropical high and the North Pacific High.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Yanxuan Du, Josephine R. Brown, and J. M. Kale Sniderman
Clim. Past, 20, 393–413, https://doi.org/10.5194/cp-20-393-2024, https://doi.org/10.5194/cp-20-393-2024, 2024
Short summary
Short summary
This study provides insights into regional Australian climate variations (temperature, precipitation, wind, and atmospheric circulation) during the Last Glacial Maximum (21 000 kyr ago) and the interconnections between climate variables in different seasons from climate model simulations. Model results are evaluated and compared with available palaeoclimate proxy records. Results show model responses diverge widely in both the tropics and mid-latitudes in the Australian region.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Robert Beyer, Mario Krapp, and Andrea Manica
Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, https://doi.org/10.5194/cp-16-1493-2020, 2020
Short summary
Short summary
Even the most sophisticated global climate models are known to have significant biases in the way they simulate the climate system. Correcting model biases is therefore essential for creating realistic reconstructions of past climate that can be used, for example, to study long-term ecological dynamics. Here, we evaluated three widely used bias correction methods by means of a global dataset of empirical temperature and precipitation records from the last 125 000 years.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020, https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Short summary
The paper shows, using climate simulations, that the Pacific–North American (PNA) teleconnection was distorted or completely broken at the Last Glacial Maximum (LGM). The results suggest that ENSO would have little direct impact on North American climates at the LGM.
Mi Yan, Bin Wang, Jian Liu, Axing Zhu, Liang Ning, and Jian Cao
Clim. Past, 14, 2037–2052, https://doi.org/10.5194/cp-14-2037-2018, https://doi.org/10.5194/cp-14-2037-2018, 2018
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Short summary
The behaviour of dust in terms of climate can be investigated using past climate. The Last Glacial Maximum (LGM; 21000 years before present) is known to be dustier. We investigated the impact of plausible dust distribution on the climate of the LGM using an Earth system model and found that the higher dust load results in less cooling over the polar regions. The main finding is that radiative perturbation by the high dust loading does not necessarily cool the surface surrounding Antarctica.
Leah Birch, Timothy Cronin, and Eli Tziperman
Clim. Past, 14, 1441–1462, https://doi.org/10.5194/cp-14-1441-2018, https://doi.org/10.5194/cp-14-1441-2018, 2018
Short summary
Short summary
We investigate the regional dynamics at the beginning of the last ice age, using a nested configuration of the Weather Research and Forecasting (WRF) model with a simple ice flow model. We find that ice sheet height causes a negative feedback on continued ice growth by interacting with the atmospheric circulation, causing warming on Baffin Island, and inhibiting the initiation of the last ice age. We conclude that processes at larger scales are needed to overcome the regional warming effect.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
P.M. Langebroek and K. H. Nisancioglu
Clim. Past, 10, 1305–1318, https://doi.org/10.5194/cp-10-1305-2014, https://doi.org/10.5194/cp-10-1305-2014, 2014
I. Suter, R. Zech, J. G. Anet, and T. Peter
Clim. Past, 10, 1183–1194, https://doi.org/10.5194/cp-10-1183-2014, https://doi.org/10.5194/cp-10-1183-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
M.-O. Brault, L. A. Mysak, H. D. Matthews, and C. T. Simmons
Clim. Past, 9, 1761–1771, https://doi.org/10.5194/cp-9-1761-2013, https://doi.org/10.5194/cp-9-1761-2013, 2013
I. Nikolova, Q. Yin, A. Berger, U. K. Singh, and M. P. Karami
Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, https://doi.org/10.5194/cp-9-1789-2013, 2013
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
T. Tharammal, A. Paul, U. Merkel, and D. Noone
Clim. Past, 9, 789–809, https://doi.org/10.5194/cp-9-789-2013, https://doi.org/10.5194/cp-9-789-2013, 2013
J. D. Annan and J. C. Hargreaves
Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, https://doi.org/10.5194/cp-9-367-2013, 2013
H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner
Clim. Past, 8, 1801–1819, https://doi.org/10.5194/cp-8-1801-2012, https://doi.org/10.5194/cp-8-1801-2012, 2012
J. M. Gregory, O. J. H. Browne, A. J. Payne, J. K. Ridley, and I. C. Rutt
Clim. Past, 8, 1565–1580, https://doi.org/10.5194/cp-8-1565-2012, https://doi.org/10.5194/cp-8-1565-2012, 2012
P. Bakker, C. J. Van Meerbeeck, and H. Renssen
Clim. Past, 8, 995–1009, https://doi.org/10.5194/cp-8-995-2012, https://doi.org/10.5194/cp-8-995-2012, 2012
D. Hofer, C. C. Raible, A. Dehnert, and J. Kuhlemann
Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, https://doi.org/10.5194/cp-8-935-2012, 2012
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
Clim. Past, 7, 1225–1246, https://doi.org/10.5194/cp-7-1225-2011, https://doi.org/10.5194/cp-7-1225-2011, 2011
F. S. R. Pausata, C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu
Clim. Past, 7, 1089–1101, https://doi.org/10.5194/cp-7-1089-2011, https://doi.org/10.5194/cp-7-1089-2011, 2011
C. Berrittella and J. van Huissteden
Clim. Past, 7, 1075–1087, https://doi.org/10.5194/cp-7-1075-2011, https://doi.org/10.5194/cp-7-1075-2011, 2011
Cited articles
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.:
Icebergs not the trigger for North Atlantic cold events, Nature, 520,
333–336, https://doi.org/10.1038/nature14330, 2015.
Berger, A. L.: Long-Term Variations of Daily Insolation and Quaternary
Climatic Changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change,
2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Bradtmiller, L. I., McManus, J. F., and Robinson, L. F.:
231Pa/230Th evidence for a weakened but persistent Atlantic
meridional overturning circulation during Heinrich Stadial 1, Nat. Commun.,
5, 5817, https://doi.org/10.1038/ncomms6817, 2014.
Broecker, W., Bond, G., Klas, M., Clark, E., and McManus, J.: Origin of the
northern Atlantic's Heinrich events, Clim. Dynam., 6, 265–273,
https://doi.org/10.1007/BF00193540, 1992.
Broecker, W. S. and Denton, G. H.: The role of ocean-atmosphere
reorganizations in glacial cycles, Geochim. Cosmochim. Ac., 53,
2465–2501, https://doi.org/10.1016/0016-7037(89)90123-3, 1989.
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W.,
Licciardi, J. M., and Teller, J. T.: Freshwater forcing of abrupt climate
change during the last glaciation, Science, 293, 283–287,
https://doi.org/10.1126/science.1062517, 2001.
Condron, A. and Winsor, P.: Meltwater routing and the Younger Dryas, P.
Natl. Acad. Sci. USA, 109, 19928–19933,
https://doi.org/10.1073/pnas.1207381109, 2012.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, 1–12,
https://doi.org/10.1029/2004PA001021, 2005.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer,
J. M., and Putnam, A. E.: The last glacial termination, Science, 328,
1652–1656, https://doi.org/10.1126/science.1184119, 2010.
Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I.,
Mouchet, A., Munhoven, G., Brovkin, V., and Weber, S. L.: Modeling the
influence of Greenland ice sheet melting on the Atlantic meridional
overturning circulation during the next millennia, Geophys. Res. Lett.,
34, 1–5, https://doi.org/10.1029/2007GL029516, 2007.
Du, J., Haley, B. A., and Mix, A. C.: Evolution of the Global Overturning
Circulation since the Last Glacial Maximum based on marine authigenic
neodymium isotopes, Quaternary Sci. Rev., 241, 106396,
https://doi.org/10.1016/j.quascirev.2020.106396, 2020.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyriefi, L., Oppo,
D., Labeyrie, L., Oppo, D., and Kallel, N.: Deepwater source variations
during the last climatic cylce and their impact on the global deepwater
circulation, Paleoceanography, 3, 343–360,
https://doi.org/10.1029/PA003i003p00343, 1988.
Edwards, N. R., Willmott, A. J., and Killworth, P. D.: On the role of
topography and wind stress on the stability of the thermohaline circulation,
J. Phys. Oceanogr., 28, 756–778,
https://doi.org/10.1175/1520-0485(1998)028<0756:OTROTA>2.0.CO;2, 1998.
Egbert, G. D., Ray, R. D., and Bills, B. G.: Numerical modeling of the
global semidiurnal tide in the present day and in the last glacial maximum,
J. Geophys. Res.-Oceans, 109, 1–15,
https://doi.org/10.1029/2003jc001973, 2004.
Evans, H. K. and Hall, I. R.: Deepwater circulation on Blake Outer Ridge
(western North Atlantic) during the Holocene, Younger Dryas, and Last
Glacial Maximum, Geochem. Geophy. Geosyst., 9, 1–19,
https://doi.org/10.1029/2007GC001771, 2008.
Fischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T.,
Parekh, P., Joos, F., Köhler, P., Völker, C., Gersonde, R.,
Barbante, C., Le Floch, M., Raynaud, D., and Wolff, E.: The role of
Southern Ocean processes in orbital and millennial CO2 variations – A
synthesis, Quaternary Sci. Rev., 29, 193–205,
https://doi.org/10.1016/j.quascirev.2009.06.007, 2010.
Freeman, E., Skinner, L. C., Waelbroeck, C., and Hodell, D.: Radiocarbon
evidence for enhanced respired carbon storage in the Atlantic at the Last
Glacial Maximum, Nat. Commun., 7, 1–8,
https://doi.org/10.1038/ncomms11998, 2016.
Gebbie, G.: How much did Glacial North Atlantic Water shoal?,
Paleoceanography, 29, 190–209, https://doi.org/10.1002/2013PA002557,
2014.
Goes, M., Murphy, L. N., and Clement, A. C.: The Stability of the AMOC
During Heinrich Events Is Not Dependent on the AMOC Strength in an
Intermediate Complexity Earth System Model Ensemble, Paleoceanogr.
Paleoclimatol., 34, 1359–1374, https://doi.org/10.1029/2019PA003580,
2019.
Griffies, S. M.: The Gent–McWilliams Skew Flux, J. Phys. Oceanogr., 28,
831–841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998.
Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model-data
comparison of δ13C in the glacial Atlantic Ocean,
Paleoceanography, 26, 1–16, https://doi.org/10.1029/2010PA002085, 2011.
Howe, J. N. W., Piotrowski, A. M., Noble, T. L., Mulitza, S., Chiessi, C.
M., and Bayon, G.: North Atlantic Deep Water Production during the Last
Glacial Maximum, Nat. Commun., 7, 11765,
https://doi.org/10.1038/ncomms11765, 2016.
Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z.,
Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., and
Wu, B.: Role of the Bering Strait on the hysteresis of the ocean conveyor
belt circulation and glacial climate stability, P. Natl. Acad. Sci.
USA, 109, 6417–6422, https://doi.org/10.1073/pnas.1116014109, 2012.
Jenkins, W. J., Smethie, W. M., Boyle, E. A., and Cutter, G. A.: Water mass
analysis for the U.S. GEOTRACES (GA03) North Atlantic sections, Deep Sea
Res., 116, 6–20,
https://doi.org/10.1016/j.dsr2.2014.11.018, 2015.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., and Joseph, D.: The NCEP NCAR 40-Year Reanalysis
Project. B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Keigwin, L. D. and Swift, S. A.: Carbon isotope evidence for a northern
source of deep water in the glacial western North Atlantic, P. Natl.
Acad. Sci. USA, 114, 2831–2835,
https://doi.org/10.1073/pnas.1614693114, 2017.
Keigwin, L. D., Klotsko, S., Zhao, N., Reilly, B., Giosan, L., and
Driscoll, N. W.: Deglacial floods in the Beaufort Sea preceded Younger Dryas
cooling, Nat. Geosci., 11, 599–604,
https://doi.org/10.1038/s41561-018-0169-6, 2018.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014.
Lehman, S. J. and Keigwin, L. D.: Sudden changes in North Atlantic
circulation during the last deglaciation, Nature, 356, 757–762,
https://doi.org/10.1038/356757a0, 1992.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstrof,
S., and Schellnhuber, H. J.: Tipping elements in the Earth System, P.
Natl. Acad. Sci. USA, 105, 1786–1793,
https://doi.org/10.1073/pnas.0911106106, 2008.
Lippold, J., Luo, Y., Francois, R., Allen, S. E., Gherardi, J., Pichat, S.,
Hickey, B., and Schulz, H.: Strength and geometry of the glacial Atlantic
Meridional Overturning Circulation, Nat. Geosci., 5, 813–816,
https://doi.org/10.1038/ngeo1608, 2012.
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation and
Abrupt Climate Change, Ann. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J. M., Ivanova, E. V., Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E. F., and Zahn, R.: Atlantic meridional overturning
circulation during the last glacial maximum, Science, 316, 66–69,
https://doi.org/10.1126/science.1137127, 2007.
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B.
I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H.
L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015.
McManus, J. F., Francois, R., Gherardl, J. M., Kelgwin, L., and
Drown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428,
834–837, https://doi.org/10.1038/nature02494, 2004.
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England,
M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred
from carbon isotopes: A data-model comparison study, Paleoceanography,
32, 2–17, https://doi.org/10.1002/2016PA003024, 2017.
Menviel, L. C., Spence, P., Skinner, L. C., Tachikawa, K., Friedrich, T.,
Missiaen, L., and Yu, J.: Enhanced mid-depth southward transport in the
Northeast Atlantic at the Last Glacial Maximum despite a weaker AMOC,
Paleoceanog. Paleoclimatol., 35, e2019PA003793,
https://doi.org/10.1029/2019PA003793, 2020.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J.,
Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J. M.: Atmospheric
CO2 concentrations over the last glacial termination, Science,
291, 112–114, https://doi.org/10.1126/science.291.5501.112, 2001.
Muglia, J. and Schmittner, A.: Glacial Atlantic overturning increased by
wind stress in climate models, Geophys. Res. Lett., 42, 9862–9869,
https://doi.org/10.1002/2015GL064583, 2015.
Müller, S. A., Joos, F., Edwards, N. R., and Stocker, T. F.: Water mass
distribution and ventilation time scales in a cost-efficient, three
dimensional ocean model, J. Climate, 19, 5479–5499,
https://doi.org/10.1175/JCLI3911.1, 2006.
Oppo, D. W., Curry, W. B., and McManus, J. F.: What do benthic 13C and
18O data tell us about Atlantic circulation during Heinrich Stadial 1?,
Paleoceanography, 20, 353–368, https://doi.org/10.1002/2014PA002667, 2015.
Oppo, D. W., Gebbie, G., Huang, K. F., Curry, W. B., Marchitto, T. M., and
Pietro, K. R.: Data Constraints on Glacial Atlantic Water Mass Geometry and
Properties, Paleoceanog. Paleoclimatol., 33, 1013–1034,
https://doi.org/10.1029/2018PA003408, 2018.
Peltier, W. R.: Ice Age Paleotopography, Science, 265, 195–201,
https://doi.org/10.1126/science.265.5169.195, 1994.
Pico, T., Mitrovica, J. X., and Mix, A. C.: Sea level fingerprinting of the
Bering Strait flooding history detects the source of the Younger Dryas
climate event, Sci. Adv., 6, eaay2935, https://doi.org/10.1126/sciadv.aay2935,
2020.
Pöppelmeier, F., Blaser, P., Gutjahr, M., Jaccard, S., Frank, M., Max,
L., and Lippold, J.: Northern Sourced Water dominated the Atlantic Ocean
during the Last Glacial Maximum, Geology, 48, 826–829,
https://doi.org/10.1130/G47628.1, 2020.
Pöppelmeier, F., Scheen, J., Jeltsch-Thömmes, A., and Stocker, T. F.: Model output from the Bern3D model of pre-industrial and Last Glacial Maximum, Data set, Zenodo, https://doi.org/10.5281/zenodo.4436092, 2021.
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Myzak, L. A., Wang, Z., and Weaver, A.
J.: Thermohaline circulation hysteresis: A model intercomparison, Geophys.
Res. Lett., 32, 1–5, https://doi.org/10.1029/2005GL023655, 2005.
Renssen, H., Mairesse, A., Goosse, H., Mathiot, P., Heiri, O., Roche, D. M.,
Nisancioglu, K. H., and Valdes, P. J.: Multiple causes of the Younger Dryas
cold period, Nat. Geosci., 8, 946–949,
https://doi.org/10.1038/ngeo2557, 2015.
Ritz, S. P., Stocker, T. F., and Joos, F.: A coupled dynamical ocean-energy
balance atmosphere model for paleoclimate studies, J. Climate, 24,
349–375, https://doi.org/10.1175/2010JCLI3351.1, 2011.
Roberts, W. H. G., Valdes, P. J., and Payne, A. J.: A new constraint on the
size of Heinrich Events from an iceberg/sediment model, Earth Planet. Sci.
Lett., 386, 1–9, https://doi.org/10.1016/j.epsl.2013.10.020, 2014.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation, Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, 2014.
Sarnthein, M., Winn, K., Jung, S., Duplessy, J. C., Labeyrie, L.,
Erlenkeuser, H., and Ganssen, G.: Changes in east Atlantic deepwater
circulation over the last 30,000 years: Eight time slice reconstructions,
Paleoceanography, 9, 209–267, https://doi.org/10.1029/93PA03301, 1994.
Schmittner, A. and Egbert, G. D.: An improved parameterization of tidal mixing for ocean models, Geosci. Model Dev., 7, 211–224, https://doi.org/10.5194/gmd-7-211-2014, 2014.
Skinner, L. C., Primeau, F., Freeman, E., De La Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A.
E.: Radiocarbon constraints on the glacial ocean circulation and its impact
on atmospheric CO2, Nat. Commun., 8, 1–10,
https://doi.org/10.1038/ncomms16010, 2017.
Stocker, T. F.: Past and future reorganizations in the climate system,
Quaternary Sci. Rev., 19, 301–319,
https://doi.org/10.1016/S0277-3791(99)00067-0, 2000.
Stocker, T. F. and Marchal, O.: Abrupt climate change in the computer: Is
it real?, P. Natl. Acad. Sci. USA, 97, 1362–1365,
https://doi.org/10.1073/pnas.97.4.1362, 2000.
Stocker, T. F. and Schmittner, A.: Influence of CO2 emission rates on
the stability of the thermohaline circulation, Nature, 388, 862–865,
https://doi.org/10.1038/42224, 1997.
Stocker, T. F. and Wright, D. G.: Rapid transitions of the ocean's deep
circulation induced by changes in surface water fluxes, Nature, 351,
729–732, https://doi.org/10.1038/351729a0, 1991.
Stocker, T. F., Timmermann, A., Renold, M., and Timm, O.: Effect of salt
compensation on the climate model response in simulations of large changes
of the Atlantic meridional overturning circulation, J. Climate,
20, 5912–5928, https://doi.org/10.1175/2007JCLI1662.1, 2007.
Stommel, H.: Thermohaline Convection with Two Stable Regimes, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961.
Wilmes, S. B., Schmittner, A., and Green, J. A. M.: Glacial Ice Sheet
Extent Effects on Modeled Tidal Mixing and the Global Overturning
Circulation, Paleoceanogr. Paleoclimatol., 34, 1437–1454,
https://doi.org/10.1029/2019PA003644, 2019.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Monthly temperature,
salinity, and transport variability of the Bering Strait through flow,
Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL021880,
2005.
Zaucker, F., Stocker, T. F., and Broecker, W. S.: Atmospheric freshwater
fluxes and their effect on the global thermohaline circulation, J. Geophys.
Res., 99, 12443–12457, https://doi.org/10.1029/94JC00526, 1994.
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on...