Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records?
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Quentin Dalaiden
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Marie G. P. Cavitte
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Liping Zhang
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, Colorado, USA
Related authors
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020, https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary
Short summary
This paper uses two different ways to perform model–data comparisons for the borehole temperature in Antarctica. The results suggest most models generally reproduce the long-term cooling in West Antarctica from 1000 to 1600 CE and the recent 50 years of warming in West Antarctica and Antarctic Peninsula. However, The 19th-century cooling in the Antarctic Peninsula (−0.94 °C) is not reproduced by any of the models, which tend to show warming instead.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Hugues Goosse, Pierre-Yves Barriat, Quentin Dalaiden, François Klein, Ben Marzeion, Fabien Maussion, Paolo Pelucchi, and Anouk Vlug
Clim. Past, 14, 1119–1133, https://doi.org/10.5194/cp-14-1119-2018, https://doi.org/10.5194/cp-14-1119-2018, 2018
Short summary
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Kristina Seftigen, Hugues Goosse, Francois Klein, and Deliang Chen
Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, https://doi.org/10.5194/cp-13-1831-2017, 2017
Short summary
Short summary
Comparisons of proxy data to GCM-simulated hydroclimate are still limited and inter-model variability remains poorly characterized. In this study, we bring together tree-ring paleoclimate evidence and CMIP5–PMIP3 model simulations of the last millennium hydroclimate variability across Scandinavia. We explore the consistency between the datasets and the role of external forcing versus internal variability in driving the hydroclimate changes regionally.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
V. Zunz and H. Goosse
The Cryosphere, 9, 541–556, https://doi.org/10.5194/tc-9-541-2015, https://doi.org/10.5194/tc-9-541-2015, 2015
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014, https://doi.org/10.5194/tc-8-453-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, https://doi.org/10.5194/cp-9-1141-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, https://doi.org/10.5194/tc-7-451-2013, 2013
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Thore Kausch, Stef Lhermitte, Marie G. P. Cavitte, Eric Keenan, and Shashwat Shukla
EGUsphere, https://doi.org/10.5194/egusphere-2024-2077, https://doi.org/10.5194/egusphere-2024-2077, 2024
Short summary
Short summary
Determining the net balance of snow accumulation on the surface of Antarctica is challenging. Sentinel-1 satellite sensors, which can see through snow, offer a promising method. However, linking their signals to snow amounts is complex due to snow's internal structure and limited on-the-ground data. This study found a connection between satellite signals and snow levels at three locations in Dronning Maud Land. Using models and field data, the method shows potential for wider use in Antarctica.
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650, https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
Ryan L. Fogt, Quentin Dalaiden, and Gemma K. O'Connor
Clim. Past, 20, 53–76, https://doi.org/10.5194/cp-20-53-2024, https://doi.org/10.5194/cp-20-53-2024, 2024
Short summary
Short summary
Antarctic sea ice is rapidly changing, with record lows set in 2017, 2022, and 2023 following decades of increase. To place these changes in a longer historical context, reconstructions have been created; however, they are quite different prior to observations. Here we find that the differences are more strongly tied to the implied connection of each reconstruction with the atmospheric circulation rather than differences in seasonality or geographic representation.
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023, https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary
Short summary
Radar observation collected above Titan Dome of the East Antarctic Ice Sheet is used to describe ice geometry and test a hypothesis that ice beneath the dome is older than 1 million years. An important climate transition occurred between 1.25 million and 700 thousand years ago, and if ice old enough to study this period can be removed as an ice core, new insights into climate dynamics are expected. The new observations suggest the ice is too young – more likely 300 to 800 thousand years old.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020, https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary
Short summary
This paper uses two different ways to perform model–data comparisons for the borehole temperature in Antarctica. The results suggest most models generally reproduce the long-term cooling in West Antarctica from 1000 to 1600 CE and the recent 50 years of warming in West Antarctica and Antarctic Peninsula. However, The 19th-century cooling in the Antarctic Peninsula (−0.94 °C) is not reproduced by any of the models, which tend to show warming instead.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Brice Van Liefferinge, Frank Pattyn, Marie G. P. Cavitte, Nanna B. Karlsson, Duncan A. Young, Johannes Sutter, and Olaf Eisen
The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, https://doi.org/10.5194/tc-12-2773-2018, 2018
Short summary
Short summary
Our paper provides an important review of the state of knowledge for oldest-ice prospection, but also adds new basal geothermal heat flux constraints from recently acquired high-definition radar data sets. This is the first paper to contrast the two primary target regions for oldest ice: Dome C and Dome Fuji. Moreover, we provide statistical comparisons of all available data sets and a summary of the community's criteria for the retrieval of interpretable oldest ice since the 2013 effort.
Hugues Goosse, Pierre-Yves Barriat, Quentin Dalaiden, François Klein, Ben Marzeion, Fabien Maussion, Paolo Pelucchi, and Anouk Vlug
Clim. Past, 14, 1119–1133, https://doi.org/10.5194/cp-14-1119-2018, https://doi.org/10.5194/cp-14-1119-2018, 2018
Short summary
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Olivier Passalacqua, Marie Cavitte, Olivier Gagliardini, Fabien Gillet-Chaulet, Frédéric Parrenin, Catherine Ritz, and Duncan Young
The Cryosphere, 12, 2167–2174, https://doi.org/10.5194/tc-12-2167-2018, https://doi.org/10.5194/tc-12-2167-2018, 2018
Short summary
Short summary
Locating a suitable drill site is a key step in the Antarctic oldest-ice challenge. Here we have conducted a 3-D ice flow simulation in the region of Dome C using a refined bedrock description. Five selection criteria are computed that together provide an objective overview on the local ice flow conditions. We delineate kilometer-scale favorable areas that overlap with the ones recently proposed by another group. We propose a few drill sites that should be surveyed during the next field seasons.
Emmanuel Le Meur, Olivier Magand, Laurent Arnaud, Michel Fily, Massimo Frezzotti, Marie Cavitte, Robert Mulvaney, and Stefano Urbini
The Cryosphere, 12, 1831–1850, https://doi.org/10.5194/tc-12-1831-2018, https://doi.org/10.5194/tc-12-1831-2018, 2018
Short summary
Short summary
This paper presents surface mass balance measurements from both GPR and ice core data collected during a traverse in a so-far-unexplored area between the DC and Vostok stations. Results presented here will contribute to a better knowledge of the global mass balance of the Antarctic ice sheet and thus help in constraining its contribution to sea level rise. Another novelty of the paper resides in the comprehensive error budget proposed for the method used for inferring accumulation rates.
Marie G. P. Cavitte, Frédéric Parrenin, Catherine Ritz, Duncan A. Young, Brice Van Liefferinge, Donald D. Blankenship, Massimo Frezzotti, and Jason L. Roberts
The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, https://doi.org/10.5194/tc-12-1401-2018, 2018
Short summary
Short summary
We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, over the last 73 kyr. We use internal isochrones interpreted from ice-penetrating radar surveys and a 1-D ice flow model to invert for time-averaged and paleo-accumulation rates. We observe that surface accumulation patterns are stable through the last 73 kyr, consistent with current observed regional precipitation gradients and consistent interactions between prevailing winds and surface slope.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Kristina Seftigen, Hugues Goosse, Francois Klein, and Deliang Chen
Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, https://doi.org/10.5194/cp-13-1831-2017, 2017
Short summary
Short summary
Comparisons of proxy data to GCM-simulated hydroclimate are still limited and inter-model variability remains poorly characterized. In this study, we bring together tree-ring paleoclimate evidence and CMIP5–PMIP3 model simulations of the last millennium hydroclimate variability across Scandinavia. We explore the consistency between the datasets and the role of external forcing versus internal variability in driving the hydroclimate changes regionally.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Anna Winter, Daniel Steinhage, Emily J. Arnold, Donald D. Blankenship, Marie G. P. Cavitte, Hugh F. J. Corr, John D. Paden, Stefano Urbini, Duncan A. Young, and Olaf Eisen
The Cryosphere, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, https://doi.org/10.5194/tc-11-653-2017, 2017
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
V. Zunz and H. Goosse
The Cryosphere, 9, 541–556, https://doi.org/10.5194/tc-9-541-2015, https://doi.org/10.5194/tc-9-541-2015, 2015
Z. Y. Song, H. L. Liu, C. Z. Wang, L. P. Zhang, and F. L. Qiao
Ocean Sci., 10, 837–843, https://doi.org/10.5194/os-10-837-2014, https://doi.org/10.5194/os-10-837-2014, 2014
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014, https://doi.org/10.5194/tc-8-453-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, https://doi.org/10.5194/cp-9-1141-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
V. Zunz, H. Goosse, and F. Massonnet
The Cryosphere, 7, 451–468, https://doi.org/10.5194/tc-7-451-2013, https://doi.org/10.5194/tc-7-451-2013, 2013
Cited articles
Abram, N. J., Wolff, E. W., and Curran, M. A. J.: A review of sea ice proxy
information from polar ice cores, Quaternary Sci. Rev., 79, 168–183,
https://doi.org/10.1016/j.quascirev.2013.01.011, 2013.
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 4, 564–569, https://doi.org/10.1038/nclimate2235, 2014.
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour,
C. O., Dunne, J. P., Griffies, S. M., Hallberg, R., J. Harrison, M. J., Held,
I. M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S., Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N., and Zhang, R.: The GFDL global ocean and sea ice model OM4.0:
Model description and simulation features, J. Adv. Model. Earth Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019.
Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner, S. T., Gudgel, R. G., Gordon, C. T., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhost, A. R., Lau, N. C., Liang, Z., Malyshev, S. L., Milly, P. C. D., Nath, M. J., Ploshay, J. J., Ramaswamy, V., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Soden, B. J., Stern, W. F., Thompson, L. A., Wilson, R. J., Wittenberg, A. T., and Wyman, B. L.: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations, J. Climate, 17, 4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004.
Badgeley, J. A., Steig, E. J., Hakim, G. J., and Fudge, T. J.: Greenland temperature and precipitation over the last 20 000 years using data assimilation, Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, 2020.
Broecker, W. S., Sutherland, S., and Peng, T.-H.: A possible 20th-century
slowdown of Southern Ocean deep water formation, Science, 286,
1132–1135, https://doi.org/10.1126/science.286.5442.1132, 1999.
Campbell, E. C., Wilson, E. A., Moore, G. W. K., Riser, S. C., Brayton, C.
E., Mazloff, M. R., and Talley, L. D.: Antarctic offshore polynyas linked to
Southern Hemisphere climate anomalies, Nature, 570, 319–325, https://doi.org/10.1038/s41586-019-1294-0, 2019.
Carsey, F. D.: Microwave observation of the Weddell Polynya, Mon. Weather
Rev., 108, 2032–2044,
https://doi.org/10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2, 1980.
Cavitte, M. G. P., Dalaiden, Q., Goosse, H., Lenaerts, J. T. M., and Thomas, E. R.: Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries, The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, 2020.
Cheon, W. G., Lee, S.-K., Gordon, A. L., Liu, Y., Cho, C.-B., and Park, J.
J.: Replicating the 1970s' Weddell Polynya using a coupled ocean-sea ice
model with reanalysis surface flux fields, Geophys. Res. Lett., 42,
5411–5418, https://doi.org/10.1002/2015GL064364, 2015.
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for
large-scale temperature reconstructions of the past two millennia, Rev.
Geophys., 55, 40–96, https://doi.org/10.1002/2016RG000521, 2017.
Collins, J. A., Lamy, F., Kaiser, J., Ruggieri, N., Henkel, S., De Pol-Holz,
R., Garreaud, R., and Arz, H. W.: Centennial-scale SE Pacific sea surface temperature variability over the past 2,300 years, Paleoceanography and
Paleoclimatology, 34, 336–352, https://doi.org/10.1029/2018PA003465, 2019.
Comiso, J. C. and Gordon, A. L.: Recurring polynyas over the Cosmonaut Sea and the Maud Rise, J. Geophys. Res., 92, 2819–2833, https://doi.org/10.1029/JC092iC03p02819, 1987.
Comiso, J. C. and Gordon, A. L.: Cosmonaut polynya in the Southern Ocean:
structure and variability, J. Geophys. Res., 101, 18297–18313,
https://doi.org/10.1029/96JC01500, 1996.
Criscitiello, A. S., Das, S. B., Evans, M. J., Frey, K. E., Conway, H.,
Joughin, I., Medley, B., and Steig, E. J.: Ice sheet record of recent
sea-ice behavior and polynya variability in the Amundsen Sea, West
Antarctica. J. Geophys. Res.-Ocean., 118, 118–130, https://doi.org/10.1029/2012JC008077, 2013.
Dalaiden, Q., Goosse, H., Klein, F., Lenaerts, J. T. M., Holloway, M., Sime, L., and Thomas, E. R.: How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models, The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, 2020.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M.,
Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium, Clim. Dynam., 51, 2321–2339, https://doi.org/10.1007/s00382-017-4015-0, 2018.
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and
Marinova, I.: Cessation of deep convection in the open Southern Ocean under
anthropogenic climate change, Nat. Clim. Change, 4, 278–282,
https://doi.org/10.1038/nclimate2132, 2014.
Delworth, T. L., Cooke, W. F., Adcroft, A., Bushuk, M., Chen, J.-H., Dunne, K. A., Ginoux, P., Gudgel, R., Hallberg, R. W., Harris, L., Harrison, M.J., Johnson, N., Kapnick, S. B., Lin, S.-J., Lu, F., Malyshev, S., Milly, P. C., Murakami, H., Naik, V., Pascale, S. Paynter, D., Rosati, A., Schwarzkopf, M. D., Shevliakova, E., Underwood, S., Wittenberg, A. T., Xiang, B., Yang, X., Zeng, F., Zhang, H., Zhang, L., and Zhao, M.: SPEAR-the next generation GFDL
modeling system for seasonal to multidecadal prediction and projection, J.
Adv. Model Earth Sy., 12, e2019MS0018952020, https://doi.org/10.1029/2019MS001895, 2020.
de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, M.-S., and Wolff, E.
W.: Sea ice in the paleoclimate system: the challenge of reconstructing sea
ice from proxies – An introduction, Quaternary Sci. Rev., 79, 1–8, https://doi.org/10.1016/j.quascirev.2013.08.009, 2013.
Dubinkina, S. and Goosse, H.: An assessment of particle filtering methods and nudging for climate state reconstructions, Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, 2013.
Dufour, C. O., Morrison, A. K., Griffies, S. M., Frenger, I., Zanowski, H., and Winton, M.: Preconditioning of the Weddell Sea polynya by the ocean
mesoscale and dense water overflows, J. Climate, 30, 7719–7737,
https://doi.org/10.1175/JCLI-D-16-0586.1, 2017.
Francis, D., Eayrs, C., Cuesta, J., and Holland, D.: Polar cyclones at the
origin of the reoccurrence of the Maud Rise Polynya in austral winter 2017,
J. Geophys. Res.-Atmos., 124, 5251–5267, https://doi.org/10.1029/2019JD030618, 2019.
Foster, T. D. and Carmack, E. C.: Frontal zone mixing and Antarctic Bottom
Water formation in the southern Weddell Sea, Deep Sea Res. Oceanogr. Abstr.,
23, 301–317, https://doi.org/10.1016/0011-7471(76)90872-X, 1976.
Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.: A monthly
global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying
past climatic variations, Scientific Data, 4, 170076,
https://doi.org/10.1038/sdata.2017.76, 2017.
Goel, V., Matsuoka, K., Berger, C. D., Lee, I., Dall, J., and Forsberg, R.:
Characteristics of ice rises and ice rumples in Dronning Maud Land and
Enderby Land, Antarctica, J. Glaciol., 66, 1064–1078, https://doi.org/10.1017/jog.2020.77, 2020.
Goosse, H. and Fichefet, T.: Open-ocean convection and polynya formation in
a large-scale ice-ocean model, Tellus A, 53, 94–111, https://doi.org/10.1034/j.1600-0870.2001.01061.x, 2001.
Goosse, H., Crespin, E, Dubinkina, S., Loutre, M. F., Mann, M. E., Renssen,
H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal
dynamics in explaining the “Medieval Climate Anomaly”, Clim. Dynam., 39,
2847–2866, https://doi.org/10.1007/s00382-012-1297-0, 2012.
Goosse, H., Kay, J. E., Armour, K., Bodas-Salcedo, A., Chepfer, H.,
Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park,
H.-S., Pithan, F., Svensson, G., and Vancoppenolle, M.: Quantifying climate
feedbacks in polar regions, Nat. Commun, 9, 1919,
https://doi.org/10.1038/s41467-018-04173-0, 2018.
Goosse, H., Dalaiden, Q., Cavitte, M. G. P., and Zhang, L.: Three reconstructions of the formation of large open ocean polynyas in the Southern Ocean using ice core records, Data set, Zenodo, https://doi.org/10.5281/zenodo.4271569,
2020.
Gordon, A. L.: Deep Antarctic convection west of Maud Rise, J. Phys.
Oceanogr., 8, 600–612, https://doi.org/10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2, 1978.
Gordon, A. L.: Weddell Deep Water variability, J. Mar. Res., 40, 199–217, 1982.
Gordon, A. L. and Huber, B. A.: Southern Ocean winter mixed layer, J. Geophys. Res., 95, 11655–11672, https://doi.org/10.1029/JC095iC07p11655, 1990.
Gordon, A. L., Visbeck, M., and Comiso, J. C.: A possible link between the
Weddell Polynya and the Southern Annular Mode, J. Climate, 20, 2558–2571,
https://doi.org/10.1175/JCLI4046.1, 2007.
Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D.,
and Van Lipzig, N. P. M.: The role of atmospheric rivers in anomalous snow
accumulation in East Antarctica, Geophys. Res. Lett., 41, 6199–6206.
https://doi.org/10.1002/2014GL060881, 2014.
Goursaud, S., Masson-Delmotte, V., Favier, V., Preunkert, S., Legrand, M., Minster, B., and Werner, M.: Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica, The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, 2019.
Graf, W., Oerter H., Reinwarth, O., and Stichler, W.: Stable-isotope records
from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201, https://doi.org/10.3189/172756402781816492, 2002.
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif, R., Steiger, N., and Perkins, W. A.: The last millennium climate reanalysis project: Framework and first results, J. Geophys. Res.-Atmos., 121, 6745–6764, https://doi.org/10.1002/2016JD024751, 2016.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern
Ocean bottom water characteristics in CMIP5 models, Geophys. Res. Lett., 40,
1409–1414, https://doi.org/10.1002/grl.50287, 2013.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Changes in
global ocean bottom properties and volume transports in CMIP5 models under
climate change scenarios, J. Climate, 28, 2917–2944,
https://doi.org/10.1175/JCLI-D-14-00381.1, 2015.
Holland, D. M.: Explaining the Weddell Polynya – a large ocean eddy shed at
Maud Rise, Science, 292 1697–1700, https://doi.org/10.1126/science.1059322, 2001.
Holloway, M. D., Sime, L. C., Singarayer, J. S., Tindall, J. C., Bunch, P., and Valdes, P. J.: Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse, Nat. Commun. 7, 12293, https://doi.org/10.1038/ncomms12293, 2016.
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance,
S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston,
P.: On the representation error in data assimilation, Advances in Data
Assimilation Methods, Q. J. Roy. Meteor. Soc., 144, 1257–1278,
https://doi.org/10.1002/qj.3130, 2018.
Jena, B., Ravichandran, M., and Turner, J.: Recent reoccurrence of large
open-ocean polynya on the Maud Rise seamount, Geophys. Res. Let., 46,
4320–4329, https://doi.org/10.1029/2018GL081482, 2019.
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic Deep
Water volumes, J. Geophys. Res., 113, C05027, https://doi.org/10.1029/2007JC004477,
2008.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T.,
Vinther, B. M., Luterbacher, J., Zwiers, F. W., Wahl, E., Schmidt, G., Ammann, C., Mann, M. E., Wanner, H., Buckley, B. M., Cobb, K., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Mosley-Thompson, E., Overpeck, J. T., Schulz, M., Tudhope, S., Villalba, R., and Wolff, E.: High-resolution paleoclimatology of the last millennium: a review of the current status and future prospects, The Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009.
Kaufman, Z. S., Feldl, N., Weijer, W., and Veneziani, M.: Causal interactions
between Southern Ocean polynyas and high-latitude atmosphere–ocean
variability, J. Climate, 33, 4891–4905, https://doi.org/10.1175/JCLI-D-19-0525.1, 2020.
Kaczmarska, M., Isaksson, E., Karlöf, K., Winther, J.-G., Kohler, J.,
Godtliebsen, F., Ringstad Olsen, L., Hofstede, C. M., van den Broeke, M. R.,
Van DeWal, R. S. W., and Gundestrup, N.: Accumulation variability derived
from an ice core from coastal Dronning Maud Land, Antarctica, Ann. Glaciol., 39, 339–345, https://doi.org/10.3189/172756404781814186, 2004.
Klein, F., Abram, N. J., Curran, M. A. J., Goosse, H., Goursaud, S., Masson-Delmotte, V., Moy, A., Neukom, R., Orsi, A., Sjolte, J., Steiger, N., Stenni, B., and Werner, M.: Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments, Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, 2019.
Kurtakoti, P., Veneziani, M., Stössel, A., and Weijer, W.:
Preconditioning and formation of Maud Rise polynyas in a high-resolution
Earth System Model, J. Climate, 31, 9659–9678,
https://doi.org/10.1175/JCLI-D-18-0392.1, 2018.
Laepple, T., Münch, T., Casado, M., Hoerhold, M., Landais, A., and Kipfstuhl, S.: On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits, The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, 2018.
Laluraj, C. M., Thamban, M., Naik, S. S., Redkar, B. L., Chaturvedi, A., and
Ravindra, R.: Nitrate records of a shallow ice core from East Antarctica:
atmospheric processes, preservation and climatic implications, The Holocene,
21, 351–356, https://doi.org/10.1177/0959683610374886, 2011.
Latif, M., Martin, T., and Park, W.: Southern Ocean sector centennial
climate variability and recent decadal trends, J. Climate, 26, 7767–7782,
https://doi.org/10.1175/JCLI-D-12-00281.1, 2013.
Lenaerts, J. T. M., Medley, B., van den Broeke, M. R., and Wouters, B.:
Observing and modeling ice sheet surface mass balance, Rev. Geophys., 57, 376–420, https://doi.org/10.1029/2018RG000622, 2019.
Levine, J. G., Yang, X., Jones, A. E., and Wolff, E. W.: Sea salt as an ice core
proxy for past sea ice extent: A process based model study, J. Geophys. Res.-Atmos., 119, 5737–5756, https://doi.org/10.1002/2013JD020925, 2014.
Lyman, J. M. and Johnson, G. C.: Estimating global ocean heat content changes
in the upper 1800 m since 1950 and the influence of climatology choice, J.
Climate, 27, 1945–1957, https://doi.org/10.1175/JCLI-D-12-00752.1, 2014.
Manabe, S., Stouffer, R. J., Spelman, M. J., and Bryan, K.: Transient response of coupled ocean-atmosphere model to gradual changes of atmospheric
CO2, J. Climate, 4, 785–818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2, 1991.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia, P. Natl. Acad. Sci. USA, 105, 13252–13257, https://doi.org/10.1073/pnas.0805721105, 2008.
Mantyla, A. W. and Reid, J. L.: Abyssal characteristics of the World Ocean
waters, Deep-Sea Res. Pt A, 30, 805–833, https://doi.org/10.1016/0198-0149(83)90002-X, 1983.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and
reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Martin, T., Park, W., and Latif, M.: Multi-centennial variability controlled
by Southern Ocean convection in the Kiel Climate Model, Clim. Dynam., 40,
2005–2022, https://doi.org/10.1007/s00382-012-1586-7, 2013.
Martinson, D. G.: Evolution of the Southern Ocean winter mixed layer and sea
ice: open ocean deepwater formation and ventilation, J. Geophys. Res.,
95, 11641–11654, https://doi.org/10.1029/JC095iC07p11641, 1990.
Martinson, D. G., Killworth, P. D., and Gordon, A. L.: A convective model for
the Weddell Polynya, J. Phys. Oceanogr., 11, 466–488,
https://doi.org/10.1175/1520-0485(1981)011<0466:ACMFTW>2.0.CO;2, 1981.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A.,
Bernardo, R., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S.,
Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A.,
Helsen, M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D.,
Oerter, H., Petit, J., Royer, A., Uemera, R., Schmidt, G., Schlosser, E.,
Simões, J., Steig, E., Stenni, B., Stievenard, M., van den Broeke, M.,
van de Wal, R., van de Berg, W., Vimeux, F., and White, J.: A review of
Antarctic surface snow isotopic composition: Observations, atmospheric
circulation, and isotopic modeling, J. Climate, 21, 3359–3387,
https://doi.org/10.1175/2007JCLI2139.1, 2008.
Medley, B. and Thomas, E. R.: Increased snowfall over the Antarctic Ice
Sheet mitigated twentieth-century sea-level rise, Nat. Clim. Change, 9,
34–39, https://doi.org/10.1038/s41558-018-0356-x, available also from
https://earth.gsfc.nasa.gov/cryo/data/antarctic-accumulation-reconstructions, last access: 6 February 2019.
Medley, B., McConnell, J. R., Neumann, T. A., Reijmer, C. H., Chellman, N.,
Sigl, M., and Kipfstuhl, S.: Temperature and snowfall in western Queen Maud
Land increasing faster than climate model projections, Geophys. Res. Lett.,
45, 1472–1480, https://doi.org/10.1002/2017GL075992, 2018.
Meier, W. N., Gallaher, D., and Campbell, G. G.: New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery, The Cryosphere, 7, 699–705, https://doi.org/10.5194/tc-7-699-2013, 2013.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., Severi, M.,
Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.: Holocene sea
ice variability driven by wind and polynya efficiency in the Ross Sea, Nat.
Commun., 8, 1334, https://doi.org/10.1038/s41467-017-01455-x, 2017.
Moore, G. W. K., Alverson, K., and Renfrew, I. A.: A reconstruction of the
air–sea interaction associated with the Weddell Polynya, J. Phys.
Oceanogr., 32, 1685–1698,
https://doi.org/10.1175/1520-0485(2002)032,1685:AROTAS.2.0.CO;2, 2002.
Morales Maqueda, M. A., Willmott, A. J., and Biggs, N. R. T.: Polynya
dynamics: A review of observations and modeling, Rev. Geophys., 42, RG1004,
https://doi.org/10.1029/2002RG000116, 2004.
Mulvaney, R., Oerter, H., Peel, D. A., Graf, W., Arrowsmith, C., Pasteur, E.
C., Knight, B., Littot, G. C., and Miners, W. D.: 1000 year ice-core records
from Berkner Island, Antarctica, Ann. Glaciol., 35, 45–51,
https://doi.org/10.3189/172756402781817176, 2002.
Nicolas J. P. and Bromwich, D. H.: New reconstruction of Antarctic
near-surface temperatures: Multidecadal trends and reliability of global
reanalyses, J. Clim., 27, 8070–8093,
https://doi.org/10.1175/JCLI-D-13-00733.1, reconstructed temperature data available at:
http://polarmet.osu.edu/datasets/Antarctic_recon/ (last access: 4 July 2018), 2014.
Nishio, F., Furukawa, T., Hashida, G., Igarashi, M., Kameda, T., Kohno, M.,
Motoyama, H., Naoki, K., Satow, K., Suzuki, K., Morimasa, T., Toyama, Y.,
Yamada, T., and Watanabe, O.: Annual-layer determinations and 167 year
records of past climate of H72 ice core in east Dronning Maud Land,
Antarctica, Ann. Glaciol., 35, 471–479, https://doi.org/10.3189/172756402781817086, 2002.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Accumulation rates in Dronning Maud Land,
Antarctica, as revealed by dielectric-profiling measurements of shallow firn
cores, Ann. Glaciol., 30, 27–34, https://doi.org/10.3189/172756400781820705, 2000.
Philippe, M., Tison, J.-L., Fjøsne, K., Hubbard, B., Kjær, H. A., Lenaerts, J. T. M., Drews, R., Sheldon, S. G., De Bondt, K., Claeys, P., and Pattyn, F.: Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica, The Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016, 2016.
Purkey, S. G., Smethie Jr., W. M., Gebbie, G., Gordon, A. L., Sonnerup, R.
E., Warner, M. J., and Bullister, J. L.: A synoptic view of the ventilation
and circulation of Antarctic Bottom Water from chlorofluorocarbons and
natural tracers, Annu. Rev. Mar. Sci., 10, 503–527,
https://doi.org/10.1146/annurev-marine-121916-063414, 2018.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Resplandy, L., Keeling, R. F., Eddebbar, Y., Brooks, M. K., Wang, R., Bopp,
L., Long, M. C., Dunne, J. P., Koeve, W., and Oschlies, A.: Quantification
of ocean heat uptake from changes in atmospheric O2 and CO2 composition, Scientific Reports, 9, 20244, https://doi.org/10.1038/s41598-019-56490-z, 2019.
Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Sneed, S. B., Oerter, H., and Arrigo, K. R.: Sea ice variability and primary productivity in the Ross Sea,
Antarctica, from methylsulphonate snow record, Geophys. Res. Lett., 36,
L10704, https://doi.org/10.1029/2009GL037311, 2009.
Rhodes, R. H., Yang, X., and Wolff, E. W.: Sea ice versus storms: What controls sea salt in Arctic ice cores?, Geophys. Res. Lett., 45, 5572–5580,
https://doi.org/10.1029/2018GL077403, 2018.
Sallée, J.-B., Shuckburgh, E., Bruneau, N., Meijers, A. J. S.,
Bracegirdle, T. J., Wang, Z., and Roy, T.: Assessment of Southern Ocean
water mass circulation and characteristics in CMIP5 models: Historical bias
and forcing response, J. Geophys. Res.-Oceans, 118, 1830–1844,
https://doi.org/10.1002/jgrc.20135, 2013.
SCAR (Scientific Committee on Antarctic Research): Met READER: READER data set, British Antarctic Survey (BAS), Cambridge, UK, available at: https://legacy.bas.ac.uk/met/READER/, last access: 9 April 2020.
Sime, L. C., Tindall, J. C., Wolff, E. W., Connolley, W. M., and Valdes, P.:
Antarctic isotopic thermometer during a CO2 forced warming event, J.
Geophys. Res., 113, D24119, https://doi.org/10.1029/2008JD010395, 2008.
Sommer, S., Appenzeller, C., Rothlisberger, R., Hutterli, M. A., Stauffer,
B., Wagenbach, D., Oerter, H., Wilhelms, F., Miller, H., and Mulvaney, R.:
Glacio-chemical study spanning the past 2 kyr on three ice cores from
Dronning Maud Land, Antarctica 1. Annually resolved accumulation rates, J.
Geophys. Res., 105, 29411–29421, https://doi.org/10.1029/2000JD900449,
2000.
Steig, E. J., Ding, Q., White, J. W. C., Küttel, M., Rupper, S. B.,
Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K.
C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T.
J., Schneider, D. P., Schauer, A. J.,Teel, R. P., Vaughn, B. H., Burgener,
L., Williams, J., and Korotkikh, E.: Recent climate and icesheet changes in
West Antarctica compared with the past 2,000 years, Nat. Geosci., 6,
372–375, https://doi.org/10.1038/ngeo1778, 2013.
Steiger, N. J.: Historical climate model output of ECHAM5-wiso from
1871–2011 at T106 resolution, Data set, Zenodo,
https://doi.org/10.5281/zenodo.1249604, 2018.
Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H., and Hakim, G. J.:
Climate reconstruction using data assimilation of water isotope ratios from
ice cores, J. Geophys. Res.-Atmos., 122, 1545–1568,
https://doi.org/10.1002/2016JD026011, 2017.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B..: A reconstruction of global hydroclimate and dynamical variables over the Common Era, Scientific Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S., Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van Ommen, T., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson, E., Ekaykin, A., Werner, M., and Frezzotti, M.: Antarctic climate variability on regional and continental scales over the last 2000 years, Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, 2017a.
Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A. J., Goursaud, S.,
Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D. V., van Ommen, T.
D., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson,
E., Ekaykin, A. A., Werner, M., and Frezzotti, M.: PAGES Antarctica2k
Temperature Reconstructions, Data set, NOAA, available at:
https://www.ncdc.noaa.gov/paleo-search/study/22589 (last access: 18 March 2018), 2017b.
Stössel, A. and Kim, S.-J.: Decadal deep-water variability in the
subtropical Atlantic and convection in the Weddell Sea, J. Geophys. Res.,
106, 22425–22440, https://doi.org/10.1029/2000JC000335, 2001.
Stössel, A., Notz, D., Haumann, F. A., Haak, H., Jungclaus, J., and Mikolajewicz, U.: Controlling high-latitude Southern Ocean convection in
climate models, Ocean Modell., 86, 58–75, https://doi.org/10.1016/j.ocemod.2014.11.008, 2015.
Swart, S., Johnson, K., Mazloff, M. R., Meijers, A., Meredith, M. P.,
Newman, L., and Sallée, J.-B.: Return of the Maud Rise polynya: climate
litmus or sea ice anomaly?, in: State of the Climate in 2017, B. Am.
Meteorol. Soc., 99, S188–S189, https://doi.org/10.1175/2018BAMSStateoftheClimate.1,
2018.
Timmermann, R., Lemke, P., and Kottmeier, C.: Formation and maintenance of a
polynya in the Weddell Sea, J. Phys. Oceanogr., 29, 1251–1264,
https://doi.org/10.1175/1520-0485(1999)029<1251:FAMOAP>2.0.CO;2 1999.
Thomas, E. R.: Antarctic regional snow accumulation composites over the past 1000 years, Version 1, Data Set, Polar Data Centre, Natural Environment Research Council, https://doi.org/10.5285/c4ecfe25-12f2-453b-ad19-49a19e90ee32, sourced from https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/00940 (last access: 19 February 2018), 2017.
Thomas, E. R., van Wessem, J. M., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T. J., Vallelonga, P., Medley, B., Lenaerts, J., Bertler, N., van den Broeke, M. R., Dixon, D. A., Frezzotti, M., Stenni, B., Curran, M., and Ekaykin, A. A.: Regional Antarctic snow accumulation over the past 1000 years, Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017,
2017.
Thomas, E. R., Allen, C. S., Etourneau, J., King, A. C. F., Severi, M.,
Winton, V. H. L., Mueller, J., Crosta, X., and Peck, V. L.: Antarctic sea ice
proxies from marine and ice core archives suitable for reconstructing sea
Ice over the past 2000 Years, Geosciences, 9, 506,
https://doi.org/10.3390/geosciences9120506, 2019.
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton,
A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.: The SCAR
READER project: Toward a high-quality database of mean Antarctic
meteorological observations, J. Climate, 17, 2890–2898,
https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2, 2004.
Turner, J., Phillips, T., Thamban, M., Rahaman, W., Marshall, G. J., Wille,
J. D., Vincent, V., Winton, V. Holly, L., Thomas, E., Wang, Z., van den
Broeke, M., Hosking, J. S., and Lachlan-Cope, T.: The dominant role of
extreme precipitation events in Antarctic snowfall variability, Geophys.
Res. Let., 46, 3502–3511, https://doi.org/10.1029/2018GL081517, 2019.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
von Berg, L., Prend, C. J., Campbell, E. C., Mazloff, M. R., Talley, L. D.,
and Gille, S. T.: Weddell Sea phytoplankton blooms modulated by sea ice
variability and polynya formation, Geophys. Res. Let., 47, e2020GL087954, https://doi.org/10.1029/2020GL087954, 2020.
Weijer, W., Veneziani, M., Stössel, A., Hecht, M. W., Jeffery, N.,
Jonko, A., Hodos, T., and Wang, H.: Local atmospheric response to an
open-ocean polynya in a high-resolution climate model, J. Climate, 30,
1629–1641, https://doi.org/10.1175/JCLI-D-16-0120.1, 2017.
Wilson, E. A., Riser, S. C., Campbell, E. C., and Wong, A. P. S.: Winter
upper-ocean stability and ice–ocean feedbacks in the sea ice–covered
Southern Ocean, J. Phys. Oceanogr., 49, 1099–1117,
https://doi.org/10.1175/JPO-D-18-0184.1, 2019.
Zanowski, H., Hallberg, R., and Sarmiento, J. L.: Abyssal ocean warming and
salinification after Weddell Polynyas in the GFDL CM2G coupled climate
model, J. Phys. Oceanogr., 45, 2755–2772,
https://doi.org/10.1175/JPO-D-15-0109.1, 2015.
Zhang L., Delworth, T. L., Cooke, W., and Yang, X.: Natural variability of
Southern Ocean convection as a driver of observed climate trends, Nat. Clim
Change, 9, 59–65, https://doi.org/10.1038/s41558-018-0350-3, 2019.
Zhang L., Delworth, T. L., Cooke, W., Goosse, H., Mitchell, B., Morioka, Y.,
and Yang, X.: On the mean state dependence of Southern Ocean low frequency
internal variability, J. Climate, 1–60, https://doi.org/10.1175/JCLI-D-20-0049.1, 2020.
Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen,
J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K. A., Durachta, J.,
Fan, S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M.,
Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P.,
Lin, S.-J., Malyshev, S., Mason, E., Milly, P. C. D., Ming, Y., Naik, V.,
Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V.,
Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z.,
Shin, H., Silvers, L., Wilson, J. R., Winton, M., Wittenberg, A. T., Wyman,
B., and Xiang, B.: The GFDL global atmosphere and land model AM4.0/LM4.0: 2.
Model description, sensitivity studies, and tuning strategies, J. Adv.
Model. Earth Sy., 10, 735–769, https://doi.org/10.1002/2017MS001209, 2018.
Zwally, H. J., Comiso, J. C., Parkinson, C. L., Campbell, W. J., Carsey, F.
D., and Gloersen, P.: Antarctic sea ice, 1973–1976: Satellite
passive-microwave observations, NASA Spec. Publ., SP-459, 206 pp., available at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840002650.pdf (last access: 21 December 2020), 1983.
Short summary
Polynyas are ice-free oceanic areas within the sea ice pack. Small polynyas are regularly observed in the Southern Ocean, but large open-ocean polynyas have been rare over the past decades. Using records from available ice cores in Antarctica, we reconstruct past polynya activity and confirm that those events have also been rare over the past centuries, but the information provided by existing data is not sufficient to precisely characterize the timing of past polynya opening.
Polynyas are ice-free oceanic areas within the sea ice pack. Small polynyas are regularly...