Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-973-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-973-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleogeographic controls on the evolution of Late Cretaceous ocean circulation
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Christopher J. Poulsen
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Frédéric Fluteau
Institut de Physique du Globe de Paris, Université de Paris, CNRS, 75005 Paris, France
Clay R. Tabor
Department of Geosciences, University of Connecticut, Storrs, CT, USA
Kenneth G. MacLeod
Department of Geological Sciences, University of Missouri, Columbia, MO, USA
Ellen E. Martin
Department of Geosciences, Williamson Hall 362, University of Florida, Gainesville, FL, USA
Shannon J. Haynes
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA
Masoud A. Rostami
Ecology, Evolution and Conservation Biology Department, University of Nevada, Reno, NV, USA
Related authors
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Preprint under review for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman
The Cryosphere, 15, 1627–1644, https://doi.org/10.5194/tc-15-1627-2021, https://doi.org/10.5194/tc-15-1627-2021, 2021
Short summary
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Jiang Zhu and Christopher J. Poulsen
Clim. Past, 17, 253–267, https://doi.org/10.5194/cp-17-253-2021, https://doi.org/10.5194/cp-17-253-2021, 2021
Short summary
Short summary
Climate sensitivity has been directly calculated from paleoclimate data. This approach relies on good understandings of climate forcings and interactions within the Earth system. We conduct Last Glacial Maximum simulations using a climate model to quantify the forcing and efficacy of ice sheets and greenhouse gases and to directly estimate climate sensitivity in the model. Results suggest that the direct calculation overestimates the truth by 25 % due to neglecting ocean dynamical feedback.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Hong Shen and Christopher J. Poulsen
Clim. Past, 15, 169–187, https://doi.org/10.5194/cp-15-169-2019, https://doi.org/10.5194/cp-15-169-2019, 2019
Short summary
Short summary
The stable isotopic composition of water (δ18O) preserved in terrestrial sediments has been used to reconstruct surface elevations. The method is based on the observed decrease in δ18O with elevation, attributed to rainout during air mass ascent. We use a climate model to test the δ18O–elevation relationship during Tibetan–Himalayan uplift. We show that δ18O is a poor indicator of past elevation over most of the region, as processes other than rainout are important when elevations are lower.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
C. R. Tabor, C. J. Poulsen, and D. Pollard
Clim. Past, 10, 41–50, https://doi.org/10.5194/cp-10-41-2014, https://doi.org/10.5194/cp-10-41-2014, 2014
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pre-Cenozoic
Diagnosing the controls on desert dust emissions through the Phanerozoic
Exploring the mechanisms of Devonian oceanic anoxia: impact of ocean dynamics, palaeogeography and orbital forcing
Effects of ozone levels on climate through Earth history
Climate and ocean circulation in the aftermath of a Marinoan snowball Earth
Deep ocean temperatures through time
The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Diminished greenhouse warming from Archean methane due to solar absorption lines
The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1
The initiation of Neoproterozoic "snowball" climates in CCSM3: the influence of paleocontinental configuration
Albedo and heat transport in 3-D model simulations of the early Archean climate
Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins
The Aptian evaporites of the South Atlantic: a climatic paradox?
The initiation of modern soft and hard Snowball Earth climates in CCSM4
Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model
Clouds and the Faint Young Sun Paradox
Model-dependence of the CO2 threshold for melting the hard Snowball Earth
Yixuan Xie, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 20, 2561–2585, https://doi.org/10.5194/cp-20-2561-2024, https://doi.org/10.5194/cp-20-2561-2024, 2024
Short summary
Short summary
Desert dust plays a crucial role in the climate system; while it is relatively well studied for the present day, we still lack knowledge on how it was in the past and on its underlying mechanism in the multi-million-year timescale of Earth’s history. For the first time, we simulate dust emissions using the newly developed DUSTY1.0 model over the past 540 million years with a temporal resolution of ~5 million years. We find that palaeogeography is the primary control of these variations.
Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-1983, https://doi.org/10.5194/egusphere-2024-1983, 2024
Short summary
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affect ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
Russell Deitrick and Colin Goldblatt
Clim. Past, 19, 1201–1218, https://doi.org/10.5194/cp-19-1201-2023, https://doi.org/10.5194/cp-19-1201-2023, 2023
Short summary
Short summary
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To understand how climate has changed in response to ozone build-up, we have run 3-D climate simulations with different amounts of ozone. We find that Earth's surface is about 3 to 4 °C degrees cooler with low ozone. This is caused by cooling of the upper atmosphere, where ozone is a warming agent. Its removal causes the upper atmosphere to become drier, weakening the greenhouse warming by water vapor.
Lennart Ramme and Jochem Marotzke
Clim. Past, 18, 759–774, https://doi.org/10.5194/cp-18-759-2022, https://doi.org/10.5194/cp-18-759-2022, 2022
Short summary
Short summary
After the Marinoan snowball Earth, the climate warmed rapidly due to enhanced greenhouse conditions, and the freshwater inflow of melting glaciers caused a strong stratification of the ocean. Our climate simulations reveal a potentially only moderate global temperature increase and a break-up of the stratification within just a few thousand years. The findings give insights into the environmental conditions relevant for the geological and biological evolution during that time.
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
Short summary
Deep ocean temperatures are widely used as a proxy for global mean surface temperature in the past, but the underlying assumptions have not been tested. We use two unique sets of 109 climate model simulations for the last 545 million years to show that the relationship is valid for approximately the last 100 million years but breaks down for older time periods when the continents (and hence ocean circulation) are in very different positions.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015, https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary
Short summary
High methane concentrations are thought to have helped sustain warm surface temperatures on the early Earth (~3 billion years ago) when the sun was only 80% as luminous as today. However, radiative transfer calculations with updated spectral data show that methane is a stronger absorber of solar radiation than previously thought. In this paper we show that the increased solar absorption causes a redcution in the warming ability of methane in the Archaean atmosphere.
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Y. Liu, W. R. Peltier, J. Yang, and G. Vettoretti
Clim. Past, 9, 2555–2577, https://doi.org/10.5194/cp-9-2555-2013, https://doi.org/10.5194/cp-9-2555-2013, 2013
H. Kienert, G. Feulner, and V. Petoukhov
Clim. Past, 9, 1841–1862, https://doi.org/10.5194/cp-9-1841-2013, https://doi.org/10.5194/cp-9-1841-2013, 2013
A. Voigt and D. S. Abbot
Clim. Past, 8, 2079–2092, https://doi.org/10.5194/cp-8-2079-2012, https://doi.org/10.5194/cp-8-2079-2012, 2012
A.-C. Chaboureau, Y. Donnadieu, P. Sepulchre, C. Robin, F. Guillocheau, and S. Rohais
Clim. Past, 8, 1047–1058, https://doi.org/10.5194/cp-8-1047-2012, https://doi.org/10.5194/cp-8-1047-2012, 2012
J. Yang, W. R. Peltier, and Y. Hu
Clim. Past, 8, 907–918, https://doi.org/10.5194/cp-8-907-2012, https://doi.org/10.5194/cp-8-907-2012, 2012
A. Voigt, D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke
Clim. Past, 7, 249–263, https://doi.org/10.5194/cp-7-249-2011, https://doi.org/10.5194/cp-7-249-2011, 2011
C. Goldblatt and K. J. Zahnle
Clim. Past, 7, 203–220, https://doi.org/10.5194/cp-7-203-2011, https://doi.org/10.5194/cp-7-203-2011, 2011
Y. Hu, J. Yang, F. Ding, and W. R. Peltier
Clim. Past, 7, 17–25, https://doi.org/10.5194/cp-7-17-2011, https://doi.org/10.5194/cp-7-17-2011, 2011
Cited articles
Andjić, G., Baumgartner, P. O., and Baumgartner-Mora, C.: Collision of
the Caribbean Large Igneous Province with the Americas: Earliest evidence
from the forearc of Costa Rica, Geological Society of America Bulletin,
2019.
Ando, A., Woodard, S. C., Evans, H. F., Littler, K., Herrmann, S., MacLeod,
K. G., Kim, S., Khim, B. K., Robinson, S. A., and Huber, B. T.: An emerging
palaeoceanographic “missing link”: multidisciplinary study of rarely
recovered parts of deep-sea Santonian–Campanian transition from Shatsky
Rise, J. Geol. Soc., 170, 381–384, 2013.
Arsouze, T., Dutay, J. C., Lacan, F., and Jeandel, C.: Modeling the
neodymium isotopic composition with a global ocean circulation model,
Chem. Geol., 239, 165–177, 2007.
Ayache, M., Dutay, J.-C., Arsouze, T., Révillon, S., Beuvier, J., and Jeandel, C.: High-resolution neodymium characterization along the Mediterranean margins and modelling of εNd distribution in the Mediterranean basins, Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, 2016.
Bardin, A., Primeau, F., and Lindsay, K.: An offline implicit solver for
simulating prebomb radiocarbon, Ocean Model., 73, 45–58, 2014.
Barron, E. J.: A warm, equable Cretaceous: the nature of the problem,
Earth-Sci. Rev., 19, 305–338, 1983.
Barron, E. J. and Washington, W. M.: Cretaceous climate: a comparison of
atmospheric simulations with the geologic record,
Palaeogeogr. Palaeocl., 40, 103–133, 1982.
Barron, E. J. and Washington, W. M.: The role of geographic variables in
explaining paleoclimates: Results from Cretaceous climate model sensitivity
studies, J. Geophys. Res.-Atmos., 89,
1267–1279, 1984.
Barron, E. J. and Washington, W. M.: Warm Cretaceous climates: High
atmospheric CO2 as a plausible mechanism, The Carbon Cycle and Atmospheric
CO: Natural Variations Archean to Present, edited by: Sundquist, E. T. and Broecker, W. S., Geophysical Monograph 32, AGU, Washington DC, 546–553, 1985.
Basile, C., Mascle, J., and Guiraud, R.: Phanerozoic geological evolution of
the Equatorial Atlantic domain, J. Afr. Earth Sci., 43,
275–282, 2005.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Pérez-Díaz, L., and Frank, M.: Major intensification of
Atlantic overturning circulation at the onset of Paleogene greenhouse
warmth, Nat. Commun., 9, 1–8, 2018.
Bowman, V. C., Francis, J. E., and Riding, J. B.: Late Cretaceous winter sea
ice in Antarctica?, Geology, 41, 1227–1230, https://doi.org/10.1130/g34891.1, 2013.
Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B., and Swindles, G.
T.: Latest Cretaceous–earliest Paleogene vegetation and climate change at
the high southern latitudes: palynological evidence from Seymour Island,
Antarctic Peninsula, Palaeogeogr. Palaeocl., 408,
26–47, https://doi.org/10.1016/j.palaeo.2014.04.018, 2014.
Brady, E. C., DeConto, R. M., and Thompson, S. L.: Deep water formation and
poleward ocean heat transport in the warm climate extreme of the Cretaceous
(80 Ma), Geophys. Res. Lett., 25, 4205–4208, 1998.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Atmospheric CO2
concentrations during ancient greenhouse climates were similar to those
predicted for A.D. 2100,
P. Natl. Acad. Sci. USA, 107, 576–580, https://doi.org/10.1073/pnas.0902323106, 2010.
Brownfield, M. E. and Charpentier, R. R.: Geology and total petroleum
systems of the Gulf of Guinea Province of West Africa, US Geological Survey,
2006.
Buchs, D. M., Kerr, A. C., Brims, J. C., Zapata-Villada, J. P.,
Correa-Restrepo, T., and Rodríguez, G.: Evidence for subaerial
development of the Caribbean oceanic plateau in the Late Cretaceous and
palaeo-environmental implications, Earth Planet. Sc. Lett., 499,
62–73, 2018.
Chalmers, J. A. and Pulvertaft, T. C. R.: Development of the continental
margins of the Labrador Sea: a review, Geological Society, London, Special
Publications, 187, 77–105, 2001.
Coffin, M. F., Pringle, M. S., Duncan, R. A., Gladczenko, T. P., Storey, M.,
Müller, R. D., and Gahagan, L. A.: Kerguelen hotspot magma output since
130 Ma, J. Petrol., 43, 1121–1137, 2002.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: Late
Cretaceous–Neogene trends in deep ocean temperature and continental ice
volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg∕Ca) with sea level history, J. Geophys. Res.,
116, C12, https://doi.org/10.1029/2011jc007255, 2011.
Dameron, S. N., Leckie, R. M., Clark, K., MacLeod, K. G., Thomas, D. J., and
Lees, J. A.: Extinction, dissolution, and possible ocean acidification prior
to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific,
Palaeogeogr. Palaeocl., 485, 433–454, 2017.
Davies, A., Kemp, A. E., and Pike, J.: Late Cretaceous seasonal ocean
variability from the Arctic, Nature, 460, 254–258, https://doi.org/10.1038/nature08141,
2009.
Dickie, K., Keen, C. E., Williams, G. L., and Dehler, S. A.:
Tectonostratigraphic evolution of the Labrador margin, Atlantic Canada,
Mar. Petrol. Geol., 28, 1663–1675, 2011.
Donnadieu, Y., Pierrehumbert, R., Jacob, R., and Fluteau, F.: Modelling the
primary control of paleogeography on Cretaceous climate, Earth Planet. Sc. Lett., 248, 426–437, https://doi.org/10.1016/j.epsl.2006.06.007, 2006.
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck,
J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes in
continental configuration, Nat. Commun., 7, 1–12, 2016.
Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.-A., van den
Bogaard, P., and Werner, R.: Age and geochemistry of the Beata Ridge:
Primary formation during the main phase (∼89 Ma) of the
Caribbean Large Igneous Province, Lithos, 328, 69–87, 2019.
Eagles, G.: Tectonic reconstructions of the Southernmost Andes and the
Scotia Sea during the opening of the Drake Passage, in: Geodynamic evolution
of the southernmost Andes, Springer, 75–108, 2016.
Elsworth, G., Galbraith, E., Halverson, G., and Yang, S.: Enhanced
weathering and CO2 drawdown caused by latest Eocene strengthening of the
Atlantic meridional overturning circulation, Nat. Geosci., 10, 213–216,
2017.
Falzoni, F., Petrizzo, M. R., Clarke, L. J., MacLeod, K. G., and Jenkyns, H.
C.: Long-term Late Cretaceous oxygen-and carbon-isotope trends and
planktonic foraminiferal turnover: A new record from the southern
midlatitudes, Bulletin, 128, 1725–1735, 2016.
Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N.,
Markwick, P., Pancost, R. D., and Robinson, S. A.: Climate Sensitivity on
Geological Timescales Controlled by Nonlinear Feedbacks and Ocean
Circulation, Geophys. Res. Lett., 46, 9880–9889, 2019.
Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and
Beerling, D. J.: Atmospheric carbon dioxide linked with Mesozoic and early
Cenozoic climate change, Nat. Geosci., 1, 43–48, https://doi.org/10.1038/ngeo.2007.29,
2008.
Fluteau, F., Ramstein, G., Besse, J., Guiraud, R., and Masse, J. P.: Impacts
of palaeogeography and sea level changes on Mid-Cretaceous climate,
Palaeogeogr. Palaeocl., 247, 357–381, 2007.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845 , 2017.
Frank, M.: Radiogenic isotopes: tracers of past ocean circulation and
erosional input, Rev. Geophys., 40, 1-1–1-38, 2002.
Friedrich, O., Erbacher, J., Moriya, K., Wilson, P. A., and Kuhnert, H.:
Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean,
Nat. Geosci., 1, 453–457, 2008.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans–A 55 m.y. record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, https://doi.org/10.1130/g32701.1, 2012.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., and Vertenstein,
M.: The community climate system model version 4, J. Climate, 24,
4973–4991, 2011.
Gernigon, L., Franke, D., Geoffroy, L., Schiffer, C., Foulger, G. R., and
Stoker, M.: Crustal fragmentation, magmatism, and the diachronous opening of
the Norwegian-Greenland Sea, Earth-Sci. Rev., in press, https://doi.org/10.1016/j.earscirev.2019.04.011, 2019.
Goldstein, S. L. and Hemming, S. R.: Long-lived isotopic tracers in
oceanography, paleoceanography, and ice-sheet dynamics,
Treatise on geochemistry, 6, 453–489, https://doi.org/10.1016/B0-08-043751-6/06179-X, 2003.
Gough, D. O.: Solar interior structure and luminosity variations, in:
Physics of Solar Variations, Springer, 21–34, 1981.
Gu, S., Liu, Z., Jahn, A., Rempfer, J., Zhang, J., and Joos, F.: Modeling
Neodymium Isotopes in the Ocean Component of the Community Earth System
Model (CESM1), J. Adv. Model. Earth Sy., 11, 624–640,
2019.
Hague, A. M., Thomas, D. J., Huber, M., Korty, R., Woodard, S. C., and
Jones, L. B.: Convection of North Pacific deep water during the early
Cenozoic, Geology, 40, 527–530, https://doi.org/10.1130/g32886.1, 2012.
Haynes, S. J., MacLeod, K. G., Ladant, J.-B., Vande Guchte, A., Rostami, M.
A., Poulsen, C. J., and Martin, E. E.: Constraining sources and relative
flow rates of bottom waters in the Late Cretaceous Pacific Ocean, Geology,
48, 509–513, 2020.
Huber, B. T., Norris, R. D., and MacLeod, K. G.: Deep-sea paleotemperature
record of extreme warmth during the Cretaceous, Geology, 30, 123–126,
2002.
Huber, B. T., MacLeod, K. G., Watkins, D. K., and Coffin, M. F.: The rise
and fall of the Cretaceous Hot Greenhouse climate,
Global Planet. Change, 167, 1–23, https://doi.org/10.1016/j.gloplacha.2018.04.004, 2018.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R.,
and de Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at
the Eocene-Oligocene Transition, Nat. Commun., 10, 1–9, 2019.
Iturralde-Vinent, M. A.: Meso-Cenozoic Caribbean paleogeography:
implications for the historical biogeography of the region,
Int. Geol. Rev., 48, 791–827, 2006.
Jacob, R.: Low Frequency Variability in a Simulated Atmosphere Ocean System,
PhD, University of Wisconsin-Madison, Madison, Wisconsin, USA, 1997.
Jeandel, C., Arsouze, T., Lacan, F., Techine, P., and Dutay, J. C.: Isotopic
Nd compositions and concentrations of the lithogenic inputs into the ocean:
A compilation, with an emphasis on the margins, Chem. Geol., 239,
156–164, 2007.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events,
Geochem. Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009gc002788, 2010.
Jenkyns, H. C., Forster, A., Schouten, S., and Damsté, J. S. S.: High
temperatures in the late Cretaceous Arctic Ocean, Nature, 432, 888–892,
2004.
Jiménez Berrocoso, Á., MacLeod, K. G., Martin, E. E., Bourbon, E.,
Londoño, C. I., and Basak, C.: Nutrient trap for Late Cretaceous
organic-rich black shales in the tropical North Atlantic, Geology, 38,
1111–1114, 2010.
John, E. H., Pearson, P. N., Coxall, H. K., Birch, H., Wade, B. S., and
Foster, G. L.: Warm ocean processes and carbon cycling in the Eocene, Phil.
T. R. Soc. A, 371, 20130099, 2013.
Jones, E. J. W., Bigg, G. R., Handoh, I. C., and Spathopoulos, F.:
Distribution of deep-sea black shales of Cretaceous age in the eastern
Equatorial Atlantic from seismic profiling, Palaeogeogr. Palaeocl., 248, 233–246, 2007.
Kuhnt, W., Kaminski, M. A., and Moullade, M.: Late Cretaceous deep-water
agglutinated foraminiferal assemblages from the North Atlantic and its
marginal seas, Geol. Rundsch., 78, 1121–1140, 1989.
Lacan, F. and Jeandel, C.: Neodymium isotopes as a new tool for quantifying
exchange fluxes at the continent–ocean interface, Earth Planet. Sc. Lett., 232, 245–257, 2005.
Ladant, J. B. and Donnadieu, Y.: Palaeogeographic regulation of glacial
events during the Cretaceous supergreenhouse, Nat. Commun., 7,
12771, https://doi.org/10.1038/ncomms12771, 2016.
Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H., and Wilson, P. A.:
Meridional contrasts in productivity changes driven by the opening of Drake
Passage, Paleoceanography and Paleoclimatology, 33, 302–317, 2018.
Ladant, J.-B., Poulsen, C. J., Fluteau, F., Tabor, C. R., MacLeod, K. G., Martin, E. E., Haynes, S. J., and Rostami, M. A.: Supporting model data for Paleogeographic controls on the evolution of Late Cretaceous ocean circulation by Ladant, J.-B., et al. in Climate of the Past, https://doi.org/10.5194/cp-2019-157, Zenodo, https://doi.org/10.5281/zenodo.3741722, 2020.
Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J., and
Suarez, M.: The tectonic history of Drake Passage and its possible impacts
on global climate, Earth Planet. Sc. Lett., 279, 197–211,
https://doi.org/10.1016/j.epsl.2008.12.037, 2009.
Lindsay, K.: A newton–krylov solver for fast spin-up of online ocean
tracers, Ocean Model., 109, 33–43, 2017.
Lunt, D. J., Valdes, P. J., Jones, T. D., Ridgwell, A., Haywood, A. M.,
Schmidt, D. N., Marsh, R., and Maslin, M.: CO2-driven ocean circulation
changes as an amplifier of Paleocene-Eocene thermal maximum hydrate
destabilization, Geology, 38, 875–878, https://doi.org/10.1130/g31184.1, 2010.
Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O'Brien, C. L., Pancost, R. D., Robinson, S. A., and Wrobel, N.: Palaeogeographic controls on climate and proxy interpretation, Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, 2016.
MacLeod, K. G., Huber, B. T., and Isaza-LondonÞo, C.: North Atlantic warming
during global cooling at the end of the Cretaceous, Geology, 33, 437–440,
2005.
MacLeod, K. G., Martin, E. E., and Blair, S. W.: Nd isotopic excursion
across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical
North Atlantic, Geology, 36, 811–814, 2008.
MacLeod, K. G., Londoño, C. I., Martin, E. E., Berrocoso, Á. J., and
Basak, C.: Changes in North Atlantic circulation at the end of the
Cretaceous greenhouse interval, Nat. Geosci., 4, 779–782, 2011.
MacLeod, K. G., Huber, B. T., Berrocoso, A. J., and Wendler, I.: A stable
and hot Turonian without glacial δ18O excursions is indicated by exquisitely
preserved Tanzanian foraminifera, Geology, 41, 1083–1086, https://doi.org/10.1130/g34510.1,
2013.
Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P., and Goddéris,
Y.: The influence of orography on modern ocean circulation, Clim.
Dynam., 50, 1277–1289, 2018.
Mahoney, J. J., Jones, W. B., Frey, F. A., Salters, V. J. M., Pyle, D. G.,
and Davies, H. L.: Geochemical characteristics of lavas from Broken Ridge,
the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous
plateau volcanism in the southeast Indian Ocean, Chem. Geol., 120,
315–345, 1995.
Martin, E. E., MacLeod, K. G., Berrocoso, A. J., and Bourbon, E.: Water mass
circulation on Demerara Rise during the Late Cretaceous based on Nd
isotopes, Earth Planet. Sc. Lett., 327, 111–120, 2012.
Mascle, J., Blarez, E., and Marinho, M.: The shallow structures of the
Guinea and Ivory Coast-Ghana transform margins: their bearing on the
Equatorial Atlantic Mesozoic evolution, Tectonophysics, 155, 193–209, 1988.
Milanese, F., Rapalini, A., Slotznick, S. P., Tobin, T. S., Kirschvink, J.,
and Olivero, E.: Late Cretaceous paleogeography of the Antarctic Peninsula:
New paleomagnetic pole from the James Ross Basin,
J. S. Am. Earth Sci., 91, 131–143, 2019.
Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., and Savin, S.
M.: Does ice drive early Maastrichtian eustasy?, Geology, 27, 783–786, 1999.
Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Guiraud, M., Voigt,
S., Deconinck, J.-F., and Monna, F.: Evolution of neodymium isotopic
signature of seawater during the Late Cretaceous: Implications for
intermediate and deep circulation, Gondwana Res., 36, 503–522, 2016.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients
as the dominant control on the spread of anoxia and euxinia across the
Cenomanian – Turonian oceanic anoxic event (OAE2): Model – data comparison,
Paleoceanography, 27, 2012.
Murphy, D. P. and Thomas, D. J.: Cretaceous deep-water formation in the
Indian sector of the Southern Ocean, Paleoceanography, 27, PA1211,
https://doi.org/10.1029/2011pa002198, 2012.
Murphy, D. P. and Thomas, D. J.: The evolution of Late Cretaceous
deep – ocean circulation in the Atlantic basins: Neodymium isotope evidence
from South Atlantic drill sites for tectonic controls, Geochem. Geophy. Geosy., 14, 5323–5340, 2013.
NCAR: The NCAR Command Language (Version 6.6.2) [Software], Boulder, Colorado: UCAR/NCAR/CISL/TDD, https://doi.org/10.5065/D6WD3XH5, 2019.
Niezgodzki, I., Knorr, G., Lohmann, G., Tyszka, J., and Markwick, P. J.:
Late Cretaceous climate simulations with different CO2 levels and subarctic
gateway configurations: A model – data comparison, Paleoceanography, 32,
980–998, 2017.
Niezgodzki, I., Tyszka, J., Knorr, G., and Lohmann, G.: Was the Arctic Ocean
ice free during the latest Cretaceous? The role of CO2 and gateway
configurations, Global Planet. Change, 177, 201–212, 2019.
Nouri, F., Azizi, H., Golonka, J., Asahara, Y., Orihashi, Y., Yamamoto, K.,
Tsuboi, M., and Anma, R.: Age and petrogenesis of Na-rich felsic rocks in
western Iran: Evidence for closure of the southern branch of the Neo-Tethys
in the Late Cretaceous, Tectonophysics, 671, 151–172, 2016.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond,
N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX 86 and planktonic
foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
O'Connor, J. M. and Duncan, R. A.: Evolution of the Walvis Ridge-Rio
Grande Rise hot spot system: Implications for African and South American
plate motions over plumes, J. Geophys. Res.-Sol. Ea., 95,
17475–17502, 1990.
Ortiz-Jaureguizar, E. and Pascual, R.: The tectonic setting of the
Caribbean region and the K/T turnover of the South American land-mammal
fauna, Boletín Geológico y Minero, 122, 333–344, 2011.
Otto-Bliesner, B. L., Brady, E. C., and Shields, C.: Late Cretaceous ocean:
Coupled simulations with the National Center for Atmospheric Research
Climate System Model, J. Geophys. Res., 107,
ACL-11, https://doi.org/10.1029/2001jd000821, 2002.
Pearson, P. N.: Oxygen isotopes in foraminifera: Overview and historical
review, The Paleontological Society Papers, 18, 1–38, 2012.
Pérez-Díaz, L. and Eagles, G.: South Atlantic paleobathymetry
since early Cretaceous, Sci. Rep.-UK, 7, 1–16, 2017.
Piepgras, D. J. and Wasserburg, G. J.: Isotopic composition of neodymium in
waters from the Drake Passage, Science, 217, 207–214, 1982.
Pindell, J. L. and Kennan, L.: Tectonic evolution of the Gulf of Mexico,
Caribbean and northern South America in the mantle reference frame: an
update, Geological Society, London, Special Publications, 328, 1–55, 2009.
Pletsch, T., Erbacher, J., Holbourn, A. E. L., Kuhnt, W., Moullade, M.,
Oboh-Ikuenobede, F. E., Söding, E., and Wagner, T.: Cretaceous
separation of Africa and South America: the view from the West African
margin (ODP Leg 159), J. S. Am. Earth Sci., 14, 147–174,
2001.
Poblete, F., Roperch, P., Arriagada, C., Ruffet, G., de Arellano, C. R.,
Hervé, F., and Poujol, M.: Late Cretaceous–early Eocene
counterclockwise rotation of the Fueguian Andes and evolution of the
Patagonia–Antarctic Peninsula system, Tectonophysics, 668, 15–34, 2016.
Poulsen, C. J. and Zhou, J.: Sensitivity of Arctic climate variability to
mean state: insights from the Cretaceous, J. Climate, 26, 7003–7022,
2013.
Poulsen, C. J., Seidov, D., Barron, E. J., and Peterson, W. H.: The impact
of paleogeographic evolution on the surface oceanic circulation and the
marine environment within the Mid-Cretaceous tethys, Paleoceanography, 13,
546–559, 1998.
Poulsen, C. J., Barron, E. J., Arthur, M. A., and Peterson, W. H.: Response
of the Mid-Cretaceous global oceanic circulation to tectonic and CO2
forcings, Paleoceanography, 16, 576–592, https://doi.org/10.1029/2000pa000579, 2001.
Poulsen, C. J., Gendaszek, A. S., and Jacob, R. L.: Did the rifting of the
Atlantic Ocean cause the Cretaceous thermal maximum?, Geology, 31, 115–118,
2003.
Price, G. D.: The evidence and implications of polar ice during the
Mesozoic, Earth-Sci. Rev., 48, 183–210, 1999.
Pucéat, E., Lécuyer, C., Sheppard, S. M. F., Dromart, G., Reboulet,
S., and Grandjean, P.: Thermal evolution of Cretaceous Tethyan marine waters
inferred from oxygen isotope composition of fish tooth enamels,
Paleoceanography, 18, 1029, https://doi.org/10.1029/2002pa000823, 2003.
Reguero, M. A., Gelfo, J. N., López, G. M., Bond, M., Abello, A.,
Santillana, S. N., and Marenssi, S. A.: Final Gondwana breakup: the
Paleogene South American native ungulates and the demise of the South
America–Antarctica land connection, Global Planet. Change, 123,
400–413, 2014.
Rempfer, J., Stocker, T. F., Joos, F., Dutay, J.-C., and Siddall, M.:
Modelling Nd-isotopes with a coarse resolution ocean circulation model:
Sensitivities to model parameters and source/sink distributions, Geochim. Cosmochim. Ac., 75, 5927–5950, 2011.
Robinson, S. A. and Vance, D.: Widespread and synchronous change in
deep-ocean circulation in the North and South Atlantic during the Late
Cretaceous, Paleoceanography, 27, PA1102, https://doi.org/10.1029/2011pa002240, 2012.
Robinson, S. A., Murphy, D. P., Vance, D., and Thomas, D. J.: Formation of
“Southern Component Water” in the Late Cretaceous: Evidence from
Nd-isotopes, Geology, 38, 871–874, https://doi.org/10.1130/g31165.1, 2010.
Roest, W. R. and Srivastava, S. P.: Sea-floor spreading in the Labrador
Sea: A new reconstruction, Geology, 17, 1000–1003, 1989.
Roy, M., van de Flierdt, T., Hemming, S. R., and Goldstein, S. L.: 40Ar/39Ar
ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic
glacio-marine sediments: implications for sediment provenance in the
southern ocean, Chem. Geol., 244, 507–519, 2007.
Scher, H. and Martin, E.: Timing and climatic consequences of the opening
of Drake Passage, Science, 312, 428–430, https://doi.org/10.1126/science.1120044, 2006.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events:
causes and consequences, Geol. Mijnbouw, 55, 1976.
Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J. C., Jaramillo, C., Le
Bras, J., Martin, E., Montes, C., and Waite, A. J.: Consequences of shoaling
of the Central American Seaway determined from modeling Nd isotopes,
Paleoceanography, 29, 176–189, https://doi.org/10.1002/2013pa002501, 2014.
Setoyama, E., Kaminski, M. A., and Tyszka, J.: Late Cretaceous–Paleogene
foraminiferal morphogroups as palaeoenvironmental tracers of the rifted
Labrador margin, northern proto-Atlantic, Grzybowski Foundation Special
Publication, 22, 179–220, 2017.
Sewall, J. O., van de Wal, R. S. W., van der Zwan, K., van Oosterhout, C., Dijkstra, H. A., and Scotese, C. R.: Climate model boundary conditions for four Cretaceous time slices, Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, 2007.
Shackleton, N. and Kennett, J.: Paleotemperature history of the Cenozoic
and the initiation of Antarctic glaciation: oxygen and carbon isotope
analyses in DSDP Sites 277, 279, and 281, Initial reports of the deep sea
drilling project, 29, 743–755, 1975.
Sijp, W. P. and England, M. H.: Effect of the Drake Passage throughflow on
global climate, J. Phys. Oceanogr., 34, 1254–1266,
2004.
Stampfli, G. M.: Tethyan oceans, Geological society, London, Special
Publications, 173, 1–23, 2000.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic
and Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Stärz, M., Jokat, W., Knorr, G., and Lohmann, G.: Threshold in North
Atlantic-Arctic Ocean circulation controlled by the subsidence of the
Greenland-Scotland Ridge, Nat. Commun., 8, 1–13, 2017.
Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto-Bliesner,
B. L., Markwick, P. J., Brady, E. C., Farnsworth, A., and Feng, R.: The
cause of Late Cretaceous cooling: A multimodel-proxy comparison, Geology,
44, 963–966, https://doi.org/10.1130/g38363.1, 2016.
Tabor, C. R., Feng, R., and Otto-Bliesner, B. L.: Climate responses to the
splitting of a supercontinent: Implications for the breakup of Pangea,
Geophys. Res. Lett., 46, 6059–6068, 2019.
Tachikawa, K., Jeandel, C., and Roy-Barman, M.: A new approach to the Nd
residence time in the ocean: the role of atmospheric inputs, Earth Planet. Sc. Lett., 170, 433–446, 1999.
Tachikawa, K., Athias, V., and Jeandel, C.: Neodymium budget in the modern
ocean and paleo-oceanographic implications, J. Geophys. Res.,
108, C8, https://doi.org/10.1029/1999jc000285, 2003.
Tachikawa, K., Arsouze, T., Bayon, G., Bory, A., Colin, C., Dutay, J.-C.,
Frank, N., Giraud, X., Gourlan, A. T., and Jeandel, C.: The large-scale
evolution of neodymium isotopic composition in the global modern and
Holocene ocean revealed from seawater and archive data, Chem. Geol.,
457, 131–148, 2017.
Tarduno, J. A., Brinkman, D. B., Renne, P. R., Cottrell, R. D., Scher, H.,
and Castillo, P.: Evidence for extreme climatic warmth from Late Cretaceous
Arctic vertebrates, Science, 282, 2241–2243, 1998.
Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., and Haines, B.: Nd
isotopic structure of the Pacific Ocean 70–30 Ma and numerical evidence for
vigorous ocean circulation and ocean heat transport in a greenhouse world,
Paleoceanography, 29, 454–469, 2014.
Toggweiler, J. and Samuels, B.: Effect of Drake Passage on the global
thermohaline circulation, Deep-Sea Res. Pt. I, 42, 477–500, 1995.
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert,
T., and Pälike, H.: Ocean and climate response to North Atlantic seaway
changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett., 498, 185–195, 2018.
van de Flierdt, T., Griffiths, A. M., Lambelet, M., Little, S. H., Stichel,
T., and Wilson, D. J.: Neodymium in the oceans: a global database, a
regional comparison and implications for palaeoceanographic research,
Philos. T. Roy. Soc. A, 374, 20150293, 2016.
Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., and Hoffmann,
J.: Tectonically restricted deep-ocean circulation at the end of the
Cretaceous greenhouse, Earth Planet. Sc. Lett., 369, 169–177,
2013.
Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z.: Paleo-CO2
variation trends and the Cretaceous greenhouse climate, Earth-Sci. Rev., 129, 136–147, https://doi.org/10.1016/j.earscirev.2013.11.001, 2014.
Wegener, A. :The origin of continents and oceans, trans., JGA Skerl. Dutton and Co., New York, 1924.
Wilson, P. A. and Norris, R. D.: Warm tropical ocean surface and global
anoxia during the mid-Cretaceous period, Nature, 412, 425–429, 2001.
Winguth, A., Shellito, C., Shields, C., and Winguth, C.: Climate response at
the Paleocene–Eocene thermal maximum to greenhouse gas forcing–a model
study with CCSM3, J. Climate, 23, 2562–2584, 2010.
Ye, J., Chardon, D., Rouby, D., Guillocheau, F., Dall'asta, M., Ferry,
J.-N., and Broucke, O.: Paleogeographic and structural evolution of
northwestern Africa and its Atlantic margins since the early Mesozoic,
Geosphere, 13, 1254–1284, 2017.
Zhou, J., Poulsen, C. J., Pollard, D., and White, T. S.: Simulation of
modern and middle Cretaceous marine δ18O with an ocean-atmosphere
general circulation model, Paleoceanography, 23, 2008.
Zhu, J., Poulsen, C. J., and Tierney, J. E.: Simulation of Eocene extreme
warmth and high climate sensitivity through cloud feedbacks, Sci.
Adv., 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874, 2019.
Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., and
Noone, D. C.: Simulation of early Eocene water isotopes using an Earth
system model and its implication for past climate reconstruction, Earth Planet. Sc. Lett., 537, 116164, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Short summary
Understanding of the role of ocean circulation on climate is contingent on the ability to reconstruct its modes and evolution. Here, we show that earth system model simulations of the Late Cretaceous predict major changes in ocean circulation as a result of paleogeographic and gateway evolution. Comparisons of model results with available data compilations demonstrate reasonable agreement but highlight that various plausible theories of ocean circulation change coexist during this period.
Understanding of the role of ocean circulation on climate is contingent on the ability to...