Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-79-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-79-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models
Valentina Flores-Aqueveque
CORRESPONDING AUTHOR
Departamento de Geología, Facultad de Ciencias Físicas y
Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
Millennium Nuclei for Paleoclimate, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
Maisa Rojas
Departamento de Geofísica, Facultad de Ciencias Físicas y
Matemáticas, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile
Millennium Nuclei for Paleoclimate, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
Centro de Ciencia del Clima y la Resiliencia (CR2, FONDAP 15110009), Chile
Catalina Aguirre
Centro de Ciencia del Clima y la Resiliencia (CR2, FONDAP 15110009), Chile
Escuela de Ingeniería Civil Oceánica, Facultad de
Ingeniería, Universidad de Valparaíso, Chile
Centro de Observación Marino para estudios de Riesgos del Ambiente Costero (COSTA-R), Valparaíso, Chile
Paola A. Arias
Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela
Ambiental, Facultad de Ingeniería, Universidad de Antioquia,
Medellín, Colombia
Charles González
Departamento de Geología, Facultad de Ciencias Físicas y
Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
Related authors
No articles found.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023, https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary
Short summary
In this study, we investigate the interplay between climate and the Patagonian Icefields. By modeling the glacioclimatic conditions of the southern Andes, we found that the annual variations in net surface mass change experienced by these icefields are mainly controlled by annual variations in the air pressure field observed near the Drake Passage. Little dependence on main modes of variability was found, suggesting the Drake Passage as a key region for understanding the Patagonian Icefields.
Tania Villaseñor, Sergio Celis, Juan Pablo Queupil, Luisa Pinto, and Maisa Rojas
Adv. Geosci., 53, 227–244, https://doi.org/10.5194/adgeo-53-227-2020, https://doi.org/10.5194/adgeo-53-227-2020, 2020
Short summary
Short summary
We interviewed 12 female students to examine their experiences in geosciences at the male-dominated Universidad de Chile. The experience moved from negative to positive in the transition from the early years of college, during which they experienced gender-based discrimination, to the geoscience major within which the presence of more women improved the environment. We discuss some strategies to increase the satisfaction of female students in science, technology, engineering, and math (STEM).
Álvaro González-Reyes, Claudio Bravo, Mathias Vuille, Martin Jacques-Coper, Maisa Rojas, Esteban Sagredo, and James McPhee
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-37, https://doi.org/10.5194/cp-2019-37, 2019
Publication in CP not foreseen
Short summary
Short summary
The "Little Ice Age" (LIA), has long been recognized as the last period when mountain glaciers recorded extensive growth intervals. In the Mediterranean Andes (MA; 30º–37º S), the LIA has been poorly documented. Here, we performed an experiment using three GCMs to force a novel glaciological model. We simulated temporal variations of the ELA to evaluate the glacier response. We propose that Pacific SST variability was the main modulator of temporal changes of the ELA in the MA region during LIA.
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Centennial-Decadal
Last Millennium Volcanic Forcing and Climate Response using SO2 Emissions
Utilising a multi-proxy to model comparison to constrain the season and regionally heterogeneous impacts of the Mt Samalas 1257 eruption
A multi-model assessment of the early last deglaciation (PMIP4 LDv1): a meltwater perspective
The unidentified eruption of 1809: a climatic cold case
Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial
Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium
Using simulations of the last millennium to understand climate variability seen in palaeo-observations: similar variation of Iceland–Scotland overflow strength and Atlantic Multidecadal Oscillation
Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum
Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD
Using palaeo-climate comparisons to constrain future projections in CMIP5
Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble
Climate of the last millennium: ensemble consistency of simulations and reconstructions
Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model
Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD
Evaluating climate model performance with various parameter sets using observations over the recent past
Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322, https://doi.org/10.5194/egusphere-2024-1322, 2024
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years, however climate model results and reconstructions of surface cooling using tree-rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Laura Wainman, Lauren R. Marshall, and Anja Schmidt
Clim. Past, 20, 951–968, https://doi.org/10.5194/cp-20-951-2024, https://doi.org/10.5194/cp-20-951-2024, 2024
Short summary
Short summary
The Mt Samalas eruption had global-scale impacts on climate and has been linked to historical events throughout latter half of the 13th century. Using model simulations and multi-proxy data, we constrain the year and season of the eruption to summer 1257 and investigate the regional-scale variability in surface cooling following the eruption. We also evaluate our model-to-proxy comparison framework and discuss current limitations of the approach.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Flavio Justino, Douglas Lindemann, Fred Kucharski, Aaron Wilson, David Bromwich, and Frode Stordal
Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, https://doi.org/10.5194/cp-13-1081-2017, 2017
Short summary
Short summary
These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that assume overall ice-free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains, and their ability to reproduce long-term environmental conditions should be considered with care.
Walter Acevedo, Bijan Fallah, Sebastian Reich, and Ulrich Cubasch
Clim. Past, 13, 545–557, https://doi.org/10.5194/cp-13-545-2017, https://doi.org/10.5194/cp-13-545-2017, 2017
Short summary
Short summary
The purpose of this study is to contribute to the present knowledge of paleo data assimilation techniques by addressing the following two questions: (i) Does the off-line regime naturally appear for the assimilation of tree-ring-width records into an AGCM? (ii) Is the fuzzy logic (FL)-based extension of a forward model still useful to improve the performance of a time-averaged ensemble Kalman filter technique when a climate model is used?
PAGES 2k-PMIP3 group
Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, https://doi.org/10.5194/cp-11-1673-2015, 2015
Short summary
Short summary
A comparison of model simulations and reconstructions at the continental scale over the past millennium indicates that models are in relatively good agreement with temperature reconstructions for Northern Hemisphere regions, particularly in the Arctic. This is likely due to the relatively large amplitude of the externally forced response across northern and high-latitudes regions. Conversely, models disagree strongly with the reconstructions in the Southern Hemisphere.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
C. C. Raible, F. Lehner, J. F. González-Rouco, and L. Fernández-Donado
Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, https://doi.org/10.5194/cp-10-537-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw
Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, https://doi.org/10.5194/cp-9-547-2013, 2013
S. B. Wilmes, C. C. Raible, and T. F. Stocker
Clim. Past, 8, 373–390, https://doi.org/10.5194/cp-8-373-2012, https://doi.org/10.5194/cp-8-373-2012, 2012
M. F. Loutre, A. Mouchet, T. Fichefet, H. Goosse, H. Goelzer, and P. Huybrechts
Clim. Past, 7, 511–526, https://doi.org/10.5194/cp-7-511-2011, https://doi.org/10.5194/cp-7-511-2011, 2011
M. Widmann, H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer
Clim. Past, 6, 627–644, https://doi.org/10.5194/cp-6-627-2010, https://doi.org/10.5194/cp-6-627-2010, 2010
Cited articles
Aceituno, P., Fuenzalida, H., and Rosenblüth, B.: Climate
along the extratropical west coast of South America, in: Earth system responses to global
change, edited by: Mooney, H. A.,
Fuentes, E. R., and Kronberg, B. I., Academic Press, 61–69, 1993.
Aguirre, C., García-Loyola, S., Testa, G., Silva, D., and Farías,
L.: Insight into anthropogenic forcing on coastal upwelling off
south-central Chile, Elem. Sci. Anth., 6, 59, https://doi.org/10.1525/elementa.314, 2018.
Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K.: Framing and Context, in: Global Warming of 1.5º C. An IPCC Special Report on the impacts of global warming of 1.5º C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield, T. (eds.)], World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Anabalón, V., Morales, C. E., Gonzalez, H. E., Menschel, E., Schneider,
W., Hormazabal, S., Valencia, L., and Escribano, R.: Micro-phytoplankton
community structure in the coastal upwelling zone off Concepción
(central Chile): Annual and inter-annual fluctuations in a highly dynamic
environment, Prog. Oceanogr., 149, 174–188, 2016.
Ancapichún, S. and Garcés-Vargas, J.: Variability of the Southeast
Pacific Subtropical Anticyclone and its impact on sea surface temperature
off northcentral Chile, Ciencias Marinas, 41, 1–20, https://doi.org/10.7773/cm.v41i1.2338, 2015.
Barrett, B. S. and Hameed, S.: Seasonal Variability in Precipitation in
Central and Southern Chile: Modulation by the South Pacific High, J.
Climate, 30, 55–69, 2017.
Bentley, M. J., Hodgson, D. A., Smith, J. A., O Cofaigh, C., Domack, E. W.,
Larter, R. D., Roberts, S. J., Brachfeld, S., Leventer, A., Hjort, C.,
Hillenbrand, C.-D., and Evans, J.: Mechanisms of Holocene palaeoenvironmental
change in the Antarctic Peninsula region, Holocene, 19, 51–69, 2009.
Belmadani, A., Echevin, V., Codron, F., Takahashi, K., and Junquas, C.: What
dynamics drive future wind scenarios for coastal upwelling off Peru and
Chile?, Clim. Dynam., 43, 1893–1914, https://doi.org/10.1007/s00382-013-2015-2, 2014.
Bertrand, S., Hughen, K., Sepúlveda, J., and Pantoja, S.: Late Holocene
covariability of the southern westerlies and sea surface temperature in
northern Chilean Patagonia, Quaternary Sci. Rev., 105, 195–208, 2014.
Boisier, J. P., Rondanelli, R., Garreaud, R., and Muñoz, F.: Anthropogenic
and natural contributions to the Southeast Pacific precipitation decline and
recent megadrought in central Chile, Geophys. Res. Lett., 43, 413–421,
https://doi.org/10.1002/2015GL067265, 2016.
Boisier, J. P., Alvarez-Garretón, C., Cordero, R. R., Damiani, A.,
Gallardo, L., Garreaud, R. D., Lambert, F., Ramallo, C., Rojas, M., and
Rondanelli, R.: Anthropogenic drying in central-southern Chile evidenced by
long-term observations and climate model simulations, Elem. Sci. Anth., 6,
74, https://doi.org/10.1525/elementa.328, 2018.
Bracegirdle, T. J., Hyder, P., and Holmes, C. R.: CMIP5 diversity in southern
westerly jet projections related to historical sea ice area: Strong link to
strengthening and weak link to shift, J. Climate, 31, 195–211, 2018.
Bradley, R. S. and Jones, P. D.: `Little Ice Age' Summer Temperature
Variations: their Nature and Relevance to Recent Global Warming Trends,
Holocene, 3, 367–376, 1993.
Briceño-Zuluaga, F. J., Sifeddine, A., Caquineau, S., Cardich, J., Salvatteci, R., Gutierrez, D., Ortlieb, L., Velazco, F., Boucher, H., and Machado, C.: Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14∘ S) during the last 1000 years: paleoclimatic implications, Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, 2016.
Briffa, K. R.: Annual climate variability in the Holocene: interpreting the
message of ancient trees, Quaternary Sci. Rev., 19, 87–105, 2000.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G., and Cook,
E. R.: Unusual 20th-century summer warmth in a 1000-year temperature record
from Siberia, Nature, 376, 156–159, 1995.
Browne, I. M., Moy, C. M., Riesselman, C. R., Neil, H. L., Curtin, L. G., Gorman, A. R., and Wilson, G. S.: Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51∘ S), New Zealand, Clim. Past, 13, 1301–1322, https://doi.org/10.5194/cp-13-1301-2017, 2017.
Cabré, M. F., Solman, S., and Núñez, M.: Regional climate change
scenarios over southern South America for future climate (2080–2099) using
the MM5 Model, Mean, interannual variability and uncertainties,
Atmósfera, 29, 35–60, https://doi.org/10.20937/ATM.2016.29.01.04, 2016.
Cane, M. A.: Climate change – a role for the tropical Pacific, Science, 282, 60–61, 1998.
Cane, M. A.: The evolution of El Niño, past and future, Earth
Planet. Sc. Lett., 230, 227–240, 2005.
Chambers, F. M., Brain, S. A., Mauquoy, D., McCarroll, J., and Daley, T.: The
`Little Ice Age' in the Southern Hemisphere in the context of the last 3000
years: Peat-based proxy-climate data from Tierra del Fuego, The Holocene, 24,
1649–1656, 2014.
Chavaillaz, Y., Codron, F., and Kageyama, M.: Southern westerlies in LGM and future (RCP4.5) climates, Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, 2013.
Colas F., McWilliams, J. C., Capet, X., and Kurian, J.: Heat balance and
eddies in the Peru-Chile current system, Clim. Dynam., 39, 509–529,
2012.
Croquette, M., Eldin, G., Grados, C., and Tamayo, M.: On differences in
satellite wind products and their effects in estimating coastal upwelling
processes in the south-east Pacific, Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027538, 2007.
Crowley, T. J. and Lowery, T. S.: How warm was the medieval warm period?,
Ambio, 29, 51–54, 2000.
D'Agostino, R. and Lionello, P.: Evidence of global warming impact on the
evolution of the Hadley Circulation in ECMWF centennial reanalyses, Clim.
Dynam., 48, 3047–3060, 2016.
D'Agostino, R., Lionello, P., Adam, O., and Schneider, T.: Factors
controlling Hadley circulation changes from the Last Glacial Maximum to the
end of the 21st century, Geophys. Res. Lett., 44, 8585–8591,
https://doi.org/10.1002/2017GL074533, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Holm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi,
M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Deng, W., Liu, X., Chen, X., Wei, G., Zeng, T., Xie, L., and Zhao, J.-X.: A
comparison of the climates of the Medieval Climate Anomaly, Little Ice Age,
and Current Warm Period reconstructed using coral records from the northern
South China Sea, J. Geophys. Res.-Oceans, 122, 264–275,
https://doi.org/10.1002/2016JC012458, 2017.
Denniston, R. F., Ummenhofer, C. C., Wanamaker Jr., A. D., Lachniet, M. S.,
Villarini, G., Asmerom, Y., Polyak, V. J., Passaro, K. J., Cugley, J., Woods,
D., and Humphreys, W. F.: Expansion and Contraction of the Indo-Pacific
Tropical Rain Belt over the Last Three Millennia, Sci. Rep., 6, 34485, https://doi.org/10.1038/srep34485, 2016.
Dettinger, M. D., Battisti, D. S., Garreaud, R. D., McCabe, G. J., and Bitz,
C. M.: Interhemispheric effects of interannual and decadal ENSO-like climate
variations on the Americas, in: Interhemispheric climate
linkages: Present and Past Climates in the Americas and their Societal
Effects, edited by: Markgraf, V., Academic Press, San Diego, 1–16, 2000.
Díaz, L. B. and Vera, C.: South American precipitation changes simulated
by PMIP3/CMIP5 models during the Little Ice Age and the recent global
warming period, Int. J. Climatol., 38, 2638–2650, 2018.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., deNoblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., and Viovy, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Falvey, M. and Garreaud, R.: Regional cooling in a warming world: Recent
temperature trends in the SE Pacific and along the west coast of subtropical
South America (1979–2006), J. Geophys. Res., 114, D04102,
https://doi.org/10.1029/2008JD010519, 2009.
Fleury, S., Martinez, P., Crosta, X., Charlier, K., Billy, I., Hanquiez, V.,
Blanz, T., and Schneider, R. R.: Pervasive multidecadal variations in
productivity within the Peruvian Upwelling System over the last millennium,
Quaternary Sci. Rev., 125, 78–90, https://doi.org/10.1016/j.quascirev.2015.08.006, 2015.
Flores-Aqueveque, V., Alfaro, S., Vargas, G., Rutllant, J. A., and Caquineau,
S.: Aeolian particles in marine cores as a tool for quantitative
high-resolution reconstruction of upwelling favorable winds along coastal
Atacama Desert, Northern Chile, Prog. Oceanogr., 134, 244–255,
2015.
Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S., Parker,
D. E., Macadam, I., Jones, P. D., Jones, R. N., Nicholls, N., and Sexton,
D. M. H.: Global temperature change and it uncertainties since 1861, Geophys.
Res. Lett., 28, 2621–2624, 2001.
Fuenzalida, H.: Climatología de Chile, Publicación interna,
Departamento de Geofísica, Univ. de Chile, 73 pp., 1971.
Fyfe, J. C. and Saenko, O. A.: Simulated changes in the extratropical Southern
Hemisphere winds and currents, Geophys. Res. Lett., 33, L06701,
https://doi.org/10.1029/2005GL025332, 2006.
Garreaud, R. D. and Battisti, D. S.: Interannual (ENSO) and interdecadal
(ENSO-like) variability in the Southern Hemisphere tropospheric circulation,
J. Climate, 2, 2113–2123, 1999.
Garreaud, R. and Falvey, M.: The coastal winds off western subtropical South
America in future climate scenarios, Int. J. Climatol., 29, 543–554, 2009.
Garreaud, R. N., Vuille, M., Compagnucci, R., and Matengo, J.: Present-day
South American climate, Palaeogeogr. Palaeocl.,
281, 180–195, 2009.
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M.: Large-scale control on
the Patagonian climate, J. Climate, 26, 215–230, 2013.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., and Zhang, M.: The community climate system model version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Gillet, N. and Thompson, D.: Simulation of Recent Southern Hemisphere
Climate Change, Science, 302, 273–275, https://doi.org/10.1126/science.1087440, 2003.
Gillett, N. P. and Fyfe, J. C.: Annular mode changes in the CMIP5 simulations,
Geophys. Res. Lett., 40, 1189–1193, https://doi.org/10.1002/grl.50249, 2013.
Gillett, N. P. and Parker, D. E.: Attribution of observed sea level pressure
trends to greenhouse gas, aerosol, and ozone changes, Geophys. Res. Lett.,
40, 2302–2306, https://doi.org/10.1002/grl.50500, 2013.
González-Reyes, Á.: Modelación de la Línea de Equilibrio Glaciar durante los últimos 500 años y variaciones climáticas recientes en los Andes Mediterráneos de Chile (30∘–37∘ S), Ph.D. thesis, Universidad de Chile, Chile, 121 pp., 2019.
Gordon C. T., Rosati, A., and Gudgel, R.: Tropical sensitivity of a coupled
model to specified ISCCP low clouds, J. Climate, 13, 2239–2260,
2000.
Grotjahn, R.: Remote weather associated with South Pacific Subtropical
sea-level High properties, Int. J. Climatol., 24, 823–839, 2004.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F. P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai,
P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2013.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U.:
Southward Migration of the Intertropical Convergence Zone through the
Holocene, Science, 293, 1304–1307, https://doi.org/10.1126/science.1059725, 2001.
Held, I. M. and Hou, A. Y.: Nonlinear axially symmetric circulations in a
nearly inviscid atmosphere, J. Atmos. Sci., 37, 515–533, 1980.
Hirota, N. and Takayabu, Y. N.: Reproducibility of precipitation distribution over the tropical oceans in CMIP5
multi-climate models compared to CMIP3, Clim. Dynam., 41, 2909–2920, https://doi.org/10.1007/s00382-013-1839-0, 2013.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L.,
Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-I., Krinner,
G., LeVan, P., Li, Z. X., and Lott, F.: The LMDZ4 general circulation model:
climate performance and sensitivity to parametrized physics with emphasis on
tropical convection, Clim. Dynam., 27, 787–813,
https://doi.org/10.1007/s00382-006-0158-0, 2006.
Hudson, R. D.: Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010, Atmos. Chem. Phys., 12, 7797–7808, https://doi.org/10.5194/acp-12-7797-2012, 2012.
Hwang, Y. T. and Frierson, D. M.: Link between the double-Intertropical
Convergence Zone problem and cloud biases over the Southern Ocean,
P. Natl. Acad. Sci. USA, 110, 4935–4940, 2013.
Ihara, C. and Kushnir, Y.: Change of mean midlatitude westerlies in 21st century climate simulations, Geophys. Res. Lett., 36, L13701, doi:10.1029/2009GL037674, 2009.
Ihara, C. and Kushnir, Y.: Change of mean midlatitude westerlies in 21st
century climate simulations, Geophys. Res. Lett., 36, L13701,
https://doi.org/10.1029/2009GL037674, 2013.
Jenny, B., Valero-Garcés, B. L., Urrutia, R., Kelts, K., Veit, H.,
Appleby, P. G., and Geyh, M.: Moisture changes and fluctuations of the
Westerlies in Mediterranean Central Chile during the last 2000 years: the
Laguna Aculeo record (33∘50′ S), Quaternary Int., 87, 3–18, 2002.
Johnson, T. C., Barry, S. L., Chan, Y., and Wilkinson, P.: Decadal record of
climate variability spanning the past 700 yr in the Southern Tropics of East
Africa, Geology, 29, 83–86, 2001.
Jones, P. D. and Mann, M. E.: Climate Over Past Millennia, Rev.
Geophys., 42, RG2002, https://doi.org/10.1029/2003RG000143, 2004.
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: High-resolution
palaeoclimatic records for the last millennium: interpretation, integration
and comparison with General Circulation Model control run temperatures, The
Holocene, 8, 467–473, 1998.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: The evolution of climate over
the last millennium, Science, 292, 662–667, 2001.
Kitoh, A., Kusunoki, S., and Nakaegawa, T.: Climate change projections over
South America in the late 21st century with the 20 and 60 km mesh
Meteorological Research Institute atmospheric general circulation model
(MRI-AGCM), J. Geophys. Res., 116, D06105, https://doi.org/10.1029/2010JD014920, 2011.
Koch, J.: Little Ice Age and recent glacier advances in the Cordillera
Darwin, Tierra del Fuego, Chile, Anales Instituto Patagonia (Chile),
43, 127–136, 2015.
Koch, J. and Kilian, R.: `Little Ice Age' glacier fluctuations, Gran Campo
Nevado, southernmost Chile, The Holocene, 15, 20–28, 2005.
Koffman, B. G., Kreutz, K. J., Breton, D. J., Kane, E. J., Winski, D. A., Birkel, S. D., Kurbatov, A. V., and Handley, M. J.: Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia, Clim. Past, 10, 1125–1144, https://doi.org/10.5194/cp-10-1125-2014, 2014.
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall
variability in southern Chile: a marine record of latitudinal shifts of the
Southern Westerlies, Earth Planet. Sc. Lett., 185, 369–382,
2001.
Lee, S.-Y., Chiang, J. C. H., Matsumoto, K., and Tokos, K. S.: Southern Ocean
wind response to North Atlantic cooling and the rise in atmospheric CO2:
Modeling perspective and paleoceanographic implications, Paleoceanography,
26, PA1214, https://doi.org/10.1029/2010PA002004, 2011.
Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: Warming of the
world ocean, Science, 287, 2225–2229, 2000.
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under
global warming, Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443,
2007.
Lu, J., Chen, G., and Frierson, D. M.: Response of the zonal mean atmospheric
circulation to El Niño versus global warming, J. Climate, 21,
5835–5851, 2008.
Ma, C. C., Mechoso, C. R., Robertson, A. W., and Arakawa, A.: Peruvian stratus
clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM
study, J. Climate, 9, 1635–1645, 1996.
Mann, M. E.: Little Ice Age, in: Encyclopedia of Global Environmental Change,
edited by: MacCracken, M. C. and Perry, J. S., 504–509, John Wiley,
Chichester, UK, 2002.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern Hemisphere
Temperatures during the Past Millennium: Inferences, Uncertainties, and
Limitations, Geophys. Res. Lett., 26, 759–762, 1999.
Mann, M. E., Ammann, C. M., Bradley, R. S., Briffa, K. R., Crowley, T. J.,
Hughes, M. K., Jones, P. D., Oppenheimer, M., Osborn, T. J., Overpeck, J. T.,
Rutherford, S., Trenberth, K. E., and Wigley, T. M. L.: On Past Temperatures and
Anomalous Late 20th Century Warmth, Eos, 84, 256–258, 2003.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific interdecadal climate oscillation with impacts on salmon production,
B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation, J.
Oceanogr., 58, 35–44, https://doi.org/10.1023/A:1015820616384, 2002.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of
regional and global temperature for the past 11,300 years, Science,
339, 6124, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marshall, G. J., Stott, P. A., Turner, J., Connolley, W. M., King, J. C., and
Lachlan-Cope, T. A.: Causes of exceptional atmospheric circulation changes in
the Southern Hemisphere, Geophys. Res. Lett., 31, L14205,
https://doi.org/10.1029/2004GL019952, 2004.
Masiokas, M., Rivera, A., Espizua, L. E., Villalba, R., Delgado, S., and
Aravena, J. C.: Glacier fluctuations in extratropical South America during
the past 1000 years, Palaeogeogr. Palaeocl., 281,
242–268, 2009.
Meehl, G., Tebaldi, C., Teng, H., and Peterson, T.: Current and future U.S.
weather extremes and El Niño, Geophys. Res. Lett., 34,
L20704, https://doi.org/10.1029/2007GL031027, 2007.
Menviel, L., Spence, P., Yu, J., Chamberlain, M. A., Matear, R. J., Meissner,
K. J., and England, M. H.: Southern Hemisphere westerlies as a driver of the
early deglacial atmospheric CO2 rise, Nat. Commun., 9,
2503, https://doi.org/10.1175/JCLI-D-13-00701.1, 2018.
Moreno, P. I., François, J. P., Villa-Martínez, R., and Moy, C. M.:
Millennial-scale variability in Southern Hemisphere westerly wind activity
over the last 5000 years in SW Patagonia, Quaternary Sci. Rev., 28,
25–38, 2009.
Moreno, P. I., Vilanova, I., Villa-Martínez, R., Garreaud, R. D., Rojas,
M., and De Pol-Holz, R.: Southern Annular Mode-like changes in southwestern
Patagonia at centennial timescales over the last three millennia, Nat.
Commun., 5, 4375, https://doi.org/10.1038/ncomms5375, 2014.
Moy, C. M., Dunbar, R. B., Moreno, P. I., François, J. P.,
Villa-Martínez, R., Mucciarone, D. M., Guilderson, T. O., and Garreaud,
R.: Isotopic evidence for hydrologic change related to the westerlies in SW
Patagonia, Chile, during the last millennium, Quaternary Sci. Rev.,
27, 1335–1349, 2008.
Moy, C. M., Moreno, P., Dunbar, R., Kaplan, M., François, J. P., Villalba,
R., and Haberzettl, T.: Climate Change in Southern South America During the
Last Two Millennia, Past Climate Variability in
South America and Surrounding Regions, Develop. Paleoenviron.
Res., 14, 353–393, 2009.
Neukom, R., Gergis, J., Karoly, D., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B., Moy, A. D., Mundo, I. A., Raible, C. C.,
Steig, E. J., Van Ommen, T., Vance, T., Villalba, R., Zinke, J., and Frank,
D.: Inter-hemispheric temperature variability over the past millennium,
Nat. Clim. Change, 4, 362–367, https://doi.org/10.1038/NCLIMATE2174, 2014.
Nuñez, M. N., Solman, S. A., and Cabré, M. F.: Regional climate change
experiments over southern South America. II: Climate change scenarios in the
late twenty-first century, Clim. Dynam., 32, 1081–1095, 2008.
Ortega, C., Vargas, G., Rojas, M., Rutllant, J. A., Muñoz, P., Lange,
C. B., Pantoja, S., Dezileau, L., and Ortlieb, L.: Extreme ENSO-driven
torrential rainfalls at the southern edge of the Atacama Desert during the
Late Holocene and their projection into the 21th century, Global
Planet. Change, 175, 226–237, https://doi.org/10.1016/j.gloplacha.2019.02.011, 2019.
Osborn, T. J. and Briffa, K. R.: The spatial extent of 20th-century warmth
in the context of the past 1200 years, Science, 311, 841–844, 2006.
PAGES2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/NGEO1797, 2013.
PAGES2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES2k Consortium: Consistent multidecadal variability in global
temperature reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, 2019.
Peterson, L. C. and Haug, G. H.: Variability in the mean latitude of the
Atlantic Intertropical Convergence Zone as recorded by riverine input of
sediments to the Cariaco Basin (Venezuela), Palaeogeogr.
Palaeocl., 234, 97–113, 2006.
Pittock, A. B.: Patterns of Climatic Variation in Argentina and Chile - I. Precipitation, 1931–60, Meteorológica, 11, 73–97, 1980.
Pizarro, O., Hormazábal, S., González, A., and Yáñez, E.:
Variabilidad del viento, nivel del mar y temperatura en la costa norte de
Chile, Investigaciones Marinas, Valparaíso, 22, 83–101, 1994.
Quintana, J. M. and Aceituno, P.: Changes in the rainfall regime along the
extratropical west coast of South America (Chile): 30–43∘ S, Atmosfera, 25, 1–22, 2012.
Rahn, D. A. and Garreaud, R. D.: A synoptic climatology of the near-surface
wind along the west coast of South America, Int. J. Climatol., 34, 780–792,
https://doi.org/10.1002/joc.3724, 2013.
Rasmussen, E. M. and Wallace, J. M.: Meteorological aspects of the El
Niño/Southern Oscillation, Science, 222, 1195–1202, 1983.
Rodwell, M. J. and Hoskins, B. J.: Subtropical anticyclones and summer
monsoons, J. Climate, 14, 3192–3211,
https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2,
2001.
Rojas, M., Arias, P. A., Flores-Aqueveque, V., Seth, A., and Vuille, M.: The South American monsoon variability over the last millennium in climate models, Clim. Past, 12, 1681–1691, https://doi.org/10.5194/cp-12-1681-2016, 2016.
Rutllant, J., Fuenzalida, H., and Aceituno, P.: Climate dynamics along the
arid northern coast of Chile: the 1997–1998 Dinámica del Clima de la
Región de Antofagasta (DICLIMA) experiment, J. Geophys.
Res.-Atmos., 108, 4358, https://doi.org/10.1029/2002JD003357, 2003.
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black,
B. A., and Bograd, S. J.: Poleward displacement of coastal upwelling-favorable
winds in the ocean's eastern boundary currents through the 21st century,
Geophys. Res. Lett., 42, 6424–6431, https://doi.org/10.1002/2015GL064694, 2015.
Sachs, J. P., Sachse, D., Smittenberg, R. H., Zhang, Z., Battisti, D. S., and
Golubic, S.: Southward movement of the Pacific intertropical convergence
zone AD 1400–1850, Nat. Geosci., 2, 519–525, 2009.
Salinas, C. X. and Mendieta, J.: Mitigation and adaptation investments for
desertification and climate change: an assessment of the socioeconomic
return, Mitig. Adapt Strateg. Glob. Change, 18, 659–672, 2013.
Salvatteci, R., Gutiérrez, D., Field, D., Sifeddine, A., Ortlieb, L., Bouloubassi, I., Boussafir, M., Boucher, H., and Cetin, F.: The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia, Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, 2014.
Saunders, K., Roberts, S., Perren, B., Butz, C., Sime, L., Davies, S., Van
Nieuwenhuyze, W., Grosjean, M., and Hodgson, D.: Holocene dynamics of the
Southern Hemisphere westerly winds and possible links to CO2 outgassing,
Nat. Geosci., 2018.
Schimpf, D., Kilian, R., Kronz, A., Simon, K., Spotl, C., Worner, G.,
Deininger, M., and Mangini, A.: The significance of chemical, isotopic, and
detrital components in three coeval stalagmites from the superhumid
southernmost Andes (53∘ S) as high-resolution palaeo-climate
proxies, Quaternary Sci. Rev., 30, 443–459, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the
intertropical convergence zone, Nature, 513, 45–53, 2014.
Schneider, W., Donoso, D., Garcés-Vargas, J., and Escribano, R.:
Water-column cooling and sea surface salinity increase in the upwelling
region off central-south Chile driven by a poleward displacement of the
South Pacific High, Prog. Oceanogr., 151, 38–48, 2017.
Seo, K.-H., Frierson, D. M., and Son, J.-H.: A mechanism for future changes in
Hadley circulation strength in cmip5 climate change simulations, Geophys. Res.
Lett., 41, 5251–5258, 2014.
Sepúlveda, J., Pantoja, S., Hughen, K., Bertrand, S., Figueroa, D.,
Leon, T., Drenzek, N., and Lange, C.: Late Holocene sea-surface temperature
and precipitation variability in northern Patagonia, Chile (Jacaf Fjord,
44∘ S), Quaternary Res., 72, 400–409,
https://doi.org/10.1016/j.yqres.2009.06.010, 2009.
Shindell, D. T. and Schmidt, G. A.: Southern Hemisphere Climate Response to
Ozone Changes and Greenhouse Gas Increases, Geophys. Res. Lett.,
31, L18209, https://doi.org/10.1029/2004gl020724, 2004.
Siffedine, A., Gutiérrez, D., Ortlieb, L., Boucher, H., Velazco, F.,
Field, D., Vargas, G., Boussafire, M., Salvatteci, R., Ferreira, V.,
García, M., Valdés, J., Caquineau, S., Mandeng Yogo, M., Cetin, F.,
Solis, J., Soler, P., and Baumgartner, T.: Laminated sediments from the
central Peruvian continental slope: A 500 year record of upwelling system
productivity, terrestrial runoff and redox conditions, Prog. Oceanogr., 79,
190–197, 2008.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A. M.,
Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes during
the Last Glacial Maximum: model-data comparison, Quaternary Sci. Rev., 64,
104–120, 2013.
Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo,
K.-H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin, J.,
Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N.,
Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny,
H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini, E.,
Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G.,
Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale,
D., Teyssèdre, H., Tian, W., and Yamashita, Y.: Impact of stratospheric
ozone on Southern Hemisphere circulation change: A multimodel assessment, J.
Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271, 2010.
Swart, N. C. and Fyfe, J. C.: Observed and simulated changes in the Southern
Hemisphere surface westerly wind-stress, Geophys. Res. Lett., 39, L16711,
https://doi.org/10.1029/2012GL052810, 2012.
Swart, N. C., Fyfe, J. C., Gillett, N., and Marshall, G. J.: Comparing trends in
the Southern Annular Mode and surface westerly jet, J. Climate, 28, 8840–8859,
https://doi.org/10.1175/JCLI-D-15-0334.1, 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical
circulation, Part I: Month-to-month variability, J. Climate, 13, 1000–1016,
2000.
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899, 2002.
Thompson, D. W. J., Wallace, J. M., and Hegerl, G. C.: Annular modes in the
extratropical circulation, Part II: Trends, J. Climate, 13, 1018–1036,
2000.
Toggweiler, J. R.: Climate change: shifting westerlies, Science, 323,
1434, https://doi.org/10.1126/science.1169823, 2009.
van Hengstum, P. J., Donnelly, J. P., Fall, P. L., Toomey, M. R., Albury, N. A.,
and Kakuk, B.: The intertropical convergence zone modulates intense
hurricane strikes on the western North Atlantic margin, Sci. Rep., 6, 21728,
https://doi.org/10.1038/srep21728, 2016.
Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, S., and Schulz, M.: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models, Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, 2012.
Vera, C., Silvestri, G., Liebmann, B., and González, P.: Climate change
scenarios for seasonal precipitation in South America from IPCC-AR4 models,
Geophys. Res. Lett., 33, L13707,
https://doi.org/10.1029/2006GL025759, 2006.
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification and
spatial homogenization of coastal upwelling under climate change, Nature,
318, 390–394, https://doi.org/10.1038/nature14235, 2015.
Williams, L. D. and Wigley, T. M. L.: A comparison of evidence for late
Holocene summer temperature variations in the Northern Hemisphere, Quaternary
Res., 20, 286–307, 1983.
Woollings, T. and Blackburn, M.: The North Atlantic jet stream under climate
change and its relation to the NAO and EA patterns, J. Climate, 25,
886–902, 2012.
Wu, T., Song, L., Li, W., Wang, Z., Zhang., H., Xin, X., Zhang, Y., Zhang, L., Li, J:, Wu., F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J, Fang, Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou, W., Dong, M., Zhao, Q., Laurent, L., and Zhou, M.: An overview of BCC climate system model development and application for climate change studies, J. Meteor. Res., 28, 034–056, doi:10.1007/s13351-014-3041-7, 2014.
Xin, X.-G., Wu, T.-W., and Zhang, J.: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center, Adv. Clim. Change Res., 4, doi:10.3724/SP.J.1248.2013.041, 2013.
Yan, H., Wei, W., Soon, W., An, Z., Zhou, W., Liu, Z., Wang, Y., and Carter,
R. M.: Dynamics of the intertropical convergence zone over the western
Pacific during the Little Ice Age, Nat. Geosci., 8, 315–320,
2015.
Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M., Tanaka, T. Y., Deushi, M., Obata, A., Nakano, H., Adachi, Y., Shindo, E., Yabu, S., Ose, T., and Kitoh, A.: Technical Report of the Meteorological Research Institute, 64, 83 pp., 2011.
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like interdecadal
variability: 1900–1993, J. Climate, 10, 1004–1020, 1997.
Short summary
The South Pacific Subtropical High (SPSH) is a main feature of the South American (SA) climate. We analyzed its behavior during two extreme temperature events based on paleoclimate records and climate models. The SPSH expands (contracts) in warm (cold) periods. The changes affect other elements of the SA climate like the strength of the southerly winds and the position of the westerly wind belt. Projections indicate that this expansion and its consequences will continue during the 21st century.
The South Pacific Subtropical High (SPSH) is a main feature of the South American (SA) climate....