Articles | Volume 16, issue 2
https://doi.org/10.5194/cp-16-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies
Lara Klippel
CORRESPONDING AUTHOR
Department of Geography, Johannes Gutenberg University, Mainz, Germany
Scott St. George
Department of Geography, Environment and Society, University of
Minnesota, Minneapolis, Minnesota, USA
Ulf Büntgen
Department of Geography, University of Cambridge, Cambridge, UK
Swiss Federal Research Institute for Forest, Snow, and Landscape
(WSL), Birmensdorf, Switzerland
Global Change Research Institute of the Czech Academy of Sciences
(CzechGlobe), 603 00 Brno, Czech Republic
Department of Geography, Faculty of Science, Masaryk University, u 613
00 Brno, Czech Republic
Paul J. Krusic
Department of Geography, University of Cambridge, Cambridge, UK
Department of Physical Geography, Stockholm University, Stockholm,
Sweden
Navarino Environmental Observatory, Messinia, Greece
Jan Esper
Department of Geography, Johannes Gutenberg University, Mainz, Germany
Related authors
No articles found.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Anna Wieland, Markus Greule, Philipp Roemer, Jan Esper, and Frank Keppler
Clim. Past, 18, 1849–1866, https://doi.org/10.5194/cp-18-1849-2022, https://doi.org/10.5194/cp-18-1849-2022, 2022
Short summary
Short summary
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy groups of beech trees growing in temperate, low elevation environments. Here, carbon isotope ratios reveal highest correlations with regional summer temperatures while hydrogen isotope ratios correlate more strongly with large-scale temperature changes. By combining the dual isotope ratios of wood lignin methoxy groups, a proxy for regional- to subcontinental-scale temperature patterns can be applied.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Tobias Anhäuser, Birgit Sehls, Werner Thomas, Claudia Hartl, Markus Greule, Denis Scholz, Jan Esper, and Frank Keppler
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-8, https://doi.org/10.5194/cp-2019-8, 2019
Revised manuscript not accepted
Petr Dobrovolný, Rudolf Brázdil, Miroslav Trnka, Michal Rybníček, Tomáš Kolář, Martin Možný, Tomáš Kyncl, and Ulf Büntgen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-160, https://doi.org/10.5194/cp-2018-160, 2018
Preprint withdrawn
Short summary
Short summary
Careful selection of available moisture-sensitive proxies resulted in a new reconstruction of short-term drought over the Czech Republic during the last 500 years. It consists of a synthesis of four different proxies and its high reconstruction skill demonstrates the clear advantage of a multi-proxy approach. The new chronology of Z-index shows that central Europe experienced the most severe 30-year late spring–early summer period of drought for the last 500 years.
Ulf Büntgen and Paul J. Krusic
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-265, https://doi.org/10.5194/bg-2017-265, 2017
Revised manuscript not accepted
Short summary
Short summary
Changes in autumnal climate affecting the diversity and productivity of the ecosphere are arguably as important as vernal climatic changes. Here we present three examples of innovative, recent research in wildlife biology (big-game hunting), wood anatomy (tree-ring formation) and mycology (mushroom inventory), which refine our ability to better understand how varying environmental and climatic conditions impact the phenology, productiviy and diversity of different organisms in autumn.
Ernesto Tejedor, Miguel Ángel Saz, José María Cuadrat, Jan Esper, and Martín de Luis
Clim. Past, 13, 93–105, https://doi.org/10.5194/cp-13-93-2017, https://doi.org/10.5194/cp-13-93-2017, 2017
Short summary
Short summary
Through this study, and inferred from 316 series of tree-ring width, we developed a maximum temperature reconstruction that is significant for much of the Iberian Peninsula (IP). This reconstruction will not only help to understand the past climate of the IP but also serve to improve future climate change scenarios particularly affecting the Mediterranean area.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Hydrological change in southern Australia over 1750 years: a bivalve oxygen isotope record from the Coorong Lagoon
Millennial hydrological variability in the continental northern Neotropics during Marine Isotope Stages (MISs) 3–2 (59–15 cal ka BP) inferred from sediments of Lake Petén Itzá, Guatemala
Greenhouse gases modulate the strength of millennial-scale subtropical rainfall, consistent with future predictions
Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia
Archaeal lipid-inferred paleohydrology and paleotemperature of Lake Chenghai during the Pleistocene–Holocene transition
Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view
Evaluating model outputs using integrated global speleothem records of climate change since the last glacial
1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density
Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments
Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory
Impact of postglacial warming on borehole reconstructions of last millennium temperatures
Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations
Briony Kate Chamberlayne, Jonathan James Tyler, Deborah Haynes, Yuexiao Shao, John Tibby, and Bronwyn May Gillanders
Clim. Past, 19, 1383–1396, https://doi.org/10.5194/cp-19-1383-2023, https://doi.org/10.5194/cp-19-1383-2023, 2023
Short summary
Short summary
We used geochemical signals in shells preserved in sediments to create a 1750-year record of hydrological change in the Coorong Lagoon of South Australia. The record is interpreted to reflect the balance of evaporation and precipitation and shows that it has always been a highly evaporated system. The record also shows similarities to other environmental reconstructions from the region. This knowledge can increase our understanding of the potential impacts of environmental change.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Fei Guo, Steven Clemens, Yuming Liu, Ting Wang, Huimin Fan, Xingxing Liu, and Youbin Sun
Clim. Past, 18, 1675–1684, https://doi.org/10.5194/cp-18-1675-2022, https://doi.org/10.5194/cp-18-1675-2022, 2022
Short summary
Short summary
Our high-resolution loess Ca/Ti record displays millennial monsoon oscillations that persist over the last 650 kyr. Wavelet results indicate the ice volume and GHG co-modulation at the 100 kyr band and GHG and local insolation forcing at the precession band for the magnitude of millennial monsoon variability of loess Ca/Ti. The inferred mechanism calls on dynamic linkages to variability in AMOC. At the precession band, combined effects of GHG and insolation lead to increased extreme rainfall.
Shengnan Feng, Xingqi Liu, Feng Shi, Xin Mao, Yun Li, and Jiaping Wang
Clim. Past, 18, 975–988, https://doi.org/10.5194/cp-18-975-2022, https://doi.org/10.5194/cp-18-975-2022, 2022
Short summary
Short summary
We present a continuous humidity history in arid Central Asia over the past millennium based on the ~1.8-year high-resolution multiproxy record from Lake Dalongchi. Our findings emphasize that the Gleissberg solar cycle and quasi-regular period of ENSO amplitude play critical roles in controlling the effective humidity at century and multidecadal timescales, respectively. Our analysis provides new insights for hydroclimate predictions and climate simulations in arid Central Asia in the future.
Weiwei Sun, Enlou Zhang, Jie Chang, James Shulmeister, Michael I. Bird, Cheng Zhao, Qingfeng Jiang, and Ji Shen
Clim. Past, 16, 833–845, https://doi.org/10.5194/cp-16-833-2020, https://doi.org/10.5194/cp-16-833-2020, 2020
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
R. Sundberg, A. Moberg, and A. Hind
Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, https://doi.org/10.5194/cp-8-1339-2012, 2012
V. Rath, J. F. González Rouco, and H. Goosse
Clim. Past, 8, 1059–1066, https://doi.org/10.5194/cp-8-1059-2012, https://doi.org/10.5194/cp-8-1059-2012, 2012
I. Dorado Liñán, U. Büntgen, F. González-Rouco, E. Zorita, J. P. Montávez, J. J. Gómez-Navarro, M. Brunet, I. Heinrich, G. Helle, and E. Gutiérrez
Clim. Past, 8, 919–933, https://doi.org/10.5194/cp-8-919-2012, https://doi.org/10.5194/cp-8-919-2012, 2012
Cited articles
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R.,
Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati,
C., Bouriaud, O., Ciais, P., and Frank, D.: Site- and species-specific
responses of forest growth to climate across the European continent, Global
Ecol. Biogeogr., 22, 706–717, 2013.
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M. P., and
Frank, D. C.: Twentieth century redistribution in climatic drivers of global
tree growth, Sci. Adv., 5, eaat4313,
https://doi.org/10.1126/sciadv.aat4313, 2019.
Baltensweiler, W., Weber, U. M., and Cherubini, P.: Tracing the influence of
larch-bud-moth insect outbreaks and weather conditions on larch tree-ring
growth in Engadine (Switzerland), Oikos, 117, 161–172, 2008.
Berger, A.: Long-term variations of daily insolation and quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information, Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, 2014.
Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri,
M.: The early instrumental warm-bias: a solution for long central European
temperature series 1760–2007, Clim. Change, 101, 41–67, 2009.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change,
2, 417–424, 2012.
Bräker, O. U.: Der Alterstrend bei Jahrringdichten und Jahrringbreiten
von Nadelhölzern und sein Ausgleich, Mitt. Forst. Bundes-Vers.anst.
Wien, 142, 75–102, 1981.
Briffa, K. R.: Annual climate variability in the Holocene: interpreting the
message of ancient trees, Quaternary Sci. Rev., 19, 87–105, 2000.
Briffa, K. R. and Melvin, T. M.: A closer look at regional curve
standardization of tree-ring records: Justification of the need, a warning
of some pitfalls, and suggested improvements in its application, in:
Dendroclimatology, edited by: Hughes, M. K., Swetnam, T. W., and Diaz, H. F.,
Developments in paleoenvironmental research, Springer Netherlands,
Dordrecht, 113 pp., 2011.
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber,
F. H., Karlen, W., Zetterberg, P., and Eronen, M.: Fennoscandian Summers
from Ad-500 – Temperature-Changes on Short and Long Timescales, Clim. Dynam.,
7, 111–119, 1992.
Briffa, K. R., Melvin, T. M., Osborn, T. J., Hantemirov, R. M., Kirdyanov,
A. V., Mazepa, V. S., Shiyatov, S. G., and Esper, J.: Reassessing the
evidence for tree-growth and inferred temperature change during the Common
Era in Yamalia, northwest Siberia, Quaternary Sci. Rev., 72, 83–107, 2013.
Büntgen, U., Frank, D., Trouet, V., and Esper, J.: Diverse climate
sensitivity of Mediterranean tree-ring width and density, Trees, 24,
261–273, 2009.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K. U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 years of European climate variability and human
susceptibility, Science, 331, 578–582, 2011.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo,
N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan,
J. O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and
Kirdyanov, A. V.: Cooling and societal change during the Late Antique Little
Ice Age from 536 to around 660 AD, Nat. Geosci., 9, 231–236, 2016.
Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G.,
Wagner, S., Camarero, J. J., Ljungqvist, F. C., Zorita, E., Oppenheimer, C.,
Konter, O., Tegel, W., Gärtner, H., Cherubini, P., Reinig, F., and
Esper, J.: New tree-ring evidence from the Pyrenees reveals western
Mediterranean climate variability since Medieval times, J. Climate, 30,
5295–5318, 2017.
Christiansen, B. and Ljungqvist, F. C.: Reconstruction of the Extratropical
NH Mean Temperature over the Last Millennium with a Method that Preserves
Low-Frequency Variability, J. Climate, 24, 6013–6034, 2011.
Christiansen, B. and Ljungqvist, F. C.: The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability, Clim. Past, 8, 765–786, https://doi.org/10.5194/cp-8-765-2012, 2012.
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for
large-scale temperature reconstructions of the past two millennia, Rev.
Geophys., 55, 40–96, 2017.
Cook, E. (Ed.): Methods of dendrochronology: Applications in the
environmental sciences, Kluwer, Dordrecht, 1990.
Cook, E. and Peters, K.: The smoothing spline: a new approach to
standardizing forest interior tree-ring width series for dendroclimatic
studies, Tree-Ring Bulletin, 41, 45–53, 1981.
Cook, E. and Peters, K.: Calculating unbiased tree-ring indices for the
study of climatic and environmental change, Holocene, 7, 361–370, 1997.
Cook, E., Briffa, K. R., Meko, D. M., Graybill, D., and Funkhouser, G.: The
“segment length curse” in long tree-ring chronology development for
palaeoclimatic studies, Holocene, 5, 229–237, 1995.
Cook, E., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T.,
and Sano, M.: Tree-ring reconstructed summer temperature anomalies for
temperate East Asia since 800 C.E., Clim. Dynam., 41, 2957–2972, 2012.
D'Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late
twentieth century warming, J. Geophys. Res., 111, D03103,
https://doi.org/10.1029/2005JD006352, 2006.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38,
527–546, 2010.
Douglass, A. E.: Climatic Cycles and Tree Growth, Volume I, Carnegie
Institution of Washington, Washington, 1919.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-frequency signals in
long tree-ring chronologies for reconstructing past temperature variability,
Science, 295, 2250–2253, 2002.
Esper, J., Cook, E. R., Krusic, P. J., Peters, K., and Schweingruber, F. H.:
Tests of the RCS method for preserving low-frequency variability in long
tree-ring chronologies, Tree-Ring Res., 59, 81–98, 2003.
Esper, J., Frank, D., and Wilson, R.: Climate reconstructions: Low-frequency
ambition and high-frequency ratification, EOS, 85, 113–130, 2004.
Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J. S.,
Luterbacher, J., Holzkämper, S., Fischer, N., Wagner, S., Nievergelt,
D., Verstege, A., and Büntgen, U.: Orbital forcing of tree-ring data,
Nat. Clim. Change, 2, 862–866, 2012.
Esper, J., Düthorn, E., Krusic, P. J., Timonen, M., and Büntgen, U.:
Northern European summer temperature variations over the Common Era from
integrated tree-ring density records, J. Quaternary Sci., 29, 487–494, 2014.
Esper, J., Konter, O., Krusic, P. J., Saurer, M., Holzkämper, S., and
Büntgen, U.: Long-term summer temperature variations in the Pyrenees
from detrended stable carbon isotopes, Geochronometria, 42, 53–59, 2015.
Esper, J., Krusic, P. J., Ljungqvist, F. C., Luterbacher, J., Carrer, M.,
Cook, E., Davi, N. K., Hartl-Meier, C., Kirdyanov, A., Konter, O., Myglan,
V., Timonen, M., Treydte, K., Trouet, V., Villalba, R., Yang, B., and
Büntgen, U.: Ranking of tree-ring based temperature reconstructions of
the past millennium, Quaternary Sci. Rev., 145, 134–151, 2016.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Foley, S. F., Gronenborn, D., Andreae, M. O., Kadereit, J. W., Esper, J.,
Scholz, D., Pöschl, U., Jacob, D. E., Schöne, B. R., Schreg, R.,
Vött, A., Jordan, D., Lelieveld, J., Weller, C. G., Alt, K. W.,
Gaudzinski-Windheuser, S., Bruhn, K.-C., Tost, H., Sirocko, F., and Crutzen,
P. J.: The Palaeoanthropocene – The beginnings of anthropogenic
environmental change, Anthropocene, 3, 83–88, 2013.
Frank, D., Esper, J., and Cook, E. R.: Adjustment for proxy number and
coherence in a large-scale temperature reconstruction, Geophys. Res. Lett.,
34, L16709, https://doi.org/10.1029/2007GL030571, 2007.
Frank, D., Esper, J., Zorita, E., and Wilson, R.: A noodle, hockey stick,
and spaghetti plate: a perspective on high-resolution paleoclimatology, Nat.
Clim. Change, 1, 507–516, 2010.
Fritts, H. C.: Tree Rings and Climate, Blackburn Press, Caldwell, N.J.,
1976.
Galván, J. D., Camarero, J. J., Ginzler, C., and Büntgen, U.:
Spatial diversity of recent trends in Mediterranean tree growth, Environ.
Res. Lett., 9, 084001,
https://doi.org/10.1088/1748-9326/9/8/084001, 2014.
Grove, J. M.: The Little Ice Age, 1. publ., Repr., Routledge, London, 1990.
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M.,
Tardif, R., Steiger, N., and Perkins, W. A.: The last millennium climate
reanalysis project: Framework and first results, J. Geophys. Res., 121,
6745–6764, 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
dataset, Int. J. Climatol., 34, 623–642, 2014.
Hartl-Meier, C. T. M., Büntgen, U., Smerdon, J. E., Zorita, E., Krusic,
P. J., Ljungqvist, F. C., Schneider, L., and Esper, J.: Temperature
covariance in tree ring reconstructions and model simulations over the past
millennium, Geophys. Res. Lett., 44, 9458–9469, 2017.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N.,
Smerdon, J., and Zorita, E.: Detection of human influence on a new,
validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, 2007.
Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M.:
Age-related trends in subfossil tree-ring δ13C data, Chem. Geol.,
416, 28–35, 2015.
Horiuchi, K., Uchida, T., Sakamoto, Y., Ohta, A., Matsuzaki, H., Shibata,
Y., and Motoyama, H.: Ice core record of 10Be over the past millennium from
Dome Fuji, Antarctica: A new proxy record of past solar activity and a
powerful tool for stratigraphic dating, Quat. Geochronol., 3, 253–261, 2008.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, 2006.
Johnson, D. M., Büntgen, U., Frank, D. C., Kausrud, K., Haynes, K. J.,
Liebhold, A. M., Esper, J., and Stenseth, N. C.: Climatic warming disrupts
recurrent Alpine insect outbreaks, P. Natl. Acad. Sci. USA, 107, 20576–20581, 2010.
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.:
High-resolution palaeoclimatic records for the last millennium:
interpretation, integration and comparison with General Circulation Model
control-run temperatures, Holocene, 8, 455–471, 1998.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E.,
Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Kuttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A.
W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution
palaeoclimatology of the last millennium: a review of current status and
future prospects, Holocene, 19, 3–49, 2009.
Juckes, M. N., Allen, M. R., Briffa, K. R., Esper, J., Hegerl, G. C., Moberg, A., Osborn, T. J., and Weber, S. L.: Millennial temperature reconstruction intercomparison and evaluation, Clim. Past, 3, 591–609, https://doi.org/10.5194/cp-3-591-2007, 2007.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R.
S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T.,
Vinther, B. M., and Arctic Lakes 2k Project Members: Recent warming reverses
long-term arctic cooling, Science, 325, 1236–1239, 2009.
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F.,
Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J.,
Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S.,
Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of
climatic cycles in Antarctica over the past 360,000 years, Nature, 448,
912–916, 2007.
Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O.,
Carrer, M., Di Filippo, A., Poulter, B., Trotsiuk, V., Wilson, R., and
Frank, D. C.: A Combined Tree Ring and Vegetation Model Assessment of
European Forest Growth Sensitivity to Interannual Climate Variability, Global
Biogeochem. Cy., 32, 1226–1240, https://doi.org/10.1029/2017gb005856, 2018. 2018.
Klippel, L., Krusic, P. J., Konter, O., St. George, S., Trouet, V., and
Esper, J.: A 1200+ year reconstruction of temperature extremes for the
northeastern Mediterranean region, Int. J. Climatol., 39, 2336–2350, 2018.
Konter, O., Esper, J., Liebhold, A., Kyncl, T., Schneider, L., Düthorn,
E., and Büntgen, U.: Tree-ring evidence for the historical absence of
cyclic larch budmoth outbreaks in the Tatra Mountains, Trees, 29, 809–814,
2015.
Krusic, P. J., Cook, E. R., Dukpa, D., Putnam, A. E., Rupper, S., and
Schaefer, J.: Six hundred thirty-eight?years of summer temperature
variability over the Bhutanese Himalaya, Geophys. Res. Lett., 42, 2988–2994,
2015.
Laepple, T., Werner, M., and Lohmann, G.: Synchronicity of Antarctic
temperatures and local solar insolation on orbital timescales, Nature, 471,
91–94, 2011.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities
of the Earth, A&A, 428, 261–285, 2004.
Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., and
Fuentes, M.: Fennoscandia revisited: a spatially improved tree-ring
reconstruction of summer temperatures for the last 900 years, Clim. Dynam.,
45, 933–947, 2014.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.:
The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, 3501–3505, 2014.
Ljungqvist, F. C., Krusic, P. J., Brattström, G., and Sundqvist, H. S.: Northern Hemisphere temperature patterns in the last 12 centuries, Clim. Past, 8, 227–249, https://doi.org/10.5194/cp-8-227-2012, 2012.
Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E., Brattstrom,
G., and Frank, D.: Northern Hemisphere hydroclimate variability over the
past twelve centuries, Nature, 532, 94–98, 2016.
Ljungqvist, F. C., Zhang, Q., Brattström, G., Krusic, P. J., Seim, A.,
Li, Q., Zhang, Q., and Moberg, A.: Centennial-Scale Temperature Change in Last
Millennium Simulations and Proxy-Based Reconstructions, J. Climate, 32,
2441–2482, 2019.
Luckman, B. H. and Wilson, R. J. S.: Summer temperatures in the Canadian
Rockies during the last millennium: a revised record, Clim. Dynam., 24,
131–144, 2005.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern hemisphere
temperatures during the past millennium: Inferences, uncertainties, and
limitations, Geophys. Res. Lett., 26, 759–762, 1999.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia, P. Natl. Acad. Sci. USA,
105, 13252–13257, 2008.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni., F.: Global Signatures and
Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1560, 2009.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
reconstruction of regional and global temperature for the past 11,300 years,
Science, 339, 1198–1201, 2013.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and millennial variations in Holocene
temperatures, Nature, 554, 92–96, 2018.
Martín-Chivelet, J., Muñoz-García, M. B., Edwards, R. L.,
Turrero, M. J., and Ortega, A. I.: Land surface temperature changes in
Northern Iberia since 4000yrBP, based on δ13C of speleothems, Global
Planet. Change, 77, 1–12, 2011.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish,
T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao,
X., and Timmermann, A.: Information from paleoclimate archives, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of
Regional Chronology Standardisation: Part 1. Signal-Free RCS,
Dendrochronologia, 32, 7–20, 2014.
Melvin, T. M., Grudd, H., and Briffa, K. R.: Potential bias in “updating”
tree-ring chronologies using regional curve standardisation: Re-processing
1500 years of Torneträsk density and ring-width data, Holocene, 23,
364–373, 2013.
Milanković, M.: Kanon der Erdbestrahlung und seine Anwendung auf das
Eiszeitproblem, Königlich Serbische Akademie, 1 pp., 1941.
Moore, J. J., Hughen, K. A., Miller, G. H., and Overpeck, J. T.: Little Ice
Age recorded in summer temperature reconstructions from varved sediments of
Donard Lake, Baffin Island, Canada, J. Paleolimnol., 25, 503–517, 2001.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117,
D08101, https://doi.org/10.1029/2011JD017187, 2012.
Nieto-Moreno, V., Martínez-Ruiz, F., Willmott, V.,
García-Orellana, J., Masqué, P., and Sinninghe Damsté, J. S.:
Climate conditions in the westernmost Mediterranean over the last two
millennia: An integrated biomarker approach, Org. Geochem., 55, 1–10, 2013.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J.
P.: No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554,
https://doi.org/10.1038/s41586-019-1401-2, 2019.
PAGES2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, 2013.
PAGES2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Nat. Sci. Dat., 4, 1–33, 2017 (data available at: https://www.ncdc.noaa.gov/paleo/study/21171, last access: 31 March 2019).
PAGES2k Consortium: Consistent multidecadal variability in global
temperature reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
PAGES Hydro2k Consortium: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era, Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, 2017.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420 000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, 1999.
Pfister, C., Brazdil, R., Glaser, R., Barriendos, M., Camuffo, D., Deutsch,
M., Dobrovolny, P., Enzi, S., Guidoboni, E., Kotyza, O., Militzer, S., Racz,
L., and Rodrigo, F. S.: Documentary evidence on climate in sixteenth-century
Europe, Climate Change, 43, 55–110, 1999.
Rosenheim, B. E.: Salinity change in the subtropical Atlantic: Secular
increase and teleconnections to the North Atlantic Oscillation, Geophys.
Res., 32, L02603, https://doi.org/10.1029/2004GL021499, 2005.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H.,
Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568, 83–87, 2019.
Schneider, E. K. and Kinter, J. L.: An examination of internally generated
variability in long climate simulations, Clim. Dynam., 10, 181–204, 1994.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V.
S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer
temperatures back to A.D. 600 based on a wood density network, Geophys. Res.
Lett., 42, 4556–4562, 2015.
Seim, A., Büntgen, U., Fonti, P., Haska, H., Herzig, F., Tegel, W.,
Trouet, V., and Treydte, K.: Climate sensitivity of a millennium-long pine
chronology from Albania, Clim. Res., 51, 217–228, 2012.
Shi, F., Yang, B., Mairesse, A., von Gunten, L., Li, J., Bräuning, A.,
Yang, F., and Xiao, X.: Northern Hemisphere temperature reconstruction
during the last millennium using multiple annual proxies, Clim. Res., 56,
231–244, 2013.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schupbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature, 523, 543–549, 2015.
Smerdon, J. E. and Pollack, H. N.: Reconstructing Earth's surface
temperature over the past 2000 years: the science behind the headlines,
Climate Change, 7, 746–771, 2016.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D.
S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi,
K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier
fluctuations during the past 2000 years, Quaternary Sci. Rev., 149, 61–90, 2016.
Steig, E. J., Ding, Q., White, J. W. C., Küttel, M., Rupper, S. B.,
Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K.
C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T.
J., Schneider, D. P., Schauer, A. J., Teel, R. P., Vaughn, B. H., Burgener,
L., Williams, J., and Korotkikh, E.: Recent climate and ice-sheet changes in
West Antarctica compared with the past 2,000 years, Nat. Geosci., 6,
372–375, 2013.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A
reconstruction of global hydroclimate and dynamical variables over the
Common Era, Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
St. George, S.: An overview of tree-ring width records across the Northern
Hemisphere, Quaternary Sci. Rev., 95, 132–150, 2014.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, 2015.
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution
of the solar irradiance during the Holocene, A&A, 531, 1–20, 2011.
Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E., and Rajaratnam, B.: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions, Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, 2014.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate
variability and change; a data-based review, J. Geol. Soc., 172, 254–263,
2015.
Wigley, T., Briffa, K. R., and Jones, P. D.: On the average of correlated
time series, with applications in dendroclimatology and hydrometeorology,
J. Clim. Appl. Meteorol., 23, 201–213, 1984.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V.,
Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P.,
and Zorita, E.: Last millennium northern hemisphere summer temperatures from
tree rings: Part I: The long term context, Quaternary Sci. Rev., 134, 1–18, 2016.
Young, G. H. F., Demmler, J. C., Gunnarson, B. E., Kirchhefer, A. J.,
Loader, N. J., and McCarroll, D.: Age trends in tree ring growth and
isotopic archives: A case study of Pinus sylvestris L. from northwestern
Norway, Global Biogeochem. Cy., 25, GB2020, https://doi.org/10.1029/2010GB003913,
2011.
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of...