Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-371-2020
https://doi.org/10.5194/cp-16-371-2020
Research article
 | 
18 Feb 2020
Research article |  | 18 Feb 2020

Hypersensitivity of glacial summer temperatures in Siberia

Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange

Related authors

Modeled storm surge changes in a warmer world: the Last Interglacial
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023,https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Internal climate variability and spatial temperature correlations during the past 2000 years
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022,https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
How warm was Greenland during the last interglacial period?
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016,https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
AMOC-emulator M-AMOC1.0 for uncertainty assessment of future projections
Pepijn Bakker and Andreas Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-79,https://doi.org/10.5194/gmd-2016-79, 2016
Revised manuscript not accepted
Short summary
Last interglacial model–data mismatch of thermal maximum temperatures partially explained
P. Bakker and H. Renssen
Clim. Past, 10, 1633–1644, https://doi.org/10.5194/cp-10-1633-2014,https://doi.org/10.5194/cp-10-1633-2014, 2014

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Contrasting the Penultimate Glacial Maximum and the Last Glacial Maximum (140 and 21 ka) using coupled climate–ice sheet modelling
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024,https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Contrasting responses of summer precipitation to orbital forcing in Japan and China over the past 450 kyr
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024,https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Stretched polar vortex increases mid-latitude climate variability during the Last Glacial Maximum
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-46,https://doi.org/10.5194/cp-2024-46, 2024
Revised manuscript accepted for CP
Short summary
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024,https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Last Glacial Maximum climate and atmospheric circulation over the Australian region from climate models
Yanxuan Du, Josephine R. Brown, and J. M. Kale Sniderman
Clim. Past, 20, 393–413, https://doi.org/10.5194/cp-20-393-2024,https://doi.org/10.5194/cp-20-393-2024, 2024
Short summary

Cited articles

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007. a
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013. a, b
Adler, R. E., Polyak, L., Ortiz, J. D., Kaufman, D. S., Channell, J. E. T., Xuan, C., Grottoli, A. G., Sellén, E., and Crawford, K. A.: Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution : HOTRAX core HLY0503-8JPC, Mendeleev Ridge, Global Planet. Change, 68, 18–29, https://doi.org/10.1016/j.gloplacha.2009.03.026, 2009. a
Backman, J., Fornaciari, E., and Rio, D.: Marine Micropaleontology Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin, Mar. Micropaleontol., 72, 86–98, https://doi.org/10.1016/j.marmicro.2009.04.001, 2009. a
Basilyan, A. E., Nikolsky, P. A., Maksimov, F. E., and Kuznetsov, V. Y.: Age of Cover Glaciation of the New Siberian Islands Based on 230Th/U-dating of Mollusk Shells, Structure and Development of the Lithosphere, Paulsen, 506–514, 2010. a
Download
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.