Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the late Eocene
Qin Yuan
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
University of Chinese Academy of Sciences, Beijing, China
Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
Natasha Barbolini
CORRESPONDING AUTHOR
Department of Ecology, Environment and Plant Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
Catarina Rydin
Department of Ecology, Environment and Plant Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
The Bergius Foundation, The Royal Swedish Academy of Sciences, Stockholm, Sweden
Dong-Lin Gao
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Hai-Cheng Wei
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qi-Shun Fan
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Zhan-Jie Qin
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Yong-Sheng Du
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Jun-Jie Shan
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
University of Chinese Academy of Sciences, Beijing, China
Fa-Shou Shan
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
Vivi Vajda
Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
Related authors
No articles found.
Nannan Wang, Lina Liu, Xiaohuan Hou, Yanrong Zhang, Haicheng Wei, and Xianyong Cao
Clim. Past, 18, 2381–2399, https://doi.org/10.5194/cp-18-2381-2022, https://doi.org/10.5194/cp-18-2381-2022, 2022
Short summary
Short summary
We reconstructed the vegetation and climate change since the last 14.2 ka BP from a fossil pollen record together with multiple proxies (grain size, contents of total organic carbon and total nitrogen) on the northeast Tibetan Plateau. The results reveal that an arid climate occurs in the early Holocene and the vegetation could be disturbed by human activities to some extent after ca. 0.24 ka BP (1710 CE).
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Cenozoic
Early Eocene carbon isotope excursions in a lignite-bearing succession at the southern edge of the proto-North Sea (Schöningen, Germany)
Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau
Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene
Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record
A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic – new insights into climate–vegetation relationships at the regional scale
Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records
Mid-Tertiary paleoenvironments in Thailand: pollen evidence
Olaf Klaus Lenz, Mara Montag, Volker Wilde, Katharina Methner, Walter Riegel, and Andreas Mulch
Clim. Past, 18, 2231–2254, https://doi.org/10.5194/cp-18-2231-2022, https://doi.org/10.5194/cp-18-2231-2022, 2022
Short summary
Short summary
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene lignite succession (Schöningen, DE). The combination with a new stratigraphic framework allows for a correlation of distinct CIEs with long- and short-term thermal events of the last natural greenhouse period on Earth. Furthermore, changes in the peat-forming wetland vegetation are correlated with a CIE that can be can be related to the Paleocene–Eocene Thermal Maximum (PETM).
Jia Liu, Ji Jun Li, Chun Hui Song, Hao Yu, Ting Jiang Peng, Zheng Chuang Hui, and Xi Yan Ye
Clim. Past, 12, 1473–1484, https://doi.org/10.5194/cp-12-1473-2016, https://doi.org/10.5194/cp-12-1473-2016, 2016
Short summary
Short summary
The late Cenozoic basins in the northeastern Tibetan Plateau document both the tectonic uplift process and its associated environmental changes. Here, we investigated a late Miocene sporopollen record from the Tianshui Basin in the northeastern Tibetan Plateau. The results show that a persistent aridification trend parallels the global cooling of the late Miocene, and the stepwise vegetation succession is consistent with the major uplift events of the Tibetan Plateau.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
Y. F. Miao, X. M. Fang, F. L. Wu, M. T. Cai, C. H. Song, Q. Q. Meng, and L. Xu
Clim. Past, 9, 1863–1877, https://doi.org/10.5194/cp-9-1863-2013, https://doi.org/10.5194/cp-9-1863-2013, 2013
P. Sepulchre, D. Jolly, S. Ducrocq, Y. Chaimanee, J.-J. Jaeger, and A. Raillard
Clim. Past, 6, 461–473, https://doi.org/10.5194/cp-6-461-2010, https://doi.org/10.5194/cp-6-461-2010, 2010
Cited articles
Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R., and Krijgsman, W.:
Step-wise change of Asian interior climate preceding the Eocene-Oligocene
Transition (EOT), Palaeogeogr. Palaeocl., 299, 399–412,
2011.
Aitchison, J. C. and Davis, A. M.: When did the India-Asia collision really
happen?, Gondwana. Res., 4, 560–561, 2001.
Aitchison, J. C., Xia, X. P., Baxter, A. T., and Ali, J. R.: Detrital zircon
U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet: implications for
oblique convergence and collision between India and Asia, Gondwana. Res.,
20, 691–709, 2011.
Baumann, F., He, J. S., Scheidt, K., Kühn, P., and Scholten, T.:
Pedogenesis, permafrost, and soil moisture as controlling factors for soil
nitrogen and carbon contents across the Tibetan Plateau, Glob. Change Biol.,
15, 3001–3017, 2009.
Bolinder, K., Norbäck Ivarsson, L., Humphreys, A. M., Ickert-Bond, S. M.,
Han, F., Hoorn, C., and Rydin, C.: Pollen morphology of
Ephedra (Gnetales) and its
evolutionary implications, Grana, 55, 24–51, 2016.
Bosboom, R. E., Dupont-Nivet, G., Houben, A. J. P., Brinkhuis, H., Villa, G.,
Mandic, O., Stoica, M., Zachariasse, W. J., Guo, Z. J, Li, C. X, and Krijgsman, W.: Late Eocene sea retreat from the Tarim Basin (west China) and
concomitant Asian paleoenvironmental change, Palaeogeogr. Palaeocl., 299, 385–398, 2011.
Bosboom, R. E., Abels, H. A., Hoorn, G., Van den Berg, B. C. J., Guo, Z. J., and Dupont-Nivet, G.: Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO), Earth Planet. Sc. Lett., 389, 34–42, 2014.
Botsyun, S., Sepulchre, P., Donnadieu, Y., Risi, C., Licht, A., and Caves
Rugenstein, J.: Revised paleoaltimetry data show low Tibetan Plateau
elevation during the Eocene, Science, 363, eaaq1436, https://doi.org/10.1126/science.aaq1436, 2019.
Bougeois, L., Dupont-Nivet, G., De Rafélis, M., Tindall, J., Proust,
J. N., Reichart, G. J., Nooijer, L., Guo, Z. J., and Ormukov, C.: Asian
monsoons and aridification response to Paleogene sea retreat and Neogene
westerly shielding indicated by seasonality in Paratethys oysters, Earth
Planet. Sc. Lett., 485, 99–110, 2018.
Cai, M. T., Fang, X. M., Wu, F. L., Miao, Y. F., and Appel, E.:
Pliocene-Pleistocene stepwise drying of Central Asia: evidence from
paleo-magnetism and sporopollen record of the deep borehole SG-3 in the
western Qaidam Basin, NE Tibetan Plateau, Global Planet Change, 94–95,
72–81, 2012.
Cavalli-Sforza, L. L. and Edwards, A. W.: Phylogenetic analysis. Models and estimation procedures, Am. J. Hum. Genet., 19, p. 233, 1967.
Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J., and
Chamberlain, C. P.: Aridification of Central Asia and uplift of the Altai and
Hangay Mountains, Mongolia: Stable isotope evidence, Am. J. Sci., 314,
1171–1201, 2014.
Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., and
Chamberlain, C. P.: Role of the westerlies in Central Asia climate over the
Cenozoic, Earth Planet. Sc. Lett., 428, 33–43, 2015.
Caves, J. K., Moragne, D. Y., Ibarra, D. E., Bayshashov, B. U., Gao, Y., Jones, M. M., Zhamangara, A., Arzhannikova, A. V., Arzhannikov, S. G., and Chamberlain, C. P.: The Neogene de-greening of Central Asia, Geology, 44, 887–890, 2016.
Caves Rugenstein, J. K. and Chamberlain, C. P.: The evolution of hydroclimate
in Asia over the Cenozoic: A stable-isotope perspective, Earth-Sci.
Rev., 185, 1129–1156, 2018.
Cour, P., Zheng, Z., Duzer, D., Calleja, M., and Yao, Z.: Vegetational and
climatic significance of modern pollen rain in northwestern Tibet, Rev.
Palaeobot. Palynol., 104, 183–204, 1999.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
Deng, W., Sun, H., and Zhang, Y.: Cenozoic K-Ar ages of volcanic rocks in
the Nangqian Basin, Qinghai, Chinese Sci. Bull., 44, 2554–2558, 1999 (in
Chinese with English abstract).
Ding, L., Xu, Q., Yue, Y. H., Wang, H. Q., Cai, F. I., and Li, S.: The
Andean-type Gangdese Mountains: paleoelevation record from the
Paleocene-Eocene Linzhou Basin, Earth Planet. Sc. Lett., 392, 250–264,
2014.
Du, H. F., Jiang, Y. B., Yan, Z. B., Hou, Z. Q., Yang, T. N., Guo, F. S., and Yang, Q. K.: Sedimentary Characteristics and Environment of the Paleogene Nangqian Basin in Qinghai Province, Acta Geol. Sin., 85, 383–395, 2011 (in Chinese with English abstract).
Dupont-Nivet, G., Keijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., and
Fang, X. M.: Tibetan plateau aridification linked to global cooling at the
Eocene-Oligocene transition, Nature, 445, 635–638, 2007.
Dupont-Nivet, G., Hoorn, C., and Konert, M.: Tibetan uplift prior to the
Eocene-Oligocene climate transition: evidence from pollen analysis of the
Xining Basin, Geology, 36, 987–990, 2008.
Fauquette, S., Suc, J. P., Bertini, A., Popescu, S. M., Warny, S., Taoufiq,
N. B., Villa, M. J. P., Chikhi, H., Feddi, N., Subally, D., and Clauzon, G.:
How much did climate force the Messinian salinity crisis? Quantified
climatic conditions from pollen records in the Mediterranean region,
Palaeogeogr. Palaeocl., 238, 281–301, 2006.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained
cluster analysis by the method of incremental sum of squares, Comput. Geosci.
UK, 13, 13–35, 1987.
Grimm, E. C.: TILIA v2. 0. b. 4 and TGView v2. 0 (computer software),
Illinois State Museum, Research and Collections Center, Springfield, IL,
USA, available at: https://tiliait.com/ (last access: 18 November 2020), 1991.
Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E.: Indian Ocean
high-productivity event (10–8 Ma): Linked to global cooling or to the
initiation of the Indian monsoons?, Geology, 32, 753–756, 2004.
Han, F., Rydin, C., Bolinder, K., Dupont-Nivet, G., Abels, H. A.,
Koutsodendris, A., Zhang, K., and Hoorn, C.: Steppe development on the
Northern Tibetan Plateau inferred from Paleogene ephedroid pollen, Grana,
55, 71–100, 2016.
Herb, C., Koutsodendris, A., Zhang, W. L., Appel, E., Fang, X. M., Voigt, S.,
and Pross, J.: Late Plio-Pleistocene humidity fluctuations in the western
Qaidam Basin (NE Tibetan Plateau) revealed by an integrated
magnetic-palynological record from lacustrine sediments, Quat. Res., 84,
457–466, 2015.
Herzschuh, U.: Reliability of pollen ratio for environmental reconstructions on the Tibetan Plateau, J. Biogeogr., 34, 1265–1273, 2007.
Hoorn, C., Straathof, J., Abels, H. A., Xu, Y. D., Utescher, T., and
Dupont-Nivet, G.: A late Eocene palynological record of climate change and
the Tibetan Plateau uplift (Xining Basin, China), Palaeogeogr. Palaeocl., 344, 16–38, 2012.
Horton, B. K., Yin, A., Spurlin, M. S., Zhou, J., and Wang, J.:
Paleocene-Eocene syncontractional sedimentation in narrow,
lacustrine-dominated basins of east-central Tibet, Geol. Soc. Am. Bull.,
114, 771–786, 2002.
Hou, Z., Hongwen, M., Zaw, K., Yuquan, Z., Mingjie, W., Zeng, W., Guitang,
P., and Renli, T.: The Himalayan Yulong porphyry copper belt: product of
large-scale strike-slip faulting in eastern Tibet, Econ. Geol., 98,
125–145, 2003.
Hu, X. M., Garzanti, E., Wang, J. G., Huang, W. T., An, W., and Webb, A.: The
timing of India-Asia collision onset – Facts, theories, controversies,
Earth-Sci. Rev., 160, 264–299, 2016.
Ji, L. M., Meng, F. W., Yan, K., and Song, Z. G.: The dinoflagellate cyst
Sub-tilisphaera from the Eocene of the Qaidam Basin, northwest China, and
its implications for hydrocarbon exploration, Rev. Palaeobot. Palynol., 167,
40–50, 2011.
Jiang, H. and Ding, Z.: A 20 Ma pollen record of East-Asian summer monsoon
evolution from Guyuan, Nigxia, China, Palaeogeogr. Palaeocl., 265, 30–38, 2008.
Jiang, Y. B., Guo, F. S., Hou, Z. Q., Yang, T. N., Liu, Y. X., Yang, Q. K., and Du, H. F.: Sedimentary features and evolution of the Nangqian Paleogene basin in northeastern Qinghai-Tibet Plateau, Acta Petrol. Et. Miner., 30,
391–400, 2011 (in Chinese with English abstract).
Jin, C., Liu, Q., Liang, W., Roberts, A. P., Sun, J., Hu, P., Zhao, X., Su,
Y., Jiang, Z., Liu, Z., and Duan, Z.: Magnetostratigraphy of the Fenghuoshan
Group in the Hoh Xil Basin and its tectonic implications for India-Eurasia
collision and Tibetan Plateau deformation, Earth Planet. Sci. Lett., 486,
41–53, 2018.
Kaya, M. Y., Dupont-Nivet, G., Proust, J-N., Roperch, P., Bougeois, L.,
Meijer, N., Frieling, J., Fioroni, C., Altiner, S. Ö., Vardar, E.,
Barbolini, N., Stoica, M., Aminov, J., Mamtimin, M., and Guo, Z.: Paleogene
evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and
Tajik basins): role of intensified tectonic activity at ∼41 Ma, Basin
Res., 31, 461–486, 2019.
Kotthoff, U., Greenwood, D. R., McCarthy, F. M. G., Müller-Navarra, K., Prader, S., and Hesselbo, S. P.: Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027), Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014, 2014.
Li, Y., Xu, Q., Zhao, Y., Yang, X., Xiao, J., Chen, H., and Lü, X.:
Pollen indication to source plants in the eastern desert of China, Chinese
Sci. Bull., 50, 1632–1641, 2005.
Li, J. G., Batten, D. J., and Zhang, Y. Y.: Palynological indications of
environmental changes during the Late Cretaceous-Eocene on the southern
continental margin of Laurasia, Xizang (Tibet), Palaeogeogr. Palaeocl., 265, 78–86, 2008.
Li, Y., Wang, N., Morrill, C., Cheng, H., Long, H., and Zhao, Q.:
Environmental change implied by the relationship between pollen assemblages
and grain-size in N.W., Chinese lake sediments since the Late Glacial, Rev.
Palaeobot. Palynol., 154, 54–64, 2009.
Li, F., Sun, J., Zhao, Y., Guo, X., Zhao, W., and Zhang, K.: Ecological
significance of common pollen ratios: A review Front, Earth Sci. Chin.,
4, 253–258, 2010.
Li, S. Y., Currie, B. S., Rowley, D. B., and Ingalls, M.: Cenozoic
paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the
tectonic evolution of the region, Earth Planet. Sc. Lett., 432, 415–424,
2015.
Li, X., Zhang, R., Zhang, Z., and Yan, Q.: What enhanced the aridity in
Eocene Asian inland: Global cooling or early Tibetan Plateau uplift?
Palaeogeogr. Palaeocl., 510, 6–14, 2018.
Li, J. G., Wu, Y. X., Batten, D. J., and Lin, M. Q.: Vegetation and climate of the central and northern Qinghai-Xizang plateau from the Middle Jurassic to the end of the Paleogene inferred from palynology, J. Asian Earth Sci.,
175, 34–38, 2019.
Li, L., Fan, M., Davila, N., Jesmok, G., Mitsunaga, B., Tripati, A., and
Orme, D.: Carbonate stable and clumped isotopic evidence for late Eocene
moderate to high elevation of the east-central Tibetan Plateau and its
geodynamic implications, GSA Bulletin, 131, 831–844, 2019.
Li, J. F., Xie, G., Yang, J., Ferguson, D. K., Liu, X. D., Liu, H., and Wang,
Y. F.: Asian Summer Monsoon changes the pollen flow on the Tibetan Plateau,
Earth-Sci. Rev., 202, 103–114, 2020.
Licht, A., Cappelle, M. V., Ables, H. A., Ladant, J. B., Trabucho-Alexandre,
J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T.,
Lecuyer, C., Terry Jr., D., Adriaens, R., Boura, A., Guo, Z., Soe, A. N.,
Quade, J., Dupont-Nivet, G., and Jaeger, J. J.: Asian monsoons in a late Eocene greenhouse world, Nature, 513, 501–506, 2014.
Linnemann, U., Su, T., Kunzmann, L., Spicer, R. A., Ding, W. N., Spicer,
T. E. V., Zieger, J., Hofmann, M., Moraweck, K., Gärtner, A., and Gerdes,
A.: New U-Pb dates show a Paleogene origin for the modern Asian biodiversity
hot spots, Geology, 46, 3–6, 2018.
Liu, G. W.: Fupingopollenites gen. nov. and its distribution, Acta Palaeontol. Sin., 24, 64–70, 1985 (in Chinese with English abstract).
Liu, Z. Q.: Geologic map of the Qinghai-Xizang Plateau and its neighboring
regions: Beijing, Chengdu Institute of Geology and Mineral Resources,
Geologic Publishing House, scale 1:1 500 000, 1988.
Liu, J., Li, J. J., Song, C. H., Yu, H., Peng, T. J., Hui, Z. C., and Ye, X. Y.: Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau, Clim. Past, 12, 1473–1484, https://doi.org/10.5194/cp-12-1473-2016, 2016.
Liu, Y., Liu, H., Theye, T., and Massonne, H. J.: Evidence for oceanic
subduction at the NE Gondwana margin during Permo-Triassic times, Terra
Nova, 21, 195–202, 2009.
Liu, Z., Zhao, X., Wang, C. S., and Liu, H. Y.: Magnetostratigraphy of
Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic
tectonic history of the Tibetan Plateau, J. Asian Earth Sci., 154,
233–252, 2003.
Lu, H., Wu, N., Yang, X., Shen, C., Zhu, L., Wang, L., Li, Q., Xu, D., Tong,
G., and Sun, X.: Spatial patterns of Abies and Picea surface pollen
distribution along the elevation gradient in the Qinghai-Tibetan Plateau
and Xinjiang, China, Boreas, 37, 254–262, 2008.
Lu, J. F., Song, B. W., Chen, R. M., Zhang, J. Y., and Ye, H.: Palynological
assemblage of Eocene-Oligocene pollen and their biostratigraphic
correlation in Dahonggou, Daqaidam Regions, Qaidam Basin, Earth Sci. J.
China University of Geosciences, 35, 839–848, 2010 (in Chinese with
English abstract).
Ma, Y., Liu, K., Feng, Z., Sang, Y., Wang, W., and Sun, A.: A survey of
modern pollen and vegetation along a south-north transect in Mongolia, J.
Biogeogr., 35, 1512–1532, 2008.
Mao, Y. B.: Tectonic evolvement Coal accumulation in Zaduo-Nangqian area of
Qinghai Province, J. Earth Sci. Environ., 32, 225–233, 2010 (in Chinese).
Meijer, N., Dupont-Nivet, G., Abels, H. A., Kaya, M. Y., Licht, A., Xiao,
M. M., Zhang, Y., Roperch, P., Poujol, M., Lai, Z. P., and Guo, Z. J.: Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene, Earth Planet. Sci. Lett., 510, 73–84, 2019.
Miao, Y. F.: Cenozoic Pollen Records in the Xining Basin and Its Significance
for the Palaeoclimate Change, Postdoctoral Report, Institute of Tibetan
Plateau Research, Chinese Academy of Sciences, Beijing, 95 pp., 2010 (in
Chinese with English abstract).
Miao, Y. F., Fang, X. M., Song, Z. C., Wu, F. L., Han, W. X., Dai, S., and Song, C. H.: Late Eocene pollen records and paleoenvironmental changes in northern Tibetan Plateau, Sci. China Earth Sci., 51, 1089–1098, 2008.
Miao, Y. F., Fang, X. M., Herrmann, M., Wu, F. L., Zhang, Y. Z., and Liu,
D. L.: Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon, Palaeogeogr. Palaeocl., 299, 30–38, 2011.
Miao, Y. F., Herrmann, M., Wu, F. L., Yan, X. L., and Yang, S. L.: What
controlled Mid-Late Miocene long-term aridification in Central Asia? Global
cooling or Tibetan Plateau uplift: a review, Earth Sci. Rev., 112,
155–172, 2012.
Miao, Y. F., Fang, X. M., Wu, F. L., Cai, M. T., Song, C. H., Meng, Q. Q., and Xu, L.: Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records, Clim. Past, 9, 1863–1877, https://doi.org/10.5194/cp-9-1863-2013, 2013a.
Miao, Y. F., Fang, X. M., Song, C. H., Yan, X. L., Xu, L., and Chen, C. F.:
Pollen and fossil wood's linkage with Mi-1 Glaciation in northeastern
Tibetan Plateau, China, Palaeoworld, 22, 101–108, 2013b.
Miao, Y. F., Wu, F. L., Chang, H., Fang, X. M., Deng, T., Sun, X. M., and Jin, C. S.: A Late Eocene palynological record from the Hoh Xil Basin, Northern
Tibetan Plateau, and its implications for stratigraphic age, paleoclimate
and paleoelevation, Gondwana Res., 31, 241–252, 2016.
Molnar, P.: Late Cenozoic increase in accumulation rates of terrestrial
sediments: How might climate change have affected erosion rates?, Annu. Rev.
Earth Pl. Sc., 32, 67–89, 2004.
Molnar, P. and Tapponnier, P.: Effects of a Continental Collision, Science,
189, 419–426, 1975.
Molnar, P., Boos, W. R., and Battisti, D. S.: Orographic controls on climate
and paleoclimate of Asia: thermal and mechanical roles for the Tibetan
Plateau, Annu. Rev. Earth Pl. Sc., 38, 77–102, 2010.
Mulch, A. and Chamberlain, C. P.: The rise and growth of Tibet, Nature, 439, 670–671, 2006.
Paeth, H., Steger, C., Li, J. M., Mutz, S. G., and Ehlers, T. A.: Comparison of
Cenozoic surface uplift and glacial-interglacial cycles on Himalaya-Tibet paleo-climate: Insights from a regional climate model, Global
Planet. Change, 177, 10–26, 2019.
Pagani, M., Hubei, M., Liu, Z. H., Bohaty, S. M., Henderikes, J., Sijp, W.,
Krishnan, S., and DeConto, R. M.: The role of carbon dioxide during the onset
of Antarctic glaciation, Science, 334, 1261–1264, 2011.
Page, M., Licht, A., and Dupont-Nivet, G.: Synchronous cooling and decline
in monsoonal rainfall in northeastern Tibet during the fall into the
Oligocene icehouse, Geology, 47, 203–206, 2019.
Qinghai BGMR, (Qinghai Bureau of Geology and Mineral Resources): Geologic
map of the Nangqian region, with geologic report, unpublished, 198 pp.,
scale 1 : 200 000, 1983a.
Qinghai BGMR (Qinghai Bureau of Geology and Mineral Resources): Geologic
map of the Shanglaxiu region, with geologic report: unpublished, 220 pp.,
scale 1 : 200 000, 1983b.
Qinghai BGMR (Qinghai Bureau of Geology and Mineral Resources): Regional
Geology of Qinghai Province, Geological Publishing House, Beijing, China, 66 pp., 1991.
Rowley, D. B. and Currie, B. S.: Palaeo-altimetry of the late Eocene to
Miocene Lunpola basin, central Tibet, Nature, 439, 677–681, 2006.
Shen, H. and Poulsen, C. J.: Precipitation δ18O on the Himalaya–Tibet orogeny and its relationship to surface elevation, Clim. Past, 15, 169–187, https://doi.org/10.5194/cp-15-169-2019, 2019.
Song, Z. C. and Liu, G. W.: Early Tertiary palynoflora and its significance
of palaeogeography from northern and eastern Xizang, in: Integrative
Scientific Expedition Team to the Qinghai-Xizang plateau, edited by: Academia Sinica, Palaeontology of Xizang, Book V, Science Press, Beijing, China, 183–201,
1982 (in Chinese with English abstract).
Song, X. Y., Spicer, R. A., Yan, J., Yao, Y. F., and Li, C. S.: Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya, Palaeogeogr. Palaeocl., 297, 159–168, 2010.
Spicer, R. A.: Tibet, the Himalaya,
Asian monsoons and biodiversity in what ways are they related?, Plant
Diversity, 39, 233–244, 2017.
Spicer, R. A., Su, T., Valdes, P. J., Farnsworth, A., Wu, F. X., Shi, G.,
Spicer, T. E., and Zhou, Z.: Why the “Uplift of the Tibetan Plateau” is a
myth, Natl. Sci. Rev., nwaa091, https://doi.org/10.1093/nsr/nwaa091, online first,
2020.
Spurlin, M. S., Yin, A., Horton, B. K., Zhou, J., and Wang, J.: Structural
evolution of the Yushu-Nangqian region and its relationship to
syncollisional igneous activity, east-central Tibet, Geol. Soc. Am. Bull.,
117, 1293–1317, 2005.
Stanley, C., Charlet, D. A., Freitag, H., Maier-Stolte, M., and Starratt,
A. N.: New observations on the secondary chemistry of world Ephedra (Ephedraceae), Am. J. Bot., 88, 1199–1208, 2001.
Studnicki-Gizbert, C., Burchfiel, B. C., Li, Z., and Chen, Z.: Early Tertiary
Gonjo basin, eastern Tibet: Sedimentary and structural record of the early
history of India-Asia collision, Geosphere, 4, 713–735, 2008.
Su, T., Spicer, R. A., Li, S. H., Huang, J., Sherlock, S., Huang, Y. J., Li,
S. F., Wang, L., Jia, L. B., Deng, W. Y. D., Liu, J., Deng, C. L., Zhang, S. T.,
Valdes, P. J., and Zhou, Z. K.: Uplift, climate and biotic changes at the
Eocene-Oligocene transition in south-eastern Tibet, Natl. Sci. Rev., 6,
495–504, 2018.
Su, T., Farnsworth, A., Spicer, R. A., Huang, J., Wu, F. X., Liu, J., Li,
S. F., Xing, Y. W., Huang, Y. J., Deng, W. Y. D., Tang, H., Xu, C. L., Zhao, F., Srivastava, G., Valdes, P. J., Deng, T., and Zhou, Z. K.: No high Tibetan
Plateau until the Neogene, Science Advances, 5, 1–8, 2019.
Sun, X. J. and Wang, P. X.: How old is the Asian monsoon
system-palaeobotanical records from China, Palaeogeogr. Palaeocl., 222, 181–222, 2005.
Sun, Z. C., Feng, X. J., Li, D. M., Yang, F., Qu, Y. H., and Wang, H. J.:
Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin
western China, Palaeogeogr. Palaeocl.148, 37–50, 1999.
Sun, Z., Yang, Z. Y., Pei, X. H., Wang, X. S., Yang, T. S., Li, W. M., and Yuan,
S. H.: Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin,
China: implications for tectonic uplift and block rotation in northern
Tibetan plateau, Earth Planet. Sc. Lett., 237, 635–646, 2005.
Tang, M., Liu-Zeng, J., Hoke, G. D., Xu, Q., Wang, W., Li, Z., Zhang, J., and
Wang, W.: Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin,
SE-central Tibet, Tectonophysics, 712, 170–181, 2017.
Tarasov, P. E., Cheddadi, R., Guiot, J., Bottema, S., Peyron, O., Belmonte,
J., Ruiz-sanchez, V., Saadi, F., and Brewer, S.: A method to determine warm
and cool steppe biomes from pollen data; application to the Mediterranean
and Kazakhstan regions, J. Quaternary Sci., 13, 335–344, 1998.
Tardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.-B., Sepulchre, P., Licht, A., Poblete, F., and Dupont-Nivet, G.: The origin of Asian monsoons: a modelling perspective, Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, 2020.
Valdes, P. J., Lin, D., Farnsworth, A., Spicer, R. A., Li, S. H., and Tao, S.: Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”, Science, 365, eaax8474, https://doi.org/10.1126/science.aax8474, 2019.
Wang, Z.: A new Permian gnetalean cone as fossil evidence for supporting
current molecular phylogeny, Ann. Bot., 94, 281–288, 2004.
Wang, D., Sun, X. Y., and Zhao, Y.: Late Cretaceous to Tertiary palynofloras
in Xingjiang and Qinghai China, Rev. Palaeobot. Palynol., 65, 95–104,
1990a.
Wang, D., Sun, X. Y., Zhao, Y., He, Z.: Palynoflora from Late Cretaceous to
Tertiary in Some Regions of Qinghai and Xinjiang, China Environmental
Science Press, Beijing, China, 1–179, 1990b (in Chinese with English
abstract).
Wang, J., Wang, Y. J., Liu, Z. C., Li, J. Q., and Xi, P.: Cenozoic
environmental evolution of the Qaidam Basin and its implications for the
uplift of the Tibetan Plateau and the drying of central Asia, Palaeogeogr. Palaeocl., 152, 37–47, 1999.
Wang, S. F., Yi, H. S., and Wang, C. S.: Sedimentary facies and palaeogeography features of Nangqian Tertiary basin in Yushu district, Qinghai, Northwestern Geol., 34, 64–67, 2001. (in Chinese with English abstract).
Wang, S. F., Yi, H. S., and Wang, C. S.: Sediments and structural features of
Nangqian Tertiary Basin in eastern of Tibet-Qingzang Plateau, Acta Sci. Nat.
Univ. Pekin., 38, 109–114, 2002 (in Chinese with English abstract).
Wang, C. S., Zhao, X. X., Liu, Z. Z., Peter, C., Stephan, A. G., Robert, S. C., Zhu, L. D., Liu, S., and Li, Y. L.: Constraints on the early uplift history of the Tibetan Plateau, P. Natl. Acad. Sci. USA, 105, 4987–4992, 2008.
Wang, C. W., Hong, H. L., Li, Z. H., Yin, K., Xie, J., Liang, G. J., Song, B., Song, E., Zhang, K. X.: The Eocene-Oligocene climate transition in the Tarim Basin, Northwest China: evidence from clay mineralogy, Appl. Clay. Sci., 74, 10–19, 2013.
Wang C. S., Dai, J. G., Zhao, X. X., Li, Y. L., Graham, S. A., He, D. F., Ran, B., and Meng, J.: Outward-growth of the Tibetan Plateau during the Cenozoic: A review, Tectonophysics, 621, 1–43, 2014.
Wang, Z., Shen, Y., and Pang, Z.: Three main stages in the uplift of the Tibetan Plateau during the Cenozoic period and its possible effects on Asian aridification: A review, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-64, 2018.
Wei, M.: Eogene ostracods from Nangqen in Qinghai. Contribution to the
Geology of the Qinghai-Xizang (Tibet) Plateau, Geological Publishing House, Beijing, China, 17, 313–324, 1985 (in Chinese with English abstract).
Wei, H. C., Fan, Q. S., Zhao, Y., Ma, H. Z., Shan, F. S., An, F. Y., and Yuan, Q.: A 94–10 Ka pollen record of vegetation change in Qaidam Basin,
northeastern Tibetan Plateau, Palaeogeogr. Palaeocl., 431,
43–52, 2015.
Wei, Y., Zhang, K., Garzione, C. N., Xu, Y. D., Song, B., and Ji, J. L.: Low
palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil
foraminifera and stable isotope evidence from the Gerze Basin, Sci. Rep., 6,
27508, https://doi.org/10.1038/srep27508, 2016.
Wu, J., Zhang, K., Xu, Y., Wang, G., Garzione, C. N., Eiler, J., Leloup,
P. H., Sorrel, P., and Mahéo, G.: Paleoelevations in the Jianchuan Basin
of the southeastern Tibetan Plateau based on stable isotope and pollen grain
analyses, Palaeogeogr. Palaeocl., 510, 93–108,
2018.
Xia, L. Q., Li, X. G., Ma, Z. P., Xu, X. Y., and Xia, Z. C.: Cenozoic volcanism
and tectonic evolution of the Tibetan plateau, Gondwana Res., 19, 850–866,
2011.
Xiao, G. Q., Abels, H. A., Yao, Z. Q., Dupont-Nivet, G., and Hilgen, F. J.: Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China), Clim. Past, 6, 501–513, https://doi.org/10.5194/cp-6-501-2010, 2010.
Xu, Q., Ding, L., Zhang, L. Y., Cai, F. L., Lai, Q. Z., Yang, D., and Zeng,
J. L.: Paleogene high elevations in the Qiangtang Terrane, central Tibetan
Plateau, Earth Planet. Sci. Lett., 362, 31–42, 2013.
Xu, Y., Bi, X. W., Hu, R. Z., Chen, Y. W., Liu, H. Q., and Xu, L. L.:
Geochronology and geochemistry of Eocene potassic felsic intrusions in the
Nangqian basin, eastern Tibet: Tectonic and metallogenic implications,
Lithos, 246–247, 212–227, 2016.
Yang, Y.: Systematic and Evolution of Ephedra L. (Ephedraceae) from China, PhD Thesis, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 231 pp., 2002 (in Chinese with English summary).
Yin, A. and Harrison, T. M.: Geologic evolution of the Himalayan-Tibetan
orogeny, Annu. Rev. Earth Pl. Sc., 28, 211–280, 2000.
Yuan, Q. and Barbolini, N.: “Supplementary dataset: Aridification
signatures from middle-late Eocene pollen indicate widespread drying across
the Tibetan Plateau after 40 Ma”, Mendeley Data, v4,
https://doi.org/10.17632/xvp68wsd2p.4, 2020.
Yuan, Q., Vajda, V., Li., Q. K., and Shan, F. S.: A late Eocene palynological
record from the Nangqian Basin, Tibetan Plateau: Implications for
stratigraphy and paleoclimate, Palaeoworld, 26, 369–379, 2017.
Yuan, Q., Barbolini, N., Ashworth, L., Rydin, C., Gao, D. L., Wei, H. C., Fan, Q. S., Qin, Z. J., Du, Y. S., Shan, J. J., Shan, F. S., and Vajda, V.:
Palaeoenvironmental changes in Eocene Tibetan lake systems traced by
geochemistry, sedimentology and palynofacies, J. Asian Earth
Sci., in review, 2020.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Zhang, W. L.: The high precise Cenozoic magnetostratigraphy of the Qaidam
Basin and uplift of the Northern Tibetan plateau, (PhD Thesis), Lanzhou
University, Lanzhou, China, 109 pp., 2006.
Zhang, J., Santosh, M., Wang, X., Guo, L., Yang, X., and Zhang, B.:
Tectonics of the northern Himalaya since the India-Asia collision,
Gondwana Res., 21, 939–960, 2012.
Zhao, Y. and Herzschuh, U.: Modern pollen representation of source vegetation
in the Qaidam Basin and surrounding mountains, north-eastern Tibetan
Plateau, Veg. Hist. Archaeobot., 18, 245–260, 2009.
Zhou, X. Y. and Li, X. Q.: Variations in spruce (Picea sp.) distribution in the Chinese Loess Plateau and surrounding areas during the Holocene, Holocene, 22, 687–696, 2011.
Zhu, Z. H., Wu, L., Xi, P., Song, Z. C., and Zhang, Y. Y.: A Research on
Tertiary Palynology from the Qaidam Basin, Qinghai Province, Petroleum
Industry Press, Beijing, China, 1–297, 1985 (in Chinese with English abstract).
Zhu, H. C., Ouyang, S., Zhan, J. Z., and Wang, Z.: Comparison of Permian
palynological assemblages from the Junggar and Tarim Basins and their
phytoprovincial significance, Rev. Palaeobot. Palynol, 136, 181–207, 2005.
Zhu, L., Zhang, H. H., Wang, J. H., Zhou, J. Y., and Xie, G. H.:
40Ar∕39Ar chronology of high-K magmatic rocks in Nangqian Basin at the northern segment of the Jinsha-Red River Shear Zone (JRRSZ), Geotecton. et Metallog., 30, 241–247, 2006 (in Chinese with English abstract).
Short summary
Fossil pollen and spores reveal that a strongly seasonal steppe–desert ecosystem existed in the Nangqian Basin, east-central Tibet during the late Eocene (41.2–37.8 Ma). Vegetation was characterized by drought-tolerant shrubs, diverse ferns, and broad-leaved forests. The climate warmed temporarily, then rapidly aridified thereafter due to westward regression of the proto-Paratethys Sea from Eurasia. Sea retreat was a main driver of widespread long-term Asian aridification during the late Eocene.
Fossil pollen and spores reveal that a strongly seasonal steppe–desert ecosystem existed in the...