Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Volume 12, issue 7
Clim. Past, 12, 1473–1484, 2016
https://doi.org/10.5194/cp-12-1473-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Clim. Past, 12, 1473–1484, 2016
https://doi.org/10.5194/cp-12-1473-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jul 2016

Research article | 12 Jul 2016

Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau

Jia Liu1, Ji Jun Li1, Chun Hui Song2, Hao Yu1, Ting Jiang Peng1, Zheng Chuang Hui1, and Xi Yan Ye1 Jia Liu et al.
  • 1MOE Key Laboratory of Western China's Environmental Systems & College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • 2Key Laboratory of Western China's Mineral Resources of Gansu Province & School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

Abstract. Holding a climatically and geologically key position both regionally and globally, the northeastern Tibetan Plateau provides a natural laboratory for illustrating the interactions between tectonic activity and the evolution of the Asian interior aridification. Determining when and how the late Miocene climate evolved on the northeastern Tibetan Plateau may help us better understand the relationships among tectonic uplift, global cooling and ecosystem evolution. Previous paleoenvironmental research has focused on the western Longzhong Basin. Late Miocene aridification data derived from pollen now require corroborative evidence from the eastern Longzhong Basin. Here, we present a late Miocene pollen record from the Tianshui Basin in the eastern Longzhong Basin. Our results show that a general trend toward dry climate was superimposed by stepwise aridification: a temperate forest with a rather humid climate existed in the basin between 11.4 and 10.1 Ma, followed by a temperate open forest environment with a less humid climate between 10.1 and 7.4 Ma, then giving way to an open temperate forest–steppe environment with a relatively arid climate between 7.4 and 6.4 Ma. The vegetation succession demonstrates that the aridification of the Asian interior occurred after  ∼  7–8 Ma, which is confirmed by other evidence from Asia. Furthermore, the aridification trend on the northeastern Tibetan Plateau parallels the global cooling of the late Miocene; the stepwise vegetation succession is consistent with the major uplift of the northeastern Tibetan Plateau during this time. These integrated environmental proxies indicate that the long-term global cooling and the Tibetan Plateau uplift caused the late Miocene aridification of the Asian interior.

Publications Copernicus
Download
Short summary
The late Cenozoic basins in the northeastern Tibetan Plateau document both the tectonic uplift process and its associated environmental changes. Here, we investigated a late Miocene sporopollen record from the Tianshui Basin in the northeastern Tibetan Plateau. The results show that a persistent aridification trend parallels the global cooling of the late Miocene, and the stepwise vegetation succession is consistent with the major uplift events of the Tibetan Plateau.
The late Cenozoic basins in the northeastern Tibetan Plateau document both the tectonic uplift...
Citation