Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Dipayan Choudhury
CORRESPONDING AUTHOR
Center for Climate Physics, Institute for Basic Science (IBS), Busan 46241, South Korea
Pusan National University, Busan 46241, South Korea
Axel Timmermann
Center for Climate Physics, Institute for Basic Science (IBS), Busan 46241, South Korea
Pusan National University, Busan 46241, South Korea
Fabian Schloesser
International Pacific Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Malte Heinemann
Institute of Geosciences, Kiel University, 24118, Kiel, Germany
David Pollard
Earth and Environmental Systems Institute, Pennsylvania State
University, University Park, Pennsylvania, 16802, USA
Related authors
No articles found.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175, https://doi.org/10.5194/gmd-2024-175, 2025
Revised manuscript under review for GMD
Short summary
Short summary
We document the glacial system model (GSM), a 3D glaciological ice sheet systems model specifically designed for large ensemble modelling in glacial cycle contexts. The model is distinguished by the breadth of relevant processes represented for this context. This ranges from meltwater surface drainage with proglacial lake formation to state-of-the-art subglacial sediment production/transport/deposition. The other key distinguishing design feature is attention to addressing process uncertainties.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
David Pollard and Robert M. DeConto
Geosci. Model Dev., 13, 6481–6500, https://doi.org/10.5194/gmd-13-6481-2020, https://doi.org/10.5194/gmd-13-6481-2020, 2020
Short summary
Short summary
Buttressing by floating ice shelves at ice-sheet grounding lines is an
important process that affects ice retreat and whether structural failure
occurs in deep bathymetry. Here, we use a simple algorithm to better
represent 2-D grounding-line curvature in an ice-sheet model. Along with other
enhancements, this improves the performance in idealized-fjord intercomparisons
and enables better diagnosis of potential structural failure at future
retreating Antarctic grounding lines.
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J. i.,
Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial
cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, 2013.
Ashwin, P. and Ditlevsen, P.: The middle Pleistocene transition as a
generic bifurcation on a slow manifold, Clim. Dynam., 45, 2683–2695,
2015.
Bahadory, T. and Tarasov, L.: LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17), Geosci. Model Dev., 11, 3883–3902, https://doi.org/10.5194/gmd-11-3883-2018, 2018.
Bahadory, T., Tarasov, L., and Andres, H.: The phase space of last glacial inception for the Northern Hemisphere from coupled ice and climate modelling, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-1, in review, 2020.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary,
Nat. Commun., 10, 1–10, 2019.
Berger, A.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling
the dynamics and thermodynamics of icebergs, Cold Reg. Sci.
Technol., 26, 113–135, 1997.
Bintanja, R., van de Wal, R. S. W., and Oerlemans, J.: Modelled atmospheric
temperatures and global sea levels over the past million years, Nature, 437,
125–125, 2005.
Born, A., Kageyama, M., and Nisancioglu, K. H.: Warm Nordic Seas delayed glacial inception in Scandinavia, Clim. Past, 6, 817–826, https://doi.org/10.5194/cp-6-817-2010, 2010.
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous
climate-vegetation classification for use in climate-biosphere studies,
Ecol. Modell., 101, 251–261, 1997.
Calov, R. and Ganopolski, A.: Multistability and hysteresis in the
climate-cryosphere system under orbital forcing, Geophys. Res.
Lett., 32, L21717, https://doi.org/10.1029/2005gl024518, 2005.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.:
Transient simulation of the last glacial inception. Part I: glacial
inception as a bifurcation in the climate system, Clim. Dynam., 24,
545–561, https://doi.org/10.1007/s00382-005-0007-6, 2005.
Capron, E., Govin, A., Feng, R., Otto-Bliesner, B. L., and Wolff, E. W.:
Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions, Quaternary
Sci. Rev., 168, 137–150, 2017.
Cheng, H., Edwards, R. L., Sinha, A., Spotl, C., Yi, L., Chen, S., Kelly,
M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang,
H.: The Asian monsoon over the past 640,000 years and ice age terminations,
Nature, 534, 640–646, https://doi.org/10.1038/nature18591, 2016.
Clark, P. U. and Huybers, P.: Global change: Interglacial and future sea
level, Nature, 462, 856–856, 2009.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
last glacial maximum, Science, 325, 710–714, 2009.
Clark, P. U., He, F., Golledge, N. R., Mitrovica, J. X., Dutton, A.,
Hoffman, J. S., and Dendy, S.: Oceanic forcing of penultimate deglacial and
last interglacial sea-level rise, Nature, 577, 660–664, 2020.
Colleoni, F. and Liakka, J.: Transient simulations of the Eurasian ice
sheet during the Saalian glacial cycle, SVENSK KÄRNBRÄNSLEHANTERING
AB, Stockholm SKB TR-19-17, 2020.
Colleoni, F. and Masina, S.: Impact of greenhouse gases and insolation on
the threshold of glacial inception, Annual Conference of the Societá
Italiana per le Scienze del Clima, 29–30 September 2014 at Ca'Foscari University of Venice, available at: https://www.sisclima.it/hp-rewrite/3dac344d8a6d44cdcb25853565ba9387 (last access: 11 November 2020), 2014,
Colleoni, F., Masina, S., Cherchi, A., and Iovino, D.: Impact of Orbital
Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial
Inceptions, J. Climate, 27, 8918–8933, 2014a.
Colleoni, F., Masina, S., Cherchi, A., Navarra, A., Ritz, C., Peyaud, V., and Otto-Bliesner, B.: Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions, Clim. Past, 10, 269–291, https://doi.org/10.5194/cp-10-269-2014, 2014b.
Crucifix, M. and Loutre, F. M.: Transient simulations over the last
interglacial period (126–115 kyr BP): feedback and forcing analysis,
Clim. Dynam., 19, 417–433, 2002.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–591, 2016.
Dolan, A. M., Hunter, S. J., Hill, D. J., Haywood, A. M., Koenig, S. J., Otto-Bliesner, B. L., Abe-Ouchi, A., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Ramstein, G., Rosenbloom, N. A., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang, Z.: Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period, Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, 2015.
Dutton, A., Bard, E., Antonioli, F., Esat, T. M., Lambeck, K., and
McCulloch, M. T.: Phasing and amplitude of sea-level and climate change
during the penultimate interglacial, Nat. Geosci., 2, 355–355, 2009.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to
extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012.
Friedrich, T. and Timmermann, A.: Using Late Pleistocene sea surface
temperature reconstructions to constrain future greenhouse warming, Earth
Planet. Sci. Lett., 530, 115911, https://doi.org/10.1016/j.epsl.2019.115911 2020.
Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E., and Ganopolski,
A.: Nonlinear climate sensitivity and its implications for future greenhouse
warming, Sci. Adv., 2, e1501923–e1501923, 2016.
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Ganopolski, A., Winkelmann, R., and Schellnhuber, H. J.: Critical
insolation–CO2 relation for diagnosing past and future glacial
inception, Nature, 529, 200-3, https://doi.org/10.1038/nature16494, 2016.
Gasson, E. G. W., DeConto, R. M., Pollard, D., and Clark, C. D.: Numerical
simulations of a kilometre-thick Arctic ice shelf consistent with ice
grounding observations, Nat. Commun., 9, 1510–1510, 2018.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The community climate system model version 4, J.
Climate, 24, 4973–4991, 2011.
Gildor, H. and Tziperman, E.: Sea ice as the glacial cycles' climate
switch: Role of seasonal and orbital forcing, Paleoceanogr.
Paleoclimatol., 15, 605–615, 2000.
Goosse, H. and Fichefet, T.: Importance of ice-ocean interactions for the
global ocean circulation: A model study, J. Geophys. Res.-Oceans, 104, 23337–23355, 1999.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010.
Gregoire, L. J., Payne, A. J., and Valdes, P. J.: Deglacial rapid sea level
rises caused by ice-sheet saddle collapses, Nature, 487, 219–222, https://doi.org/10.1038/nature11257, 2012.
Greve, R.: A continuum-mechanical formulation for shallow polythermal ice
sheets, Philos. Trans. Roy. Soc. London A, 355, 921–974, 1997.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
orbit: pacemaker of the ice ages, Science, 194, 1121–1132, 1976.
Heinemann, M., Timmermann, A., Elison Timm, O., Saito, F., and Abe-Ouchi, A.: Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects, Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, 2014.
Jongma, J. I., Driesschaert, E., Fichefet, T., Goosse, H., and Renssen, H.:
The effect of dynamic–thermodynamic icebergs on the Southern Ocean climate
in a three-dimensional model, Ocean Modell., 26, 104–113, 2009.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., and Chappellaz, J.:
Orbital and millennial Antarctic climate variability over the past 800,000
years, Science, 317, 793–796, 2007.
Knutti, R., Flückiger, J., Stocker, T., and Timmermann, A.: Strong
hemispheric coupling of glacial climate through freshwater discharge and
ocean circulation, Nature, 430, 851–856, 2004.
Koenig, S. J., Dolan, A. M., de Boer, B., Stone, E. J., Hill, D. J., DeConto, R. M., Abe-Ouchi, A., Lunt, D. J., Pollard, D., Quiquet, A., Saito, F., Savage, J., and van de Wal, R.: Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene, Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, 2015.
Kubatzki, C., Montoya, M., Rahmstorf, S., Ganopolski, A., and Claussen, M.:
Comparison of the last interglacial climate simulated by a coupled global
model of intermediate complexity and an AOGCM, Clim. Dynam., 16,
799–814, 2000.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astro. Astrophys., 428, 261–285, 2004.
Le Morzadec, K., Tarasov, L., Morlighem, M., and Seroussi, H.: A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle, Geosci. Model Dev., 8, 3199–3213, https://doi.org/10.5194/gmd-8-3199-2015, 2015.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, Z., Otto-Bliesner, B., He, F., Brady, E., Tomas, R., Clark, P.,
Carlson, A., Lynch-Stieglitz, J., Curry, W., and Brook, E.: Transient
simulation of last deglaciation with a new mechanism for
Bølling-Allerød warming, Science, 325, 310–314, 2009.
Lofverstrom, M. and Liakka, J.: The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation, The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, 2018.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz,
J.: Orbital and millennial-scale features of atmospheric CH4 over the past
800,000 years, Nature, 453, 383–383, 2008.
Lunt, D. J., Abe-Ouchi, A., Bakker, P., Berger, A., Braconnot, P., Charbit, S., Fischer, N., Herold, N., Jungclaus, J. H., Khon, V. C., Krebs-Kanzow, U., Langebroek, P. M., Lohmann, G., Nisancioglu, K. H., Otto-Bliesner, B. L., Park, W., Pfeiffer, M., Phipps, S. J., Prange, M., Rachmayani, R., Renssen, H., Rosenbloom, N., Schneider, B., Stone, E. J., Takahashi, K., Wei, W., Yin, Q., and Zhang, Z. S.: A multi-model assessment of last interglacial temperatures, Clim. Past, 9, 699–717, https://doi.org/10.5194/cp-9-699-2013, 2013.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
others: High-resolution carbon dioxide concentration record 650,000-800,000
years before present, Nature, 453, 379–379, 2008.
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2,
13C and the marine carbon cycle during the Last Glacial–Interglacial
cycle: possible role for a deepening of the mean remineralization depth and
an increase in the oceanic nutrient inventory, Quaternary Sci. Rev.,
56, 46–68, 2012.
Nikolova, I., Yin, Q., Berger, A., Singh, U. K., and Karami, M. P.: The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3, Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, 2013.
Opsteegh, J. D., Haarsma, R. J., Selten, F. M., and Kattenberg, A.: ECBILT:
A dynamic alternative to mixed boundary conditions in ocean models, Tellus
A, 50, 348–367, 1998.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.: Steering of
westerly storms over western North America at the Last Glacial Maximum,
Nat. Geosci., 8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Pages, P. I. W. G. O.: Interglacials of the last 800,000 years, Rev.
Geophys., 54, 162–219, 2016.
Paillard, D.: The timing of Pleistocene glaciations from a simple
multiple-state climate model, Nature, 391, 378–381, https://doi.org/10.1038/34891, 1998.
Pedersen, R. A., Langen, P. L., and Vinther, B. M.: The last interglacial
climate: comparing direct and indirect impacts of insolation changes,
Clim. Dynam., 48, 3391–3407, 2017.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A.,
Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of
intermediate complexity. Part I: model description and performance for
present climate, Clim. Dynam., 16, 1–17, 2000.
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012, 2012a.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012b.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet.
Sci. Lett., 412, 112–121, 2015.
Rachmayani, R., Prange, M., and Schulz, M.: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15, Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, 2016.
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years,
Nature, 419, 207–214, 2002.
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., and
Toucanne, S.: An optimized scheme of lettered marine isotope substages for
the last 1.0 million years, and the climatostratigraphic nature of isotope
stages and substages, Quaternary Sci. Rev., 111, 94–106, 2015.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic
ice sheet over the last 420,000 years: Implications for altitude changes in
the Vostok region, J. Geophys. Res.-Atmos., 106,
31943–31964, 2001.
Robinson, A., Calov, R., and Ganopolski, A.: An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change, The Cryosphere, 4, 129–144, https://doi.org/10.5194/tc-4-129-2010, 2010.
Roche, D. M., Dumas, C., Bügelmayer, M., Charbit, S., and Ritz, C.: Adding a dynamical cryosphere to iLOVECLIM (version 1.0): coupling with the GRISLI ice-sheet model, Geosci. Model Dev., 7, 1377–1394, https://doi.org/10.5194/gmd-7-1377-2014, 2014.
Roe, G. H. and Lindzen, R. S.: The mutual interaction between
continental-scale ice sheets and atmospheric stationary waves, J.
Climate, 14, 1450–1465, 2001.
Rohling, E. J., Hibbert, F. D., Williams, F. H., Grant, K. M., Marino, G.,
Foster, G. L., Hennekam, R., De Lange, G. J., Roberts, A. P., and Yu, J.:
Differences between the last two glacial maxima and implications for
ice-sheet, δ18O, and sea-level reconstructions, Quaternary Sci.
Rev., 176, 1–28, 2017.
Saito, F. and Abe-Ouchi, A.: Thermal structure of Dome Fuji and east
Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet
model, Ann. Glaciol., 39, 433–438, 2004.
Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R.,
Fischer, H., and Stocker, T. F.: Glacial–interglacial and millennial-scale
variations in the atmospheric nitrous oxide concentration during the last
800,000 years, Quaternary Sci. Rev., 29, 182–192, 2010.
Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R. M., and Pollard,
D.: Antarctic iceberg impacts on future Southern Hemisphere climate, Nat.
Clim. Change, 9, 672–677, 2019.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth Surf., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R., and Lourens, L. J.: Interaction of ice sheets and climate during the past 800 000 years, Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, 2014.
Stein, K., Timmermann, A., Kwon, E. Y., and Friedrich, T.: Timing and
magnitude of Southern Ocean sea ice/carbon cycle feedbacks, P.
Natl. Acad. Sci. USA, 117, 4498–4504, https://doi.org/10.1073/pnas.1908670117, 2020.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., and
Houmark-Nielsen, M.: Late Quaternary ice sheet history of northern Eurasia,
Quaternary Sci. Rev., 23, 1229–1271, 2004.
Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann,
M.: Local insolation changes enhance Antarctic interglacials: Insights from
an 800,000-year ice sheet simulation with transient climate forcing, Earth
Planet. Sci. Lett., 495, 69–78, https://doi.org/10.1016/j.epsl.2018.05.004, 2018.
Timm, O. and Timmermann, A.: Simulation of the last 21 000 years using
accelerated transient boundary conditions, J. Climate, 20,
4377–4401, 2007.
Timm, O., Köhler, P., Timmermann, A., and Menviel, L.: Mechanisms for
the onset of the African Humid Period and Sahara Greening 14.5–11 ka BP,
J. Climate, 23, 2612–2633, 2010.
Timmermann, A. and Friedrich, T.: Late Pleistocene climate drivers of early
human migration, Nature, 538, 92–95, https://doi.org/10.1038/nature19365, 2016.
Timmermann, A., Knies, J., Timm, O. E., Abe-Ouchi, A., and Friedrich, T.:
Promotion of glacial ice sheet buildup 60–115 kyr BP by precessionally
paced Northern Hemispheric meltwater pulses, Paleoceanography, 25, PA4208, https://doi.org/10.1029/2010PA001933, 2010.
Timmermann, A., Sachs, J., and Timm, O. E.: Assessing divergent SST behavior
during the last 21 ka derived from alkenones andG. ruber-Mg/Ca in the
equatorial Pacific, Paleoceanography, 29, 680–696, 2014.
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014.
Uppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V. D.
C., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A., and Kelly, G.: The
ERA-40 re-analysis, Quarterly Journal of the Royal Meteorological Society: A
journal of the atmospheric sciences, Appl. Meteorol. Phys.
Oceanogr., 131, 2961–3012, 2005.
Van Den Berg, J., van de Wal, R., and Oerlemans, H.: A mass balance model
for the Eurasian Ice Sheet for the last 120,000 years, Global Planet.
Change, 61, 194–208, 2008.
Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and
Van Den Broeke, M. R.: Coupled simulations of Greenland Ice Sheet and
climate change up to AD 2300, Geophys. Res. Lett., 42, 3927–3935,
2015.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Weertman, J.: Stability of ice-age ice sheets, J. Geophys.
Res., 66, 3783–3792, 1961.
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO2 and regolith
removal, Sci. Adv., 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337, 2019.
Yamagishi, T., Abe-Ouchi, A., Saito, F., Segawa, T., and Nishimura, T.:
Re-evaluation of paleo-accumulation parameterization over Northern
Hemisphere ice sheets during the ice age examined with a high-resolution
AGCM and a 3-D ice-sheet model, Ann. Glaciol., 42, 433–440, 2005.
Yin, Q. Z. and Berger, A.: Individual contribution of insolation and
CO2 to the interglacial climates of the past 800,000 years, Clim.
Dynam., 38, 709–724, 2012.
Yoshimori, M., Reader, M., Weaver, A., and McFarlane, N.: On the causes of
glacial inception at 116 ka BP, Clim. Dynam., 18, 383–402, 2002.
Zhang, Z., Yan, Q., Zhang, R., Colleoni, F., Ramstein, G., Dai, G., Jakobsson, M., O'Regan, M., Liess, S., Rousseau, D.-D., Wu, N., Farmer, E. J., Contoux, C., Guo, C., Tan, N., and Guo, Z.: Rapid waxing and waning of Beringian ice sheet reconcile glacial climate records from around North Pacific, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, 2020.
Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, 2019.
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled...