Articles | Volume 14, issue 7
https://doi.org/10.5194/cp-14-991-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-991-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation
Ariadna Salabarnada
CORRESPONDING AUTHOR
Instituto Andaluz de Ciencias de la Tierra, CSIC-Univ. de Granada, Armilla, 18100, Spain
Invited contribution by Ariadna Salabarnada, recipient of the EGU Climate: Past, Present & Future Outstanding Student Poster and PICO Award 2016.
Carlota Escutia
Instituto Andaluz de Ciencias de la Tierra, CSIC-Univ. de Granada, Armilla, 18100, Spain
Ursula Röhl
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
C. Hans Nelson
Instituto Andaluz de Ciencias de la Tierra, CSIC-Univ. de Granada, Armilla, 18100, Spain
Robert McKay
Antarctic Research Centre, Victoria University of Wellington, Wellington, 6140, New Zealand
Francisco J. Jiménez-Espejo
Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, 237-0061, Japan
Peter K. Bijl
Department of Earth Sciences, Marine Palynology and Palaeoceanography, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Julian D. Hartman
Department of Earth Sciences, Marine Palynology and Palaeoceanography, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Stephanie L. Strother
Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Ulrich Salzmann
Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Dimitris Evangelinos
Instituto Andaluz de Ciencias de la Tierra, CSIC-Univ. de Granada, Armilla, 18100, Spain
Adrián López-Quirós
Instituto Andaluz de Ciencias de la Tierra, CSIC-Univ. de Granada, Armilla, 18100, Spain
José Abel Flores
Department of Geology, University of Salamanca, Salamanca, 37008, Spain
Francesca Sangiorgi
Department of Earth Sciences, Marine Palynology and Palaeoceanography, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Minoru Ikehara
Center for Advanced Marine Core research, Kochi University, Nankoku, Kochi, 783-8502, Japan
Henk Brinkhuis
Department of Earth Sciences, Marine Palynology and Palaeoceanography, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
NIOZ, Royal Netherlands Institute for Sea Research, and Utrecht University, Landsdiep 4, 1797SZ 't Horntje, Texel, the Netherlands
Related authors
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Jose M. Mesa-Fernández, Gonzalo Jiménez-Moreno, Marta Rodrigo-Gámiz, Antonio García-Alix, Francisco J. Jiménez-Espejo, Francisca Martínez-Ruiz, R. Scott Anderson, Jon Camuera, and María J. Ramos-Román
Clim. Past, 14, 1687–1706, https://doi.org/10.5194/cp-14-1687-2018, https://doi.org/10.5194/cp-14-1687-2018, 2018
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018, https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Short summary
Long-term and annual field observations on key organisms are a critical basis for predicting changes in Southern Ocean ecosystems. Coccolithophores are the most abundant calcium-carbonate-producing phytoplankton and play an important role in Southern Ocean biogeochemical cycles. In this study we document the composition, degree of calcification and annual cycle of coccolithophore communities in one of the largest unexplored regions of the world oceans: the Antarctic zone.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
María J. Ramos-Román, Gonzalo Jiménez-Moreno, Jon Camuera, Antonio García-Alix, R. Scott Anderson, Francisco J. Jiménez-Espejo, and José S. Carrión
Clim. Past, 14, 117–137, https://doi.org/10.5194/cp-14-117-2018, https://doi.org/10.5194/cp-14-117-2018, 2018
Short summary
Short summary
In this study we carried out a multiproxy high-resolution analysis on a sediment record from the Padul Basin in the Sierra Nevada (southern Iberian Peninsula). Padul is a classical and very unique site from the Mediterranean area as it contains a very long and continuous Quaternary sedimentary record. However, the uppermost part of the record was never recovered. In this study we focus on the last 4700 cal yr BP of Holocene climate variability and human activity in the Mediterranean area.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5 m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann
Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, https://doi.org/10.5194/cp-12-663-2016, 2016
Short summary
Short summary
Our paper presents the experimental design for the second phase of the Pliocene Model Intercomparison Project (PlioMIP). We outline the way in which climate models should be set up in order to study the Pliocene – a period of global warmth in Earth's history which is relevant for our understanding of future climate change. By conducting a model intercomparison we hope to understand the uncertainty associated with model predictions of a warmer climate.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
S. J. Gallagher, N. Exon, M. Seton, M. Ikehara, C. J. Hollis, R. Arculus, S. D'Hondt, C. Foster, M. Gurnis, J. P. Kennett, R. McKay, A. Malakoff, J. Mori, K. Takai, and L. Wallace
Sci. Dril., 17, 45–50, https://doi.org/10.5194/sd-17-45-2014, https://doi.org/10.5194/sd-17-45-2014, 2014
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann
Clim. Past, 10, 167–180, https://doi.org/10.5194/cp-10-167-2014, https://doi.org/10.5194/cp-10-167-2014, 2014
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
Related subject area
Subject: Ice Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Heavy mineral assemblages of the De Long Trough and southern Lomonosov Ridge glacigenic deposits: implications for the East Siberian Ice Sheet extent
Evaluation of lipid biomarkers as proxies for sea ice and ocean temperatures along the Antarctic continental margin
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Cited articles
Abrahamsen, E. P., Meredith, M. P., Falkner, K. K., Torres-Valdes, S., Leng,
M. J., Alkire, M. B., Bacon, S., Laxon, S. W., Polyakov, I., and Ivanov, V.: Tracer-derived freshwater composition of the Siberian continental shelf and
slope following the extreme Arctic summer of 2007, Geophys. Res. Lett., 36, p. 5, https://doi.org/10.1029/2009GL037341, 2009.
Agnihotri, R., Altabet, M. A., Herbert, T. D., and Tierney, J. E.: Subdecadally resolved paleoceanography of the Peru margin during the last
two millennia, Geochem. Geophy. Geosy., 9, 15, https://doi.org/10.1029/2007GC001744, 2008.
Anderson, J.: Antarctic marine geology, Cambridge University Press, Cambridge
UK, 1999.
Anderson, J., Kurtz, D., and Weaver, F.: Sedimentation on the Antarctic
continental slope, SEPM Spec. P., 27, 265–283, 1979.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0-A new bathymetric compilation covering circum-Antarctic waters, Geophys.
Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Askin, R. A. and Raine, J. I.: Oligocene and Early Miocene Terrestrial
Palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin,
Antarctica, Terra Antarct., 7, 493–501, 2000.
Bahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P.,
Hernández-Molina, F. J., Röhl, U., Voelker, A. H. L., Escutia, C.,
Stow, D. A. V., Hodell, D., and Alvarez-Zarikian, C. A.: Deciphering bottom
current velocity and paleoclimate signals from contourite deposits in the
Gulf of Cádiz during the last 140 kyr: An inorganic geochemical
approach, Geochem. Geophy. Geosy., 15, 3145–3160, https://doi.org/10.1002/2014GC005356, 2014.
Barrett, P. J.: Cenozoic Climate and Sea Level History from Glacimarine
Strata off the Victoria Land Coast, Cape Roberts Project, Antarctica, in:
Glacial Sedimentary Processes and Products, edited by: Hambrey, M. J., Christoffersen,
P., Glasser, N., and Hubbard, B., 259–287, Blackwell Publishing, Oxford, 2007.
Bart, P. and De Santis, L.: Glacial Intensification During the Neogene: A
Review of Seismic Stratigraphic Evidence from the Ross Sea, Antarctica,
Continental Shelf, Oceanography 25, 166–183, https://doi.org/10.5670/oceanog.2012.92, 2012.
Bart, P. J. and Iwai, M.: The overdeepening hypothesis: How erosional
modification of the marine-scape during the early Pliocene altered glacial
dynamics on the Antarctic Peninsula's Pacific margin, Palaeogeogr. Palaeocl., 335–336, 42–51, https://doi.org/10.1016/j.palaeo.2011.06.010, 2012.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history, Nat.
Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled
dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a
zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018a.
Bijl, P. K., Houben, A. J. P., Hartman, J. D., Pross, J., Salabarnada, A.,
Escutia, C., and Sangiorgi, F.: Oligocene-Miocene paleoceanography off the
Wilkes Land Margin (East Antarctica) based on organic-walled dinoflagellate
cysts, Clim. Past Discuss., https://doi.org/10.5194/cp-2017-148, in review,
2018b.
Billups, K. and Schrag, D. P.: Application of benthic foraminiferal Mg ∕ Ca
ratios to questions of Cenozoic climate change, Earth Planet. Sc. Lett.,
209, 181–195, https://doi.org/10.1016/S0012-821X(03)00067-0, 2003.
Billups, K., Channell, J. E. T., and Zachos, J.: Late Oligocene to early
Miocene geochronology and paleoceanography from the subantarctic South
Atlantic, Paleoceanography, 17, 4–1–4–11, https://doi.org/10.1029/2000PA000568, 2002.
Bindoff, N. L., Rosenberg, M. A., and Warner, M. J.: On the circulation and
water masses over the Antarctic continental slope and rise between 80 and
150∘ E, Deep-Sea Res. Pt. II, 47, 2299–2326, https://doi.org/10.1016/S0967-0645(00)00038-2, 2000.
Bohaty, S. M. and Harwood, D. M.: Southern Ocean pliocene paleotemperature
variation from high-resolution silicoflagellate biostratigraphy, Mar.
Micropaleontol., 33, 241–272, https://doi.org/10.1016/S0377-8398(97)00037-6, 1998.
Brancolini, G., Cooper, A. K., and Coren, F.: Seismic Facies and Glacial
History in the Western Ross Sea (Antarctica), Geol. Seism. Stratigr.
Antarct., Margin, AGU Antarct. Res. Ser., 68, 209–233, 1995.
Bromley, R. G. and Ekdale, A. A.: Chondrites: a trace fossil indicator of
anoxia in sediments, Science, 80, 872–875, 1984.
Busetti, M., Caburlotto, A., Armand, L., Damiani, D., Giorgetti, G., Lucchi,
R. G., Quilty, P. G., and Villa, G.: Plio-Quaternary sedimentation on the
Wilkes land continental rise: preliminary results, Deep-Sea Res. Pt. II, 50,
1529–1562, https://doi.org/10.1016/S0967-0645(03)00078-X, 2003.
Calvert, S. E. and Pedersen, T. F.: Sedimentary geochemistry of manganese;
implications for the environment of formation of manganiferous black shales, Econ. Geol.,
91, 36–47, https://doi.org/10.2113/gsecongeo.91.1.36, 1996.
Calvert, S. E. and Pedersen, T. F.: Chapter Fourteen Elemental Proxies for
Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:
Interpretation and Application, in: Developments in Marine Geology, 1, 567–644,
2007.
Campagne, P., Crosta, X., Houssais, M. N., Swingedouw, D., Schmidt, S.,
Martin, A., Devred, E., Capo, S., Marieu, V., Closset, I., and Massé, G.: Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over
the past 250 years, Nat. Commun., 6, 6642, https://doi.org/10.1038/ncomms7642, 2015.
Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M.,
Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim,
B.-K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe,
L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce,
E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K.,
Carr, S. A., Dunbar, R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong,
G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai,
T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., and Yamane, M.: Dynamic behaviour of the East Antarctic ice sheet during Pliocene
warmth, Nat. Geosci. 6, 765–769, https://doi.org/10.1038/ngeo1889, 2013.
Cook, C. P., Hill, D. J., van de Flierdt, T., Williams, T., Hemming, S. R.,
Dolan, A. M., Pierce, E. L., Escutia, C., Harwood, D., Cortese, G., and Gonzales,
J. J.: Sea surface temperature control on the distribution of
far-traveled Southern Ocean ice-rafted detritus during the Pliocene, Paleoceanography, 29, 533–548, https://doi.org/10.1002/2014PA002625, 2014.
Cook, C. P., Hemming, S. R., van de Flierdt, T., Pierce Davis, E. L., Williams,
T., Galindo, A. L., Jiménez-Espejo, F. J., and Escutia, C.: Glacial
erosion of East Antarctica in the Pliocene: A comparative study of multiple
marine sediment provenance tracers, Chem. Geol., 466, 199–218, https://doi.org/10.1016/j.chemgeo.2017.06.011, 2017.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135, 2005.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new
benthic foraminiferal isotope compilation, Paleoceanography, 24, 14, https://doi.org/10.1029/2008PA001683, 2009.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and
evaluation of a new multi-function X-ray core scanner, Geol. Soc. Spec. Publ.,
267, 51–63, 2006.
Damiani, D., Giorgetti, G., and Turbanti, I. M.: Clay mineral fluctuations
and surface textural analysis of quartz grains in Pliocene–Quaternary
marine sediments from Wilkes Land continental rise (East-Antarctica):
Paleoenvironmental significance, Mar. Geol. 226, 281–295, https://doi.org/10.1016/j.margeo.2005.11.002, 2006.
DeCesare, M., Pekar, S. F., and DeCesare: Investigating a Middle to Late
Miocene Carbonate Preservation Event in the Southern Ocean, Am. Geophys.
Union, Fall Meet. 2013, Abstr. #PP43A-2072, 12–13, 2013.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
De Santis, L., Anderson, J. B., Brancolini, G. and Zayatz, I.: Seismic Record
of Late Oligocene Through Miocene Glaciation on the Central and Eastern
Continental Shelf of the Ross Sea, in Geology and Seismic stratigraphy of the
Antarctic margin, Antar. Res. S, 68, 235–260, 2013.
Diekmann, B.: Sedimentary patterns in the late Quaternary Southern
Ocean, Deep-Sea Res. Pt. II, 54, 2350–2366, https://doi.org/10.1016/j.dsr2.2007.07.025, 2007.
Duliu, O. G.: Computer axial tomography in geosciences: An overview,
Earth Sci. Rev, 48, 265–281, https://doi.org/10.1016/S0012-8252(99)00056-2, 1999.
Dypvik, H. and Harris, N. B.: Geochemical facies analysis of fine-grained
siliciclastics using Th ∕ U, Zr ∕ Rb and (Zr + Rb) ∕ Sr ratios, Chem. Geol., 181,
131–146, https://doi.org/10.1016/S0009-2541(01)00278-9, 2001.
Ehrmann, W., Setti, M., and Marinoni, L.: Clay minerals in Cenozoic
sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic
history, Palaeogeogr. Palaeocl., 229, 187–211, https://doi.org/10.1016/j.palaeo.2005.06.022, 2005.
Eittreim, S. L., Cooper, A. K., and Wannesson, J.: Seismic stratigraphic
evidence of ice-sheet advances on the Wilkes Land margin of Antarctica,
Sediment. Geol., 96, 131–156, https://doi.org/10.1016/0037-0738(94)00130-M, 1995.
Escutia, C. and Brinkhuis, H.: From Greenhouse to Icehouse at the Wilkes Land
Antarctic Margin, in arth and Life Processes Discovered from Subseafloor
Environments: A Decade of Science Achieved by the Integrated Ocean Drilling
Program (IODP), vol. 7, edited by: Stein, R., Blackman, D. K., Inagaki, F., and
Larsen, H.-C., 295–328, Elsevier, Amsterdam., 2014.
Escutia, C., Eittreim, S. L., Cooper, A. K., and Nelson, C. H.: Cenozoic
sedimentation on the Wilkes Land continental rise, Antarctica, in: The
Antarctic Region: Geological Evolution and Processes, Proc. Int. Symp.
Antarct. Earth Sci., 7, 791–795, 1997.
Escutia, C., Eittreim, S. L., Cooper, A. K., and Nelson, C. H.: Morphology
and acoustic character of the antarctic Wilkes Land turbidite systems:
Ice-sheet-sourced versus river-sourced fans, J. Sediment. Res., 70, 84–93,
https://doi.org/10.1306/2DC40900-0E47-11D7-8643000102C1865D, 2000.
Escutia, C., Nelson, C. H., Acton, G. D., Eittreim, S. L., Cooper, A. K.,
Warnke, D. A., and Jaramillo, J. M.: Current controlled deposition on the
Wilkes Land continental rise, Antarctica, Geol. Soc. London, Mem., 22,
373–384, https://doi.org/10.1144/GSL.MEM.2002.022.01.26, 2002.
Escutia, C., Warnke, D., Acton, G., Barcena, A., Burckle, L., Canals, M.,
and Frazee, C.: Sediment distribution and sedimentary processes across
the Antarctic Wilkes Land margin during the Quaternary, Deep-Sea Res. Pt. II, 50,
1481–1508, https://doi.org/10.1016/S0967-0645(03)00073-0, 2003.
Escutia, C., De Santis, L., Donda, F., Dunbar, R.B., Cooper, A. K.,
Brancolini, G., and Eittreim, S. L.: Cenozoic ice sheet history from East
Antarctic Wilkes Land continental margin sediments, Glob. Planet. Change, 45,
51–81, https://doi.org/10.1016/j.gloplacha.2004.09.010, 2005.
Escutia, C., Bárcena, M. A., Lucchi, R. G., Romero, O., Ballegeer, A. M.,
Gonzalez, J. J., and Harwood, D. M.: Circum-Antarctic warming events between
4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188)
and the Antarctic Peninsula (ODP Leg 178) margins, Glob. Planet. Change, 69,
170–184, https://doi.org/10.1016/j.gloplacha.2009.09.003, 2009.
Escutia, C., Brinkhuis, H., Klaus, A., and Scientists, I. E.: 318: Site U1356,
in: Proceeding of the Integrated Ocean Drilling Program, 318, Integrated Ocean
Drilling Program Management International, Inc., Tokyo, 2011.
Eynaud, F., Giraudeau, J., Pichon, J. J., and Pudsey, C. J.: Sea-surface
distribution of coccolithophores, diatoms, silicoflagellates and
dinoflagellates in the South Atlantic Ocean during the late austral summer
1995, Deep. Res. Part I Oceanogr. Res. Pap., 46, 451–482, https://doi.org/10.1016/S0967-0637(98)00079-X, 1999.
Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D.,
Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., and Genova, R. C.:
IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part
A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M.
D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C.,
Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R.,
and White, L. L., Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, available at:
http://hdl.handle.net/20.500.11822/17771 (last access: July 2018), 2014.
Florindo, F., Roberts, A. P., and Palmer, M. R.: Magnetite dissolution in
siliceous sediments, Geochem. Geophy. Geosy., 4, 1–13, https://doi.org/10.1029/2003GC000516, 2003.
Foster, G. L. and Rohling, E. J.: Relationship between sea level and
climate forcing by CO2 on geological timescales, Proc. Natl. Acad. Sci. USA, 110, 1209–14, https://doi.org/10.1073/pnas.1216073110, 2013.
Foubert, A. and Henriet, J.-P.: Nature and significance of the recent
carbonate mound record: the Mound Challenger code, Springer, Berlin, Heidelberg, 2009.
Fouinat, L., Sabatier, P., Poulenard, J., Reyss, J.-L., Montet, X., and
Arnaud, F.: A new CT scan methodology to characterize a small aggregation
gravel clast contained in a soft sediment matrix, Earth Surf. Dynam., 5,
199–209, https://doi.org/10.5194/esurf-5-199-2017, 2017.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fukamachi, Y., Wakatsuchi, M., Taira, K., Kitagawa, S., Furukawa, T.,
and Fukuchi, M.: Seasonal variability of bottom water properties off Adlie
Land, Antarctica, 105, 6531–6540, https://doi.org/10.1029/1999JC900292, 2000.
Fukamachi, Y., Rintoul, S. R., Church, J. A., Aoki, S., Sokolov, S.,
Rosenberg, M. A., and Wakatsuchi, M.: Strong export of Antarctic Bottom
Water east of the Kerguelen plateau, Nat. Geosci., 3, 327–331, https://doi.org/10.1038/ngeo842, 2010.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic
ice sheet during the early to mid-Miocene, Proc. Natl. Acad. Sci. USA, 113,
3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Gilbert, R., Nielsen, N., Desloges, J., and Rasch, M.: Contrasting
glacimarine sedimentary environments of two arctic fiords on Disko, West
Greenland, Mar. Geol., 147, 63–83, https://doi.org/10.1016/S0025-3227(98)00008-5, 1998.
Govin, A., Michel, E., Labeyrie, L., Waelbroeck, C., Dewilde, F., and Jansen,
E.: Evidence for northward expansion of Antarctic Bottom Water mass in
the Southern Ocean during the last glacial inception, Paleoceanography, 24,
https://doi.org/10.1029/2008PA001603, 2009.
Grobe, H. and Mackensen, A.: Late Quaternary climatic cycles as recorded in
sediments from the Antarctic Continental margin, Antarct. Paleoenviroments A
Perspect. Glob. Chang. Antarct. Res. Ser., 56, 349–376, https://doi.org/10013/epic.11662.d001, 1992.
Hall, I. R., McCave, I. N., Zahn, R., Carter, L., Knutz, P. C., and Weedon, G. P.: Paleocurrent reconstruction of the deep Pacific inflow during the
middle Miocene: Reflections of East Antarctic Ice Sheet growth, Paleoceanography, 18, https://doi.org/10.1029/2002PA000817, 2003.
Hannah, M. J., Wilson, G. J., and Wrenn, J. H.: Oligocene and miocene marine
palynomorphs from CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarct.,
7, 503–511, 2000.
Hannah, M. J., Wrenn, J., and Wilson, G.: Preliminary report on early
Oligocene and latest Eocene marine palynomorphs from CRP-3 drillhole,
Victoria Land Basin, Antarctica, Terra Antart., 8, 383–388, 2001.
Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J.
P., Schouten, S., Escutia, C., and Bijl, P. K.: Oligocene TEX86-derived
seawater temperatures from offshore Wilkes Land (East Antarctica), Clim. Past
Discuss., https://doi.org/10.5194/cp-2017-153, in review, 2018.
Hauptvogel, D. W.: The State Of The Oligocene Icehouse World:
Sedimentology, Provenance, And Stable Isotopes Of Marine Sediments From The
Antarctic Continental Margin, PhD Dissertation, University Of New
York, 2015.
Hauptvogel, D. W., Pekar, S. F., and Pincay, V.: Evidence for a heavily
glaciated Antarctica during the late Oligocene warming (27.8–24.5 Ma):
Stable isotope records from ODP Site 690, Paleoceanography, 32, 384–396,
https://doi.org/10.1002/2016PA002972, 2017.
Hayes, D. E. and Frakes, L. A.: General Synthesis, Deep Sea Drilling Project
Leg 28, in Initial Reports of the Deep Sea Drilling Project, US, 28, 19–48, 1975.
Hennekam, R. and de Lange, G.: X-ray fluorescence core scanning of wet
marine sediments: methods to improve quality and reproducibility of
high-resolution paleoenvironmental records, Limnol. Oceanogr. Methods, 10,
991–1003, https://doi.org/10.4319/lom.2012.10.991, 2012.
Hepp, D. A.: Late Miocene-Pliocene glacial cyclicity in a deep-sea
sediment drift on the Antarctic Peninsula continental margin: Sedimentary
and diagenetic processes, PhD Thesis, Bremen, Universität, Bremen, 2007.
Hepp, D. A., Mörz, T., Hensen, C., Frederichs, T., Kasten, S., Riedinger,
N., and Hay, W. W.: A late Miocene – early Pliocene Antarctic deepwater
record of repeated iron reduction events, Mar. Geol., 266, 198–211, https://doi.org/10.1016/j.margeo.2009.08.006, 2009.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and Röhl, U.: Onset of “Hudson Strait” Heinrich events in the eastern North
Atlantic at the end of the middle Pleistocene transition (∼ 640 ka),
Paleoceanography, 23, https://doi.org/10.1029/2008PA001591, 2008.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Rohl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., and Brinkhuis, H.: Reorganization of Southern Ocean Plankton Ecosystem at the Onset of
Antarctic Glaciation, Science, 340, 341–344, https://doi.org/10.1126/science.1223646, 2013.
Huber, M. and Sloan, L. C.: Heat transport, deep waters, and thermal
gradients: Coupled simulation of an Eocene greenhouse climate, Geophys. Res.
Lett., 28, 3481–3484, https://doi.org/10.1029/2001GL012943, 2001.
Huck, C. E., van de Flierdt, T., Bohaty, S. M., and Hammond, S. J.: Antarctic
climate, Southern Ocean circulation patterns, and deep water formation
during the Eocene, Paleoceanography, 32, 674–691, https://doi.org/10.1002/2017PA003135, 2017.
Jaccard, S. L., Galbraith, E. D., Martínez-García, A., and Anderson,
R. F.: Covariation of deep Southern Ocean oxygenation and atmospheric
CO2 through the last ice age, Nature, 530, 207–10, https://doi.org/10.1038/nature16514, 2016.
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic
Deep Water volumes, J. Geophys. Res.-Ocean., 113, 1–13, https://doi.org/10.1029/2007JC004477, 2008.
Kemp, E. M. and Barrett, P. J.: Antarctic glaciation and early Tertiary
vegetation, Nature, 258, 507–508, https://doi.org/10.1038/258507a0, 1975.
Kemp, E. M., Grigorov, I., Pearce, R. B., and Naveira Garabato, A. C.: Migration of the Antarctic Polar Front through the mid-Pleistocene
transition: evidence and climatic implications, Quaternary Sci. Rev., 29,
1993–2009, https://doi.org/10.1016/j.quascirev.2010.04.027, 2010.
Kominz, M. A. and Pekar, S. F.: Oligocene eustasy from two-dimensional
sequence stratigraphic backstripping, Geol. Soc. Am. Bull., 113, 291–304,
https://doi.org/10.1130/0016-7606(2001)113<0291:OEFTDS>2.0.CO;2, 2001.
Korff, L., von Dobeneck, T., Frederichs, T., Kasten, S., Kuhn, G., Gersonde,
R., and Diekmann, B.: Cyclic magnetite dissolution in Pleistocene
sediments of the abyssal northwest Pacific Ocean: Evidence for glacial
oxygen depletion and carbon trapping, Paleoceanography, 31, 600–624, https://doi.org/10.1002/2015PA002882, 2016.
Kuhn, G. and Diekmann, B.: Late Quaternary variability of ocean
circulation in the southeastern South Atlantic inferred from the terrigenous
sediment record of a drift deposit in the southern Cape Basin (ODP Site
1089), Palaeogeogr. Palaeocl., 182, 287–303, https://doi.org/10.1016/S0031-0182(01)00500-4, 2002.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation
quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lear, C. H., Rosenthal, Y., Coxall, H. K., and Wilson, P. A.: Late Eocene to
early Miocene ice sheet dynamics and the global carbon cycle,
Paleoceanography, 19, https://doi.org/10.1029/2004PA001039, 2004.
Leckie, R. and Webb, P.: Late Oligocene – early Miocene glacial record of
the Ross Sea, Antarctica: Evidence from DSDP site 270, Geology, 11, 578, https://doi.org/10.1130/0091-7613(1983)11<578:LOMGRO>2.0.CO;2, 1983.
Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von
Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C.,
Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D.,
Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K.,
Paulsen, T., and Taviani, M.: Antarctic ice sheet sensitivity to
atmospheric CO2 variations in the early to mid-Miocene, Proc. Natl.
Acad. Sci. USA, , 113, 3453–3458, https://doi.org/10.1073/pnas.1516030113, 2016.
Liebrand, D., Lourens, L. J., Hodell, D. A., de Boer, B., van de Wal, R. S.
W., and Pälike, H.: Antarctic ice sheet and oceanographic response to
eccentricity forcing during the early Miocene, Clim. Past, 7, 869–880,
https://doi.org/10.5194/cp-7-869-2011, 2011.
Liebrand, D., Beddow, H. M., Lourens, L. J., Pälike, H., Raffi, I.,
Bohaty, S. M., Hilgen, F. J., Saes, M. J. M., Wilson, P. A., van Dijk, A. E.,
Hodell, D. A., Kroon, D., Huck, C. E., and Batenburg, S. J.: Cyclostratigraphy and eccentricity tuning of the early Oligocene through
early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon
isotope records from Walvis Ridge Site 1264, Earth Planet. Sc. Lett., 450,
392–405, https://doi.org/10.1016/j.epsl.2016.06.007, 2016.
Liebrand, D., de Bakker, A. T. M., Beddow, H. M., Wilson, P. A., Bohaty, S. M.,
Ruessink, G., Pälike, H., Batenburg, S. J., Hilgen, F. J., Hodell, D. A.,
Huck, C. E., Kroon, D., Raffi, I., Saes, M. J. M., van Dijk, A. E., and Lourens,
L. J.: Evolution of the early Antarctic ice ages, Proc. Natl. Acad.
Sci. USA, 114, 3867–3872, https://doi.org/10.1073/pnas.1615440114, 2017.
Lisiecki, L. E., Raymo, M. E., and Curry, W. B.: Atlantic overturning
responses to Late Pleistocene climate forcings, Nature, 456, 85–88, https://doi.org/10.1038/nature07425, 2008.
Lucchi, R. G. and Rebesco, M.: Glacial contourites on the Antarctic
Peninsula margin: insight for palaeoenvironmental and palaeoclimatic
conditions, Geol. Soc. Spec. Publ., 276, 111–127, https://doi.org/10.1144/GSL.SP.2007.276.01.06, 2007.
Mackensen, A., Grobe, H., Hubberten, H., and Spiess, V.: Stable isotope
stratigraphy from the Antarctic continental margin during the last one
million years, Mar. Geol., 87, 315–321, https://doi.org/10.1016/0025-3227(89)90068-6, 1989.
Mann, M. E. and Lees, J. M.: Robust estimation of background noise and
signal detection in climatic time series, Climate Change, 33, 409–445, https://doi.org/10.1007/BF00142586, 1996.
Martín-Chivelet, J., Fregenal-Martínez, M. A., and Chacón, B.: Traction Structures in Contourites, in:
Contourites, chap. 10, 157–182, 2008.
McKay, R., Browne, G., Carter, L., Cowan, E., Dunbar, G., Krissek, L.,
Naish, T., Powell, R., Reed, J., Talarico, F., and Wilch, T.: The
stratigraphic signature of the late Cenozoic Antarctic Ice Sheets in the
Ross Embayment, Geol. Soc. Am. Bull., 121, 1537–1561, https://doi.org/10.1130/B26540.1, 2009.
McKay, R., Naish, T., Carter, L., Riesselman, C., Dunbar, R., Sjunneskog,
C., Winter, D., Sangiorgi, F., Warren, C., Pagani, M., Schouten, S.,
Willmott, V., Levy, R., DeConto, R., and Powell, R. D.: Antarctic and
Southern Ocean influences on Late Pliocene global cooling, Proc. Natl. Acad.
Sci. USA, 109, 6423–6428, https://doi.org/10.1073/pnas.1112248109, 2012.
Meyers, S. R.: Astrochron: An R Package for Astrochronology,
available at: http://cran.r-project.org/package=astrochron (last access: July 2018), 2014.
Meyers, S. R., Sageman, B. B., and Hinnov, L. A.: Integrated quantitative
stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using
evolutive harmonic analysis and stratigraphic modeling, J. Sediment. Res., 71,
628–644, 2001.
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of
organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography,
27, https://doi.org/10.1029/2012PA002286, 2012.
Moore, W. S. and Dymond, J.: Fluxes of 226Ra and barium in the Pacific
Ocean: The importance of boundary processes, Earth Planet. Sc. Lett., 107,
55–68, https://doi.org/10.1016/0012-821X(91)90043-H, 1991.
Mudelsee, M., Bickert, T., Lear, C. H., and Lohmann, G.: Cenozoic climate
changes: A review based on time series analysis of marine benthic δ18O records, Rev. Geophys. 52, 333–374, https://doi.org/10.1002/2013RG000440, 2014.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F.,
Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., Deconto, R.,
Huybers, P., Mckay, R., Pollard, D., Ross, J., Winter, D., Barrett, P.,
Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N.,
Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood,
D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A,
Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin,
R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman,
C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M.,
Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West
Antarctic ice sheet oscillations, Nature, 458, 322–328, https://doi.org/10.1038/nature07867, 2009.
Naish, T. R., Woolfe, K. J., Barrett, P. J., Wilson, G. S., Atkins, C., Bohaty,
S. M., Bäcker, C. J., Claps, M., Davey, F. J., Dunbar, G. B., Dunn, A. G.,
Fielding, C. R., Florindo, F., Hannah, M. J., Harwood, D. M., Henrys, S. A,
Krissek, L. A, Lavelle, M., van der Meer, J., McIntosh, W. C., Niessen, F.,
Passchier, S., Powell, R. D., Roberts, A. P., Sagnotti, L., Scherer, R. P.,
Strong, C. P., Talarico, F., Verosub, K. L., Villa, G., Watkins, D. K., Webb,
P.-N., and Wonik, T.: Orbitally induced oscillations in the East Antarctic
ice sheet at the Oligocene/Miocene boundary, Nature 413, 719–723, https://doi.org/10.1038/35099534, 2001.
Nelson, C. S. and Cooke, P. J.: History of oceanic front development in the
New Zealand sector of the Southern Ocean during the Cenozoic – a synthesis,
New Zeal. J. Geol. Geophys., 44, 535–553, https://doi.org/10.1080/00288306.2001.9514954, 2001.
O'Regan, M., John, K. St., Moran, K., Backman, J., King, J., Haley, B. A.,
Jakobsson, M., Frank, M., and Röhl, U.: Plio-Pleistocene trends in ice
rafted debris on the Lomonosov Ridge, Quat. Int., 219, 168–176, https://doi.org/10.1016/j.quaint.2009.08.010, 2010.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and
production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, https://doi.org/0.1016/S0079-6611(99)00004-X, 1999.
Otto-Bliesner, B. L., Brady, E. C., and Shields, C.: Late Cretaceous ocean:
Coupled simulations with the National Center for Atmospheric Research
Climate System Model, J. Geophys. Res., 107, ACL-11, https://doi.org/10.1029/2001JD000821, 2002.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked Decline in Atmospheric Carbon Dioxide Concentrations During the
Paleogene, Science, 80, 600–603, https://doi.org/10.1126/science.1110063, 2005.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A, Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The Heartbeat
of the Oligocene Climate System, Science, 314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Patterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J.,
Raymo, M. E., Meyers, S. R., Tauxe, L., Brinkhuis, H., Klaus, A., Fehr, A.,
Bendle, J. A. P., Bijl, P. K., Bohaty, S. M., Carr, S. A., Dunbar, R. B.,
Flores, J. A., Gonzalez, J. J., Hayden, T. G., Iwai, M., Katsuki, K., Kong,
G. S., Nakai, M., Olney, M. P., Passchier, S., Pekar, S. F., Pross, J.,
Riesselman, C. R., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley,
C. E., Sugasaki, S., Tuo, S., van de Flierdt, T., Welsh, K., Williams, T.,
and Yamane, M.: Orbital forcing of the East Antarctic ice sheet during the
Pliocene and Early Pleistocene, Nat. Geosci., 7, 841–847, https://doi.org/10.1038/ngeo2273, 2014.
Payne, R. R., Conolly, J. R. and Aabbott, W. H.: Turbidite Muds within
Diatom Ooze off Antarctica: Pleistocene Sediment Variation Defined by
Closely Spaced Piston Cores, GSA Bull., 83, 481–486, https://doi.org/10.1130/0016-7606(1972)83[481:TMWDOO]2.0.CO;2, 1972.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D. A.:
Oceanographic variability on the West Antarctic Peninsula during the Holocene
and the influence of upper circumpolar deep water, Quat. Sci. Rev., 119,
54–65, https://doi.org/10.1016/j.quascirev.2015.04.002, 2015.
Pekar, S. F., DeConto, R. M., and Harwood, D. M.: Resolving a late Oligocene
conundrum: Deep-sea warming and Antarctic glaciation, Palaeogeogr. Palaeocl., 231,
29–40, 2006.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–32, https://doi.org/10.1038/nature07809, 2009.
Prebble, J. G., Raine, J. I., Barrett, P. J., and Hannah, M. J.: Vegetation
and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24
Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica,
Palaeogeogr. Palaeocl., 231, 41–57, https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Pudsey, C. J.: Late Quaternary changes in Antarctic Bottom Water
velocity inferred from sediment grain size in the northern Weddell Sea, Mar.
Geol, 107, 9–33, https://doi.org/10.1016/0025-3227(92)90066-Q, 1992.
Pudsey, C. J.: Sedimentation on the continental rise west of the
Antarctic Peninsula over the last three glacial cycles, Mar. Geol., 167,
313–338, https://doi.org/10.1016/S0025-3227(00)00039-6, 2000.
Pudsey, C. J. and Camerlenghi, A.: Glacial – interglacial deposition on a
sediment drift on the Pacific margin of the Antarctic Peninsula, Antarct.
Sci., 10, 286–308, https://doi.org/10.1017/S0954102098000376, 1998.
Pudsey, C. J. and Howe, J. A.: Quaternary history of the Antarctic
Circumpolar Current: evidence from the Scotia Sea, Mar. Geol., 148, 83–112,
https://doi.org/10.1016/S0025-3227(98)00014-0, 1998.
Raine, J. and Askin, R.: Terrestrial palynology of Cape Roberts Project
Drillhole CRP-3, Victoria Land Basin, Antarctica, Terra Antart., 8, 389–400, 2001.
Rebesco, M. and Camerlenghi, A. (Eds.): Contourites, Elsevier, 60, Oxford UK, 2008.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.: Contourites and associated sediments controlled by deep-water
circulation processes: State-of-the-art and future considerations, Mar.
Geol., 352, 111–154, https://doi.org/10.1016/j.margeo.2014.03.011, 2014.
Reinardy, B. T. I., Escutia, C., Iwai, M., Jimenez-Espejo, F. J., Cook, C., van
de Flierdt, T., and Brinkhuis, H.: Repeated advance and retreat of the
East Antarctic Ice Sheet on the continental shelf during the early Pliocene
warm period, Palaeogeogr. Palaeocl., 422, 65–84, https://doi.org/10.1016/j.palaeo.2015.01.009, 2015.
Richter, T. O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de
Stigter, H. C., De Haas, H., and van Weering, T. C. E.: The Avaatech XRF Core
Scanner: technical description and applications to NE Atlantic sediments,
Geol. Soc. Spec. Publ., 267, 39–50, https://doi.org/10.1144/GSL.SP.2006.267.01.03, 2006.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–70, https://doi.org/10.1126/science.1235798, 2013.
Rodriguez, A. B. and Anderson, J. B.: Contourite origin for shelf and upper
slope sand sheet, offshore Antarctica, Sedimentology, 51, 699–711,
https://doi.org/10.1111/j.1365-3091.2004.00645.x, 2004.
Roeske, T.: Dissolved Barium and Particulate Rare Earth Elements as Tracers
for Shelf-Basin Interaction in the Arctic Ocean, PhD Thesis, Universität
Bremen, available at: http://epic.awi.de/26084/ (last access: July 2018, 2011.
Rothwell, R. G. and Croudace, I. W.: Micro-XRF Studies of Sediment Cores,
edited by: Croudace, I. W. and Rothwell, R. G., Springer Netherlands, Dordrecht,
2015.
Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R. M.,
Jiménez-Espejo, F. J., Bijl, P. K., Hartman, J. D., Ikehara, M.,
Strother, S. L., Salzmann, U., Evangelinos, D., López-Quirós, A.,
Flores, J. A., Sangiorgi, F., and Brinkhuis, H.: Late Oligocene XRF scanner
data from IODP Site 318-U1356 Willkes Land Margin, Antarctica, PANGAEA,
available at: https://doi.pangaea.de/10.1594/PANGAEA.892208 (last
access: July 2018.
Salzmann, U., Strother, S., Sangiorgi, F., Bijl, P., Pross, J., Woodward,
J., Escutia, C., and Brinkhuis, H.: Oligocene to Miocene terrestrial
climate change and the demise of forests on Wilkes Land, East Antarctica,
in: EGU General Assembly Conference Abstracts, 18, EPSC2016-2717, 2016.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay,
R., Cody, R. D., Pross, J., van de Flierdt, T., Bohaty, S. M., Levy, R.,
Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and
Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9, 317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Scher, H. D. and Martin, E. E.: Oligocene deep water export from the North
Atlantic and the development of the Antarctic Circumpolar Current examined
with neodymium isotopes, Paleoceanography, 23, https://doi.org/10.1029/2006PA001400, 2008.
Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch,
W. E. C., and Delaney, M. L.: Onset of Antarctic Circumpolar Current 30
million years ago as Tasmanian Gateway aligned with westerlies, Nature, 523,
580–583, https://doi.org/10.1038/nature14598, 2015.
Schneider, R. R., Price, B., Müller, P. J., Kroon, D., and Alexander, I.: Monsoon related variations in Zaire (Congo) sediment load and
influence of fluvial silicate supply on marine productivity in the east
equatorial Atlantic during the last 200,000 years, Paleoceanography, 12,
463–481, https://doi.org/10.1029/96PA03640, 1997.
Shanmugam, G.: Deep-water Bottom Currents and their Deposits, in Developments in Sedimentology, chap. 5, 60, 59–81, 2008.
Shanmugam, G., Spalding, T. D., and Rofheart, D. H.: Traction structures in
deep-marine, bottom-current-reworked sands in the Pliocene and Pleistocene,
Gulf of Mexico, Geology, 21, 929–932, https://doi.org/10.1130/0091-7613(1993)021<0929:TSIDMB>2.3.CO;2, 1993.
Shen, Q., Wang, H., Shum, C. K., Jiang, L., Hsu, H. T., and Dong, J.: Recent
high-resolution Antarctic ice velocity maps reveal increased mass loss in
Wilkes Land, East Antarctica, Sci. Rep., 8, 4477,
https://doi.org/10.1038/s41598-018-22765-0, 2018.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor,
M. B., and Miller, H. L., (Eds.): IPCC, 2007: Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
St-Onge, G. and Long, B. F.: CAT-scan analysis of sedimentary sequences:
An ultrahigh-resolution paleoclimatic tool, Eng. Geol., 103, 127–133, https://doi.org/10.1016/j.enggeo.2008.06.016, 2009.
Stow, D.: Deep-water contourite systems: modern drifts and ancient
series, seismic and sedimentary characteristics, Geol. Soc., London, 2002.
Stow, D. and Faugères, J.-C.: Contourite Facies and the
Facies Model, chap. 13, 223–256, 2008.
Strother, S. L., Salzmann, U., Sangiorgi, F., Bijl, P. K., Pross, J.,
Escutia, C., Salabarnada, A., Pound, M. J., Voss, J., and Woodward, J.: A new
quantitative approach to identify reworking in Eocene to Miocene pollen
records from offshore Antarctica using red fluorescence and digital imaging,
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017,
2017.
Tauxe, L., Stickley, C. E., Sugisaki, S., Bijl, P. K., Bohaty, S. M.,
Brinkhuis, H., Escutia, C., Flores, J. a., Houben, a. J. P., Iwai, M.,
Jiménez-Espejo, F., McKay, R., Passchier, S., Pross, J., Riesselman, C.
R., Röhl, U., Sangiorgi, F., Welsh, K., Klaus, A., Fehr, A., Bendle, J.
a. P., Dunbar, R., Gonzàlez, J., Hayden, T., Katsuki, K., Olney, M. P.,
Pekar, S. F., Shrivastava, P. K., van de Flierdt, T., Williams, T. and
Yamane, M.: Chronostratigraphic framework for the IODP Expedition 318 cores
from the Wilkes Land Margin: Constraints for paleoceanographic
reconstruction, Paleoceanography, 27, https://doi.org/10.1029/2012PA002308, 2012.
Thorn, V.: Oligocene and early Miocene phytolits from CRP-2/2A and
CRP-3, Victoria Land Basin, Antarctica, Terra Antart., 8, 407–422, 2001.
Tjallingii, R., Röhl, U., Kölling, M., and Bickert, T.: Influence
of the water content on X-ray fluorescence core-scanning measurements in
soft marine sediments, Geochem. Geophy. Geosy., 8, https://doi.org/10.1029/2006GC001393, 2007.
Toggweiler, J. R. and Russell, J.: Ocean circulation in a warming climate,
Nature, 451, 286–288, https://doi.org/10.1038/nature06590, 2008.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232,
12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Van Daele, M., Cnudde, V., Duyck, P., Pino, M., Urrutia, R., and De Batist,
M.: Multidirectional, synchronously-triggered seismo-turbidites and debrites
revealed by X-ray computed tomography (CT), edited by: Trofimovs, J., Sedimentology, 61, 861-880, https://doi.org/10.1111/sed.12070, 2014.
Vandenberghe, N., Hilgen, F. J., Speijer, R. P., Ogg, J. G., Gradstein, F.
M., Hammer, O., Hollis, C. J., and Hooker, J. J.: The Paleogene Period, in:
The Geologic Time Scale, Elsevier, 855–921, 2012.
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A Paleolatitude
Calculator for Paleoclimate Studies, edited by: Royer, D. L., PLoS One, 10,
e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
van Wijk, E. M. and Rintoul, S. R.: Freshening drives contraction of
Antarctic Bottom Water in the Australian Antarctic Basin, Geophys. Res.
Lett., 41, 1657–1664, https://doi.org/10.1002/2013GL058921, 2014.
Veldkamp, A. and Kroonenberg, S. B.: Application of bulk sand geochemistry in
mineral exploration and Quaternary research: a methodological study of the
Allier and Dore terrace sands, Limagne rift valley, France, Appl. Geochem.,
8, 177–187, https://doi.org/10.1016/0883-2927(93)90033-D, 1993.
Villa, G. and Persico, D.: Late Oligocene climatic changes: Evidence from
calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean),
Palaeogeogr. Palaeocl., 231, 110–119, https://doi.org/10.1016/j.palaeo.2005.07.028,
2006.
Villa, G., Persico, D., Wise, S. W., and Gadaleta, A.: Calcareous nannofossil
evidence for Marine Isotope Stage 31 (1 Ma) in Core AND-1B, ANDRILL McMurdo
Ice Shelf Project (Antarctica), Glob. Planet. Change, 96–97, 75–86,
https://doi.org/10.1016/j.gloplacha.2009.12.003, 2012.
Wanlu, F., Jiang, D., Montañez, I. P., Meyers, S. R., Motani, R., and
Tintori, A.: Eccentricity and obliquity paced carbon cycling in the Early
Triassic and implications for post-extinction ecosystem recovery, Sci. Rep.,
6, 27793, https://doi.org/10.1038/srep27793, 2016.
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice Shelf, J.
Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327, 1974.
Whitehead, J. M. and Bohaty, S. M.: Pliocene summer sea surface temperature
reconstruction using silicoflagellates from Southern Ocean ODP Site 1165,
Paleoceanography, 18, https://doi.org/10.1029/2002PA000829, 2003.
Whitehead, J. M., Wotherspoon, S., and Bohaty, S. M.: Minimal Antarctic sea
ice during the Pliocene, Geology, 33, 137, https://doi.org/10.1130/G21013.1, 2005.
Wilhelms-Dick, D., Westerhold, T., Röhl, U., Wilhelms, F., Vogt, C.,
Hanebuth, T. J. J., Römmermann, H., Kriews, M., and Kasten, S.: A
comparison of mm scale resolution techniques for element analysis in sediment
cores, J. Anal. At. Spectrom., 27, 1574, https://doi.org/10.1039/c2ja30148b, 2012.
Williams, T. and Handwerger, D.: A high-resolution record of early Miocene
Antarctic glacial history from ODP Site 1165, Prydz Bay, Paleoceanography,
20, https://doi.org/10.1029/2004PA001067, 2005.
Wilson, G. S., Levy, R. H., Naish, T. R., Powell, R. D., Florindo, F.,
Ohneiser, C., Sagnotti, L., Winter, D.M., Cody, R., Henrys, S., Ross, J.,
Krissek, L., Niessen, F., Pompillio, M., Scherer, R., Alloway, B. V.,
Barrett, P. J., Brachfeld, S., Browne, G., Carter, L., Cowan, E., Crampton,
J., DeConto, R. M., Dunbar, G., Dunbar, N., Dunbar, R., von Eynatten, H.,
Gebhardt, C., Giorgetti, G., Graham, I., Hannah, M., Hansaraj, D., Harwood,
D. M., Hinnov, L., Jarrard, R. D., Joseph, L., Kominz, M., Kuhn, G., Kyle,
P., Läufer, A., McIntosh, W. C., McKay, R., Maffioli, P., Magens, D.,
Millan, C., Monien, D., Morin, R., Paulsen, T., Persico, D., Pollard, D.,
Raine, J.I., Riesselman, C., Sandroni, S., Schmitt, D., Sjunneskog, C.,
Strong, C. P., Talarico, F., Taviani, M., Villa, G., Vogel, S., Wilch, T.,
Williams, T., Wilson, T. J., and Wise, S.: Neogene tectonic and climatic
evolution of the Western Ross Sea, Antarctica – Chronology of events from
the AND-1B drill hole, Glob. Planet. Change, 96–97, 189–203,
https://doi.org/10.1016/j.gloplacha.2012.05.019, 2012.
Zachos, J.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to
Present, Science, 292, 686–693, 85, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J., Kroon, D., Bloom, P., and Et, A.: Initial Reports Leg 208, Proc.
Ocean Drill. Progr., 208, 1–112, 2004.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A
40-million-year history of atmospheric CO2, Philos. T. Roy. Soc. A.,
371, 20130096–20130096, https://doi.org/10.1098/rsta.2013.0096, 2013.
Ziegler, M., Jilbert, T., de Lange, G.J., Lourens, L. J., and Reichart,
G.-J.: Bromine counts from XRF scanning as an estimate of the marine organic
carbon content of sediment cores, Geochem. Geophy. Geosy., 9,
https://doi.org/10.1029/2007GC001932, 2008.
Download
- Article
(8502 KB) - Full-text XML
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes...