Articles | Volume 14, issue 12
Clim. Past, 14, 2011–2036, 2018
https://doi.org/10.5194/cp-14-2011-2018
Clim. Past, 14, 2011–2036, 2018
https://doi.org/10.5194/cp-14-2011-2018
Research article
18 Dec 2018
Research article | 18 Dec 2018

Long-term deglacial permafrost carbon dynamics in MPI-ESM

Thomas Schneider von Deimling et al.

Related authors

The evolution of Arctic permafrost over the last three centuries
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2022-473,https://doi.org/10.5194/egusphere-2022-473, 2022
Short summary
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021,https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021,https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Variability of the surface energy balance in permafrost-underlain boreal forest
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021,https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike
Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015,https://doi.org/10.5194/bg-12-3469-2015, 2015
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Modelling only | Timescale: Pleistocene
Marine carbon cycle response to a warmer Southern Ocean: the case of the last interglacial
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022,https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding
Thomas Extier, Katharina D. Six, Bo Liu, Hanna Paulsen, and Tatiana Ilyina
Clim. Past, 18, 273–292, https://doi.org/10.5194/cp-18-273-2022,https://doi.org/10.5194/cp-18-273-2022, 2022
Short summary
Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins
Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021,https://doi.org/10.5194/cp-17-171-2021, 2021
Short summary
Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019,https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016,https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary

Cited articles

Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189, https://doi.org/10.1029/1999RG000066, 2000. 
Bauer, J., Herbst, M., Huisman, J. A., Weihermüller, L., and Vereecken, H.: Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions, Geoderma, 145, 17–27, https://doi.org/10.1016/j.geoderma.2008.01.026, 2008. 
Beer, C.: Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections, Front. Earth Sci., 4, 81, https://doi.org/10.3389/feart.2016.00081, 2016. 
Braakhekke, M., Beer, C., Schrumpf, M., Ekici, A., Ahrens, B., Hoosbeek Marcel, R., Kruijt, B., Kabat, P., and Reichstein, M.: The use of radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest, J. Geophys. Res.-Biogeo., 119, 372–391, https://doi.org/10.1002/2013JG002420, 2014. 
Download
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.