Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
CP | Articles | Volume 14, issue 12
Clim. Past, 14, 2011–2036, 2018
https://doi.org/10.5194/cp-14-2011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Clim. Past, 14, 2011–2036, 2018
https://doi.org/10.5194/cp-14-2011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Dec 2018

Research article | 18 Dec 2018

Long-term deglacial permafrost carbon dynamics in MPI-ESM

Thomas Schneider von Deimling et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (27 Oct 2018) by Ran Feng
AR by Thomas Schneider von Deimling on behalf of the Authors (06 Nov 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (16 Nov 2018) by Ran Feng
Publications Copernicus
Download
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Past cold ice age temperatures and the subsequent warming towards the Holocene had large...
Citation