Articles | Volume 14, issue 2
https://doi.org/10.5194/cp-14-139-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-139-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Signal detection in global mean temperatures after “Paris”: an uncertainty and sensitivity analysis
Hans Visser
CORRESPONDING AUTHOR
PBL Netherlands Environmental Assessment Agency, Bilthoven, the
Netherlands
Sönke Dangendorf
Research Institute for Water and Environment,
University Siegen, Siegen, Germany
Detlef P. van Vuuren
PBL Netherlands Environmental Assessment Agency, Bilthoven, the
Netherlands
Faculty of Geosciences,
University Utrecht, Utrecht, the Netherlands
Bram Bregman
Institute for
Science, Innovation and Society, Radboud University, Nijmegen, the
Netherlands
Arthur C. Petersen
STEaPP, University College London, London, UK
Related authors
No articles found.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Wei Li, Philippe Ciais, Elke Stehfest, Detlef van Vuuren, Alexander Popp, Almut Arneth, Fulvio Di Fulvio, Jonathan Doelman, Florian Humpenöder, Anna B. Harper, Taejin Park, David Makowski, Petr Havlik, Michael Obersteiner, Jingmeng Wang, Andreas Krause, and Wenfeng Liu
Earth Syst. Sci. Data, 12, 789–804, https://doi.org/10.5194/essd-12-789-2020, https://doi.org/10.5194/essd-12-789-2020, 2020
Short summary
Short summary
We generated spatially explicit bioenergy crop yields based on field measurements with climate, soil condition and remote-sensing variables as explanatory variables and the machine-learning method. We further compared our yield maps with the maps from three integrated assessment models (IAMs; IMAGE, MAgPIE and GLOBIOM) and found that the median yields in our maps are > 50 % higher than those in the IAM maps.
Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren
Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, https://doi.org/10.5194/esd-10-617-2019, 2019
Short summary
Short summary
We developed a computer model that simulates forests plantations at global scale and how fast such forests can take up CO2 from the atmosphere. Using this new model, we performed simulations for a scenario in which a large fraction (14 %) of global croplands and pastures are either converted to planted forests or natural forests. We find that planted forests take up CO2 substantially faster than natural forests and are therefore a viable strategy for reducing climate change.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Stephanie Fiedler, Bjorn Stevens, Matthew Gidden, Steven J. Smith, Keywan Riahi, and Detlef van Vuuren
Geosci. Model Dev., 12, 989–1007, https://doi.org/10.5194/gmd-12-989-2019, https://doi.org/10.5194/gmd-12-989-2019, 2019
HyeJin Kim, Isabel M. D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef P. van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Harfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlík, Stefanie Hellweg, Samantha L. L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclère, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke M. Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, and Henrique M. Pereira
Geosci. Model Dev., 11, 4537–4562, https://doi.org/10.5194/gmd-11-4537-2018, https://doi.org/10.5194/gmd-11-4537-2018, 2018
Short summary
Short summary
This paper lays out the protocol for the Biodiversity and Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM) that projects the global impacts of land use and climate change on biodiversity and ecosystem services over the coming decades, compared to the 20th century. BES-SIM uses harmonized scenarios and input data and a set of common output metrics at multiple scales, and identifies model uncertainties and research gaps.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Brian C. O'Neill, Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, Gerald A. Meehl, Richard Moss, Keywan Riahi, and Benjamin M. Sanderson
Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, https://doi.org/10.5194/gmd-9-3461-2016, 2016
Short summary
Short summary
The Scenario Model Intercomparison Project (ScenarioMIP) will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. The design consists of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions. Climate model projections will facilitate integrated studies of climate change as well as address targeted scientific questions.
Detlef P. van Vuuren, Paul L. Lucas, Tiina Häyhä, Sarah E. Cornell, and Mark Stafford-Smith
Earth Syst. Dynam., 7, 267–279, https://doi.org/10.5194/esd-7-267-2016, https://doi.org/10.5194/esd-7-267-2016, 2016
Short summary
Short summary
There is a need for further integrated research on developing a set of sustainable development objectives, based on the proposed framework of planetary boundary indicators. This paper organises the research questions in four key categories. It subsequently discusses how different categories of scientific disciplines and in particular models can contribute to the necessary analysis.
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Instrumental Period
Dynamical downscaling and data assimilation for a cold-air outbreak in the European Alps during the Year Without a Summer of 1816
Extreme springs in Switzerland since 1763 in climate and phenological indices
Building a long-time series for weather and extreme weather in the Straits Settlements: a multi-disciplinary approach to the archives of societies
Statistical reconstruction of daily precipitation and temperature fields in Switzerland back to 1864
Towards high-resolution climate reconstruction using an off-line data assimilation and COSMO-CLM 5.00 model
Climate of migration? How climate triggered migration from southwest Germany to North America during the 19th century
Jens Esmark's Christiania (Oslo) meteorological observations 1816–1838: the first long-term continuous temperature record from the Norwegian capital homogenized and analysed
Influence of proxy data uncertainty on data assimilation for the past climate
Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France
Peter Stucki, Lucas Pfister, Yuri Brugnara, Renate Varga, Chantal Hari, and Stefan Brönnimann
Clim. Past, 20, 2327–2348, https://doi.org/10.5194/cp-20-2327-2024, https://doi.org/10.5194/cp-20-2327-2024, 2024
Short summary
Short summary
In our work, we reconstruct the weather of the extremely cold and wet summer in 1816 using a weather forecasting model to obtain high-resolution, three-dimensional weather simulations. We refine our simulations with surface pressure and temperature observations, representing a novel approach for this period. Our results show that this approach yields detailed and accurate weather reconstructions, opening the door to analyzing past weather events and their impacts in detail.
Noemi Imfeld, Koen Hufkens, and Stefan Brönnimann
Clim. Past, 20, 659–682, https://doi.org/10.5194/cp-20-659-2024, https://doi.org/10.5194/cp-20-659-2024, 2024
Short summary
Short summary
Climate and weather in spring are important because they can have far-reaching impacts, e.g. on plant growth, due to cold spells. Here, we study changes in climate and phenological indices for the period from 1763 to 2020 based on newly published reconstructed fields of daily temperature and precipitation for Switzerland. We look at three cases of extreme spring conditions, namely a warm spring in 1862, two frost events in 1873 and 1957, and three cold springs in 1785, 1837, and 1852.
Fiona Williamson
Clim. Past, 17, 791–803, https://doi.org/10.5194/cp-17-791-2021, https://doi.org/10.5194/cp-17-791-2021, 2021
Short summary
Short summary
This paper focuses on the recovery of instrumental weather records available for Singapore and Malaysia (Straits Settlements) from the late 1780s to 1917. Taking a historical approach, the paper explores the types of records available, the circumstances of their production and their value to the scientific community.
Lucas Pfister, Stefan Brönnimann, Mikhaël Schwander, Francesco Alessandro Isotta, Pascal Horton, and Christian Rohr
Clim. Past, 16, 663–678, https://doi.org/10.5194/cp-16-663-2020, https://doi.org/10.5194/cp-16-663-2020, 2020
Short summary
Short summary
This paper aims to reconstruct high-resolution daily precipitation and temperature fields for Switzerland back to 1864 using a statistical approach called the analogue resampling method. Results suggest that the presented method is suitable for weather reconstruction. As illustrated with the example of the avalanche in winter 1887/88, these weather reconstructions have great potential for various analyses of past weather and climate impact modelling.
Bijan Fallah, Emmanuele Russo, Walter Acevedo, Achille Mauri, Nico Becker, and Ulrich Cubasch
Clim. Past, 14, 1345–1360, https://doi.org/10.5194/cp-14-1345-2018, https://doi.org/10.5194/cp-14-1345-2018, 2018
Short summary
Short summary
We try to test and evaluate an approach for using two main sources of information on the climate of the past: climate model simulations and proxies. This is done via data assimilation (DA), a method that blends these two sources of information in an intelligent way. However, DA and climate models are computationally very expensive. Here, we tested the ability of a computationally affordable DA to reconstruct high-resolution climate fields.
Rüdiger Glaser, Iso Himmelsbach, and Annette Bösmeier
Clim. Past, 13, 1573–1592, https://doi.org/10.5194/cp-13-1573-2017, https://doi.org/10.5194/cp-13-1573-2017, 2017
Short summary
Short summary
This paper presents the extent to which climate, harvest and prices influenced the major migration waves from southwest Germany into North America during the 19th century, a century of dramatic climatic and societal changes.
Geir Hestmark and Øyvind Nordli
Clim. Past, 12, 2087–2106, https://doi.org/10.5194/cp-12-2087-2016, https://doi.org/10.5194/cp-12-2087-2016, 2016
Short summary
Short summary
The detailed and continuous meteorological observations of Jens Esmark from the capital of Norway in the period 1816 to 1838 are evaluated, homogenized and reanalysed with modern methods to characterize the weather in Oslo in this period.
Anastasios Matsikaris, Martin Widmann, and Johann Jungclaus
Clim. Past, 12, 1555–1563, https://doi.org/10.5194/cp-12-1555-2016, https://doi.org/10.5194/cp-12-1555-2016, 2016
Short summary
Short summary
We have assimilated proxy-based (PAGES 2K) and instrumental (HadCRUT3v) observations into a General Circulation Model (MPI-ESM-CR). Assimilating instrumental data improves the performance of Data Assimilation. No skill on small spatial scales is however found for either of the two schemes. Errors in the assimilated data are therefore not the main reason for this lack of skill; continental mean temperatures cannot provide skill on small spatial scales in palaeoclimate reconstructions.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, and Benjamin Graff
Clim. Past, 12, 635–662, https://doi.org/10.5194/cp-12-635-2016, https://doi.org/10.5194/cp-12-635-2016, 2016
Short summary
Short summary
This paper describes a daily high-resolution reconstruction of precipitation and temperature fields in France from 1871 onwards. A statistical method linking atmospheric circulation to local precipitation is refined for taking advantage of recently published global long-term atmospheric and oceanic reconstructions. The resulting data set allows filling in the spatial and temporal data gaps in historical surface observations, and improving our knowledge on the local-scale climate variability.
Cited articles
Cahill, N., Rahmstorf, S., and Parnell, A. C.: Change points of global
temperature, Environ. Res. Lett., 10, 084002,
https://doi.org/10.1088/1748-9326/10/8/084002, 2015.
Callendar, G. S.:
The artificial production of carbon dioxide and its influence on temperature,
Q. J. Roy. Meteor. Soc.,
64, 223–240, 1938.
Chandler, R. E. and Scott, E. M.:
Statistical Methods for Trend Detection and Analysis,
Wiley & Sons Statistics in Practice, West Sussex, UK, 2011.
Cowtan, K. and Way, R. G.:
Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends,
Q. J. Roy. Meteor. Soc.,
140, 1935–1944, 2014.
Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E.,
Miller, S. K., Steinman, B. A., Stolpe, M. B., and Way, R. G.: Robust
comparison of climate models with observations using blended land air and
ocean sea surface temperatures, Geophys. Res. Lett., 42, 6527–6534,
https://doi.org/10.1002/2015GL064888, 2015.
De Saedeleer, B.: Climatic irregular staircases: generalized acceleration of
global warming, Nature Scientific Reports, 6, 19881, https://doi.org/10.1038/srep19881,
2016.
Easterling, D. R. and Wehner, M. F.: Is the climate warming or cooling?,
Geophys. Res. Lett., 36, L08706, https://doi.org/10.1029/2009GL037810, 2009.
Forster, G. and Rahmstorf, S.: Global temperature evolution 1979–2010,
Environ. Res. Lett., 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022, 2011.
Forster, P. M., Andrews, T., Good, P., Gregory, P. M., Jackson, L. S., and Zelinka, M.:
Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models,
J. Geophys. Res.-Atmos.,
118, 1139–1150, 2013.
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato,
G. M., Hawkins, E., Gillet, N. P., Xie, S. P., Kosaka, Y., and Swart, N. C.:
Making sense of the early-2000s warming slowdown, Nat. Clim. Change, 6,
224–228, 2016.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Harvey, A. C.:
Forecasting, Structural Time Series Models and the Kalman Filter,
Cambridge University Press, Cambridge, UK, 1989.
Hastie, T., Tibshirani, R., and Friedman, J.:
The Elements of Statistical Learning,
Springer series in statistics, New York, USA, 2001.
Haustein, K., Allen, M. R., Forster, P. M., Otto, F. E. L., Mitchell, D. M.,
Matthews, H. D., and Frame, D. J.: A real-time global warming index, Nature
Scientific Reports, 7, 15417, https://doi.org/10.1038/s41598-017-14828-5, 2017.
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P.,
Joshi, M., Osborn, T., Masson-Delmotte, V., Mignon, J., Thorne, P., and Van
Oldenborgh, G.: Estimating changes in global temperature since the
pre-industrial period, B. Am. Meteorol. Soc., 98, 1841–1856,
https://doi.org/10.1175/BAMS-D-16-0007.1, 2017.
Hay, C. C., Marrow, E., Kopp, R. E., and Mitrivica, J. X.:
Probabilistic reanalysis of twentieth-century sea-level rise,
Nature,
517, 481–484, 2015.
Hedemann, C., Mauritsen, T., Jungclaus, J., and Marotzke, J.:
The subtle origins of surface-warming hiatuses,
Nat. Clim. Change,
7, 336–339, 2017.
Hope, M.: Temperature spiral goes viral, Nat. Clim. Change, 6, 657–657,
2016.
Hunt, B. G.:
The role of natural climatic variation in perturbing the observed global mean temperature trend,
Clim. Dynam.,
36, 509–521, 2011.
Imbers, J., Lopez, A., Huntingford, C., and Allen, M. R.:
Testing the robustness of the anthropogenic climate change detection statements using different empirical models,
J. Geophys. Res.-Atmos.,
118, 3192–3199, 2013.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifths Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.
Tignor, M. M. B., Allen, S. K., Boschung, J., Navels, A., Xia, Y., Bex, V.,
and Midgley, P. M., Cambridge University Press, Cambridge, 2013.
IPCC: Climate Change 2014: Mitigation of Climate Change. Contribution of
Working Group III to the Fifths Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona,
Y., Minx, J. C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I.,
Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlöner, S.,
Von Stechow, C., and Zwickel, T., Cambridge University Press, Cambridge, 2014.
IPCC Annex II: Glossary, Contribution of Working Groups I, II and III to the
Fifth Assessment Report of the IPCC, edited by: Pechauri, R. K. and
Meyer, L. A., IPCC, Geneva, Switzerland, 2014.
Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne,
M. J., Peterson, T. C., Vose, R. S., and Zhang, H.: Possible artifacts of
data biases in the recent global surface warming hiatus, Science, 348,
1469–1472, 2015.
Kaufmann, R. K., Kauppi, H., and Stock, J. H.:
Emissions, concentrations, and temperature: a time series analysis,
Climatic Change,
77, 249–278, 2006.
Kaufmann, R. K., Kauppi, H., Mann, M. L., and Stock, J. H.:
Does temperature contain a stochastic trend: linking statistical results to physical mechanisms,
Climatic Change,
118, 729–743, 2013.
Kokic, P., Crimp, S., and Howden, M.: A probabilistic analysis of human
influence on recent record global mean temperature changes, Clim. Risk
Management, 3, 1–12, 2014.
Lennartz, S. and Bunde, A.: Trend evaluation in records with long-term
memory: application to global warming, Geophys. Res. Lett, 36, L16706,
https://doi.org/10.1029/2009GL039516, 2009.
Lewandowsky, S., Oreskes, N., Risbey, J. S., and Newell, B. R.: Seepage:
climate change denial and its effect on the scientific community, Global
Environ. Chang, 33, 1–13, 2015.
Lin, Y. and Franzke, L. E.: Scale-dependency of the global mean surface
temperature trend and its implication for the recent hiatus of global
warming, Nature Scientific Reports, 5, 12971, https://doi.org/10.1038/srep12971, 2015.
Mann, M. E.: Smoothing of climate time series revisited, Geophys. Res. Lett.,
35, L16708, https://doi.org/10.1029/2008GL034716, 2008.
Mann, M. E.: False hope. The rate of global temperature rise may have hit a
plateau, but a climate rise still looms in the near future, Sci. Am., April
issue, 79–81, 2014.
Mann, M. E., Rahmstorf, S., Steinman, B. A., Tingley, M., and Miller, S. K.:
The likelihood of recent record warmth, Nature Scientific Reports, 6, 19831,
https://doi.org/10.1038/srep19831, 2016.
Marotzke, J. and Forster, P. M.:
Forcing, feedback and internal variability in global temperature trends,
Nature,
517, 565–570, 2015.
Medhaug, I., Stolpe, M. B., Fischer, E. M., and Knutti, R.:
Reconciling controversies about the “global warming hiatus”,
Nature,
545, 41–47, 2017.
Meehl, G. A., Hu, A., Santer, B. D., and Xie, S.-P.:
Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends,
Nat. Clim. Change,
6, 1005–1008, 2016.
Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., and Allen, M. R.:
Emission budgets and pathways consistent with limiting warming to 1.5 ∘C,
Nat. Geosci.,
10, 741–747, 2017.
Mills, T. C.:
Modeling current trends in Northern Hemisphere temperatures,
Int. J. Climatol.,
26, 867–884, 2006.
Mill, T. C.: “Skinning a cat”: alternative models of representing
temperature trends, Climatic Change, 101, 415–426, 2010.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: the HadCRUT4 data set, J. Geophys. Res., 117,
D08101, https://doi.org/10.1029/2011JD017187, 2012.
Mudelsee, M.:
Climate Time Series Analysis: Classical Statistical and Bootstrap Methods,
Springer, New York, USA, 2014.
Nuzzo, R.:
Statistical errors,
Nature,
506, 150–152, 2014.
Otto, R. E. L., Frame, D. J., Otto, A., and Allen, M. R.: Embracing
uncertainty in climate change policy, Nat. Clim. Change, 5, 917–920,
https://doi.org/10.1038/NCLIMATE2716, 2015.
Rahmstorf, S.:
A semi-empirical approach to projecting future sea-level rise,
Science,
315, 368–370, 2007.
Rahmstorf, S., Forster, G., and Cahill, N.: Global temperature evolution:
recent trends and some pitfalls, Environ. Res. Lett., 12, 054001,
https://doi.org/10.1088/1748-9326/aa6825, 2017.
Rajaratnam, B., Romano, J., Tsiang, M., and Diffenbaugh, N. S.:
Debunking the climate hiatus,
Climatic Change,
133, 129–140, 2015.
Rea, W., Reale, M., and Brown, J.: Long memory in temperature
reconstructions, Climatic Change, 107, 247–265,
https://doi.org/10.1007/s10584-011-0068-y, 2011.
Richardson, M., Cowtan, K., Hawkins, E., and Stolpe, M. B.: Reconciled
climate response estimates from climate models and the energy budget of
Earth, Nat. Clim. Change, 6, 931–936, https://doi.org/10.1038/NCLIMATE3066, 2016.
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T.,
Dolgii, S. I., Herber, A. B., Nagai, T., Neeley, R. R., Nevzorov, A. V.,
Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and
Vernier, J. P.: Total volcanic stratospheric aerosol optical depths and
implications for global climate change, Geophys. Res. Lett., 41, 7763–7769,
https://doi.org/10.1002/2014GL061541, 2014.
Risbey, J. R., Lewandowski, S., Langlais, C., Monselesan, D. P., O'Kane, T.
J., and Oreskes, N.: Well-estimated global surface warming in climate
projections selected for ENSO phase, Nat. Clim. Change, 4, 835–840,
https://doi.org/10.1038/NCLIMATE2310, 2014.
Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O'Kane, T. J., and Oreskes, N.:
Well-estimated global surface warming in climate projections selected for ENSO phase,
Nat. Clim. Change,
4, 835–840, 2015.
Roberts, C. D., Palmer, M. D., McNeall, D., and Collins, M.: Quantifying the
likelihood of a continued hiatus in global warming, Nat. Clim. Change, 5,
337–342, https://doi.org/10.1038/NCLIMATE2531, 2015.
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A.,
Wurtele, J., Curry, J., Wickham, C., and Mosher, S.: Berkeley Earth
temperature averaging process, Geoinformatics & Geostatistics: An
Overview, 1/2, 1–13, 2013.
Saisana, M., Saltelli, A., and Tarantola, S.:
Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators,
J. R. Statist. Soc. A Stat.,
168, 307–323, 2005.
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.:
Sensitivity Analysis in Practice,
Wiley & Sons, Chichester, UK, 2004.
Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.:
Stratospheric aerosol optical depths 1850–1990,
J. Geophys. Res.,
98, 22987–22994, 1993.
Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B., and Hegerl, G. C.:
Importance of the pre-industrial baseline for likelihood of exceeding Paris
goals, Nat. Clim. Change, 7, 563–568, https://doi.org/10.1038/NCLIMATE3345, 2017.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006),
J. Climate,
21, 2238–2296, 2008.
Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A., and Calvin, K.:
Near-term acceleration in the rate of temperature change,
Nat. Clim. Change,
5, 333–336, 2015.
Suckling, E. B., Van Oldenborgh, G. J., Eden, J. M., and Hawkins, E.: An
empirical model for probabilistic decadal prediction: global attribution and
regional hindcasts, Clim. Dynam., 48, 3115–3138,
https://doi.org/10.1007/s00382-016-3255-8, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.:
An overview of CMIP5 and the experiment design,
B. Am. Meteorol. Soc.,
April issue, 485–498, 2012.
Tollefson, J.:
The 2 ∘C dream,
Nature,
527, 436–438, 2015.
Trenberth, K. E.:
Has there been a hiatus?,
Science,
349, 691–692, 2015.
Trouet, V. and Van Oldenborgh, G. J.:
KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology,
Tree-Ring Res.,
69, 3–13, 2013.
UN: Adoption of the Paris Agreement, FCCC/CP/2015/L.g/Rev.1, available at:
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (last access:
22 January 2018), 2015.
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lemarque, J., Masui, T., Meinshausen,
M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative
concentration pathways: an overview, Climatic Change, 109, 5–31, 2011.
Visser, H. and Molenaar, J.:
Trend estimation and regression analysis in climatological time series: an application of structural time series models and the Kalman filter,
J. Climate,
8, 969–979, 1995.
Visser, H.:
Estimation and detection of flexible trends,
Atmos. Environ.,
38, 4135–4145, 2004.
Visser, H. and Petersen, A. C.: Inferences on weather extremes and
weather-related disasters: a review of statistical methods, Clim. Past, 8,
265–286, https://doi.org/10.5194/cp-8-265-2012, 2012.
Visser, H., Folkert, R. J. M., Hoekstra, J., and De Wolf, J. J.: Identifying
key sources of uncertainty in climate change projections, Climatic Change,
45, 421–457, 2000.
Visser, H., Dangendorf, S., and Petersen, A. C.:
A review of trend models applied to sea level data with reference to the “acceleration-deceleration debate”,
J. Geophys. Res.-Oceans,
120, 3873–3895, https://doi.org/10.1002/2015JC010716, 2015.
Voosen, P.:
Climate scientists open up their black boxes to scrutiny,
Science,
354, 401–402, 2016.
Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleacon, B., Huang,
B., Kearns, E., Lawrimore, J. H., Menne, M. J., Peterson, T. C., Reynolds, R.
W., Smith, T. M., Williams, C. N., and Wuertz, D. B.: NOAA's merged
land-ocean surface temperature analysis, B. Am. Meteorol. Soc., 93,
1677–1685, 2012.
Wei, M., Qiao, F., and Deng, J.:
A quantitative definition of global warming hiatus and 50-year prediction of global-mean surface temperature,
J. Atmos. Sci.,
72, 3281–3289, 2015.
Xie, S. P.:
Leading the hiatus research surge,
Nat. Clim. Change,
6, 345–346, 2016.
Yao, S. L., Huang, G., Wu, R. G., and Qu, X.: The global warming hiatus –
a natural product of interactions of a secular warming trend and
a multi-decadal oscillation, Theor. Appl. Climatol., 123, 349–360,
https://doi.org/10.1007/s00704-014-1358-x, 2015.
Zieba, A.:
Effective number of observations and unbiased estimators of variance for autocorrelated data – an overview,
Metrol. Meas. Syst.,
17, 3–16, 2010.
Short summary
In December 2015, 195 countries agreed in Paris to hold the increase in global temperature well below 2.0 °C. However, the Paris Agreement is not conclusive as regards methods to calculate it. To find answers to these questions we performed an uncertainty and sensitivity analysis where datasets, model choices, choices for pre-industrial and warming definitions have been varied. Based on these findings we propose an estimate for signal progression in global temperature since pre-industrial time.
In December 2015, 195 countries agreed in Paris to hold the increase in global temperature well...