Articles | Volume 11, issue 5
https://doi.org/10.5194/cp-11-709-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-709-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden
R. V. Donner
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
N. Marwan
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
S. F. M. Breitenbach
Institute for Geology, Mineralogy and Geophysics, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
formerly at: Geological Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
K. Rehfeld
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
J. Kurths
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany
Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3FX, UK
Related authors
Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
EGUsphere, https://doi.org/10.5194/egusphere-2024-2924, https://doi.org/10.5194/egusphere-2024-2924, 2024
Short summary
Short summary
Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to "black or white" sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylized model of resource use, while also defining the success of attempts to manage the system, suggesting the importance of well representing both in coupled models.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Jordan Paul Everall, Jonathan F. Donges, and Ilona M. Otto
EGUsphere, https://doi.org/10.5194/egusphere-2023-2241, https://doi.org/10.5194/egusphere-2023-2241, 2023
Short summary
Short summary
A social tipping process is a rapid, large change in society, and can be started by few people. Does the 80/20 rule apply here? We see if this is the case for human social groups. We find that if so then it occurs when around 25 % of people engage. Tipping seems generally possible in the range of around 10 % to 40 % of the population, with most systems having tipped by the 40 % mark. When people don't change so easily, trusting groups of friends and housemates can help convince wayward friends.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1622, https://doi.org/10.5194/egusphere-2023-1622, 2023
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can developed via enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea-level rise). The likelihood for social tipping varies regionally, mostly along areas with highest exposure to persistent risks.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Steven J. Lade, Jonathan F. Donges, Ingo Fetzer, John M. Anderies, Christian Beer, Sarah E. Cornell, Thomas Gasser, Jon Norberg, Katherine Richardson, Johan Rockström, and Will Steffen
Earth Syst. Dynam., 9, 507–523, https://doi.org/10.5194/esd-9-507-2018, https://doi.org/10.5194/esd-9-507-2018, 2018
Short summary
Short summary
Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Vera Heck, Jonathan F. Donges, and Wolfgang Lucht
Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, https://doi.org/10.5194/esd-7-783-2016, 2016
Short summary
Short summary
We assess the co-evolutionary dynamics of the Earth's carbon cycle and societal interventions through terrestrial carbon dioxide removal (tCDR) with a conceptual model in a planetary boundary context. The focus on one planetary boundary alone may lead to navigating the Earth system out of the safe operating space due to transgression of other boundaries. The success of tCDR depends on the degree of anticipation of climate change, the potential tCDR rate and the underlying emission pathway.
Jonatan F. Siegmund, Marc Wiedermann, Jonathan F. Donges, and Reik V. Donner
Biogeosciences, 13, 5541–5555, https://doi.org/10.5194/bg-13-5541-2016, https://doi.org/10.5194/bg-13-5541-2016, 2016
Short summary
Short summary
In this study we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by using event coincidence analysis. Our study confirms previous findings of experimental studies, highlighting the impact of early spring temperatures on the flowering of the investigated plants. Additionally, the analysis reveals statistically significant indications of an influence of temperature extremes in the fall preceding the flowering.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
A. Y. Sun, J. Chen, and J. Donges
Nonlin. Processes Geophys., 22, 433–446, https://doi.org/10.5194/npg-22-433-2015, https://doi.org/10.5194/npg-22-433-2015, 2015
Short summary
Short summary
Terrestrial water storage (TWS) plays a key role in global water and energy cycles. This work applies complex climate networks to analyzing spatial patterns in TWS. A comparative analysis is conducted using a remotely sensed (GRACE) and a model-generated TWS data set. Our results reveal hotspots of TWS anomalies around the global land surfaces. Prospects are offered on using network connectivity as constraints to further improve current global land surface models.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Irewola Aaron Oludehinwa, Andrei Velichko, Olasunkanmi Isaac Olusola, Olawale Segun Bolaji, Norbert Marwan, Babaola O. Ogunsua, Abdullahi Ndzi Njah, and Timothy O. Ologun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3554, https://doi.org/10.5194/egusphere-2024-3554, 2024
Short summary
Short summary
The contributing influence of SSW to regional ionosphere through chaos theory is examined. We found that ionospheric chaos is more pronounced in the European sector compared to Africa sector during SSW. Evidence of orderliness behavior in regional ionosphere of African sector was observed. Finally, we noticed that after the peak phase of SSW, ionospheric chaos is found to be more pronounced.
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793, https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used here to upscale precipitation climate networks to study the Indian Monsoon and analyse strong dependencies between spatial regions, which change with changing scale.
Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
EGUsphere, https://doi.org/10.5194/egusphere-2024-2924, https://doi.org/10.5194/egusphere-2024-2924, 2024
Short summary
Short summary
Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to "black or white" sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylized model of resource use, while also defining the success of attempts to manage the system, suggesting the importance of well representing both in coupled models.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Jordan Paul Everall, Jonathan F. Donges, and Ilona M. Otto
EGUsphere, https://doi.org/10.5194/egusphere-2023-2241, https://doi.org/10.5194/egusphere-2023-2241, 2023
Short summary
Short summary
A social tipping process is a rapid, large change in society, and can be started by few people. Does the 80/20 rule apply here? We see if this is the case for human social groups. We find that if so then it occurs when around 25 % of people engage. Tipping seems generally possible in the range of around 10 % to 40 % of the population, with most systems having tipped by the 40 % mark. When people don't change so easily, trusting groups of friends and housemates can help convince wayward friends.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1622, https://doi.org/10.5194/egusphere-2023-1622, 2023
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can developed via enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea-level rise). The likelihood for social tipping varies regionally, mostly along areas with highest exposure to persistent risks.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31, https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Short summary
For more than a decade, the climate has attracted stochastic dynamists with its unpredictable and complex phenomena. Our attention was attracted by the results of studies on the possibility of oceanic thermohaline circulation failure. We set the task to analyze the stability of the circulation current on-state and to predetermine what extreme events can unbalance it leading to attenuation. We also suggested possible scenarios for the resuscitation of the circulation in the event of its fading.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-11, https://doi.org/10.5194/esd-2019-11, 2019
Manuscript not accepted for further review
Short summary
Short summary
Both drivers from the mid-latitudes and from the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Steven J. Lade, Jonathan F. Donges, Ingo Fetzer, John M. Anderies, Christian Beer, Sarah E. Cornell, Thomas Gasser, Jon Norberg, Katherine Richardson, Johan Rockström, and Will Steffen
Earth Syst. Dynam., 9, 507–523, https://doi.org/10.5194/esd-9-507-2018, https://doi.org/10.5194/esd-9-507-2018, 2018
Short summary
Short summary
Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Lukas Baumbach, Jonatan F. Siegmund, Magdalena Mittermeier, and Reik V. Donner
Biogeosciences, 14, 4891–4903, https://doi.org/10.5194/bg-14-4891-2017, https://doi.org/10.5194/bg-14-4891-2017, 2017
Short summary
Short summary
Temperature extremes play a crucial role for vegetation growth and vitality in vast parts of the European continent. Here, we study the likelihood of simultaneous occurrences of extremes in daytime land surface temperatures and the normalized difference vegetation index (NDVI) for three main periods during the growing season. Our results reveal a particularly high vulnerability of croplands to temperature extremes, while other vegetation types are considerably less affected.
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Vera Heck, Jonathan F. Donges, and Wolfgang Lucht
Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, https://doi.org/10.5194/esd-7-783-2016, 2016
Short summary
Short summary
We assess the co-evolutionary dynamics of the Earth's carbon cycle and societal interventions through terrestrial carbon dioxide removal (tCDR) with a conceptual model in a planetary boundary context. The focus on one planetary boundary alone may lead to navigating the Earth system out of the safe operating space due to transgression of other boundaries. The success of tCDR depends on the degree of anticipation of climate change, the potential tCDR rate and the underlying emission pathway.
Jonatan F. Siegmund, Marc Wiedermann, Jonathan F. Donges, and Reik V. Donner
Biogeosciences, 13, 5541–5555, https://doi.org/10.5194/bg-13-5541-2016, https://doi.org/10.5194/bg-13-5541-2016, 2016
Short summary
Short summary
In this study we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by using event coincidence analysis. Our study confirms previous findings of experimental studies, highlighting the impact of early spring temperatures on the flowering of the investigated plants. Additionally, the analysis reveals statistically significant indications of an influence of temperature extremes in the fall preceding the flowering.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
A. Y. Sun, J. Chen, and J. Donges
Nonlin. Processes Geophys., 22, 433–446, https://doi.org/10.5194/npg-22-433-2015, https://doi.org/10.5194/npg-22-433-2015, 2015
Short summary
Short summary
Terrestrial water storage (TWS) plays a key role in global water and energy cycles. This work applies complex climate networks to analyzing spatial patterns in TWS. A comparative analysis is conducted using a remotely sensed (GRACE) and a model-generated TWS data set. Our results reveal hotspots of TWS anomalies around the global land surfaces. Prospects are offered on using network connectivity as constraints to further improve current global land surface models.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
T. K. D. Peron, C. H. Comin, D. R. Amancio, L. da F. Costa, F. A. Rodrigues, and J. Kurths
Nonlin. Processes Geophys., 21, 1127–1132, https://doi.org/10.5194/npg-21-1127-2014, https://doi.org/10.5194/npg-21-1127-2014, 2014
Short summary
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding
the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
D. Eroglu, N. Marwan, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1085–1092, https://doi.org/10.5194/npg-21-1085-2014, https://doi.org/10.5194/npg-21-1085-2014, 2014
B. Goswami, J. Heitzig, K. Rehfeld, N. Marwan, A. Anoop, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1093–1111, https://doi.org/10.5194/npg-21-1093-2014, https://doi.org/10.5194/npg-21-1093-2014, 2014
Short summary
Short summary
We present a new approach to estimating sedimentary proxy records along with the proxy uncertainty. We provide analytical expressions for the proxy record, while transparently propagating uncertainties from the ages to the proxy record. We represent proxies on an error-free, precise timescale. Our approach provides insight into the interrelations between proxy variability and the various uncertainties. We demonstrate our method with synthetic examples and proxy data from the Lonar lake in India.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan, J. Kurths, and M. Paluš
Nonlin. Processes Geophys., 21, 451–462, https://doi.org/10.5194/npg-21-451-2014, https://doi.org/10.5194/npg-21-451-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
R. V. Donner and G. Balasis
Nonlin. Processes Geophys., 20, 965–975, https://doi.org/10.5194/npg-20-965-2013, https://doi.org/10.5194/npg-20-965-2013, 2013
M. Pacton, S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev, and C. Vasconcelos
Biogeosciences, 10, 6115–6130, https://doi.org/10.5194/bg-10-6115-2013, https://doi.org/10.5194/bg-10-6115-2013, 2013
N. Itoh and N. Marwan
Nonlin. Processes Geophys., 20, 467–481, https://doi.org/10.5194/npg-20-467-2013, https://doi.org/10.5194/npg-20-467-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
North Atlantic Oscillation polarity during the past 3000 years derived from sediments of a large lowland lake, Schweriner See, in NE Germany
Patterns of centennial to millennial Holocene climate variation in the North American mid-latitudes
Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Mid-Holocene reinforcement of North Atlantic atmospheric circulation variability from a western Baltic lake sediment record
Holocene sea level and environmental change at the southern Cape – an 8.5 kyr multi-proxy paleoclimate record from Lake Voëlvlei, South Africa
Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin' Mountain range
Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum
Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans
Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event – a hypothesis
Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago
Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene
The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon
Drought and vegetation change in the central Rocky Mountains and western Great Plains: potential climatic mechanisms associated with megadrought conditions at 4200 cal yr BP
Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years
Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks
Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact
Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains
A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years
The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison
Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32° S)
Effects of dating errors on nonparametric trend analyses of speleothem time series
Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies
Relationship between Holocene climate variations over southern Greenland and eastern Baffin Island and synoptic circulation pattern
Marie-Luise Adolph, Sambor Czerwiński, Mirko Dreßler, Paul Strobel, Marcel Bliedtner, Sebastian Lorenz, Maxime Debret, and Torsten Haberzettl
Clim. Past, 20, 2143–2165, https://doi.org/10.5194/cp-20-2143-2024, https://doi.org/10.5194/cp-20-2143-2024, 2024
Short summary
Short summary
We reconstruct environmental changes derived from sediments of Schweriner See, a large lake in NE Germany, for the past 3000 years. We infer variations in North Atlantic large-scale atmospheric circulation systems, namely the North Atlantic Oscillation (NAO), by combining sedimentological, geochemical, and biological parameters. Our results suggest distinct shifts between positive and negative NAO phases affecting winter temperatures, precipitation, and westerly wind strength at our study site.
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Paul Strobel, Marcel Bliedtner, Andrew S. Carr, Peter Frenzel, Björn Klaes, Gary Salazar, Julian Struck, Sönke Szidat, Roland Zech, and Torsten Haberzettl
Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, https://doi.org/10.5194/cp-17-1567-2021, 2021
Short summary
Short summary
This study presents a multi-proxy record from Lake Voёlvlei and provides new insights into the sea level and paleoclimate history of the past 8.5 ka at South Africa’s southern Cape coast. Our results show that sea level changes at the southern coast are in good agreement with the western coast of South Africa. In terms of climate our record provides valuable insights into changing sources of precipitation at the southern Cape coast, i.e. westerly- and easterly-derived precipitation contribution.
Olga Ukhvatkina, Alexander Omelko, Dmitriy Kislov, Alexander Zhmerenetsky, Tatyana Epifanova, and Jan Altman
Clim. Past, 17, 951–967, https://doi.org/10.5194/cp-17-951-2021, https://doi.org/10.5194/cp-17-951-2021, 2021
Short summary
Short summary
We present the first precipitation reconstructions for three sites along a latitudinal gradient in the Sikhote-Alin' mountains (Russian Far East). The reconstructions are based on Korean pine tree rings. We found that an important limiting factor for this species growth was precipitation during the spring-to-early-summer period. The periodicity found in our reconstructions suggests the influence of El Niño–Southern Oscillation and Pacific Dedacadal Oscillation on the region's climate.
Florian Mekhaldi, Markus Czymzik, Florian Adolphi, Jesper Sjolte, Svante Björck, Ala Aldahan, Achim Brauer, Celia Martin-Puertas, Göran Possnert, and Raimund Muscheler
Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, https://doi.org/10.5194/cp-16-1145-2020, 2020
Short summary
Short summary
Due to chronology uncertainties within paleoclimate archives, it is unclear how climate oscillations from different records relate to one another. By using radionuclides to synchronize Greenland ice cores and a German lake record over 11 000 years, we show that two oscillations observed in these records were not synchronous but terminated and began with the onset of a grand solar minimum. Both this and changes in ocean circulation could have played a role in the two climate oscillations.
Fucai Duan, Zhenqiu Zhang, Yi Wang, Jianshun Chen, Zebo Liao, Shitao Chen, Qingfeng Shao, and Kan Zhao
Clim. Past, 16, 475–485, https://doi.org/10.5194/cp-16-475-2020, https://doi.org/10.5194/cp-16-475-2020, 2020
Short summary
Short summary
We reconstruct a detailed history of the East Asian summer monsoon (EASM) using stalagmite records in central China during the last millennium. We estimate responses of the EASM to anthropogenic global warming by comparing its relative intensity between the Current Warm Period and Medieval Climate Anomaly, two recent warm periods. We also study potential links of the EASM to the tropical Pacific and North Atlantic oceans. This work advances our understanding of EASM dynamics.
Aurel Perşoiu, Monica Ionita, and Harvey Weiss
Clim. Past, 15, 781–793, https://doi.org/10.5194/cp-15-781-2019, https://doi.org/10.5194/cp-15-781-2019, 2019
Short summary
Short summary
We present a reconstruction of winter climate around 4.2 ka cal BP in Europe, west Asia, and northern Africa that shows generally low temperatures and heterogeneously distributed precipitation. We hypothesize that in the extratropical Northern Hemisphere the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively blocked the moisture-carrying westerlies from reaching west Asia and also resulted in outbreaks of northerly cold and dry winds.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Jule Xiao, Shengrui Zhang, Jiawei Fan, Ruilin Wen, Dayou Zhai, Zhiping Tian, and Dabang Jiang
Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, https://doi.org/10.5194/cp-14-1417-2018, 2018
Short summary
Short summary
Multiple proxies of a sediment core at Hulun Lake in the northern margin of the EASM reveal a prominent dry event at the interval of 4210–3840 cal. yr BP that could be the regional manifestation of the 4.2 ka BP event. Future studies should be focused on the investigation of high-quality, high-resolution proxy records from climatically sensitive and geographically representative regions in order to explore the spatiotemporal pattern of the 4.2 ka BP event and the associated dynamic mechanism.
Vachel A. Carter, Jacqueline J. Shinker, and Jonathon Preece
Clim. Past, 14, 1195–1212, https://doi.org/10.5194/cp-14-1195-2018, https://doi.org/10.5194/cp-14-1195-2018, 2018
Short summary
Short summary
Between 4200 and 4000 cal yr BP, paleoecological evidence suggests a megadrought occurred in the central Rocky Mountains and western Great Plains. Modern climate analogues were used to explore potential climate mechanisms responsible for the ecological changes. Analogues illustrate that warm and dry conditions persisted through the growing season as a result of anomalously higher-than-normal heights centred over the Great Plains which suppressed moisture transport to the region.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Mandy Freund, Benjamin J. Henley, David J. Karoly, Kathryn J. Allen, and Patrick J. Baker
Clim. Past, 13, 1751–1770, https://doi.org/10.5194/cp-13-1751-2017, https://doi.org/10.5194/cp-13-1751-2017, 2017
Short summary
Short summary
To understand how climate change will influence Australian rainfall we must first understand the long-term context of droughts and floods. We reconstruct warm and cool season rainfall in Australia's eight major climatic regions for several centuries into the past, building the clearest picture yet of long-term rainfall variability across the Australian continent. We find recent rainfall increases in the warm season in the north, and declines in the cool season in the south, to be highly unusual.
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
B. Wilhelm, H. Vogel, C. Crouzet, D. Etienne, and F. S. Anselmetti
Clim. Past, 12, 299–316, https://doi.org/10.5194/cp-12-299-2016, https://doi.org/10.5194/cp-12-299-2016, 2016
Short summary
Short summary
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by reconstructing the Foréant record. Both influences result in a higher flood frequency during past cold periods. Atlantic influences seem to result in more frequent high-intensity flood events during past warm periods, suggesting an increase in flood intensity under the global warming. However, no high-intensity events occurred during the 20th century.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan
Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, https://doi.org/10.5194/cp-10-1925-2014, 2014
R. de Jong, L. von Gunten, A. Maldonado, and M. Grosjean
Clim. Past, 9, 1921–1932, https://doi.org/10.5194/cp-9-1921-2013, https://doi.org/10.5194/cp-9-1921-2013, 2013
M. Mudelsee, J. Fohlmeister, and D. Scholz
Clim. Past, 8, 1637–1648, https://doi.org/10.5194/cp-8-1637-2012, https://doi.org/10.5194/cp-8-1637-2012, 2012
J. C. Stager, P. A. Mayewski, J. White, B. M. Chase, F. H. Neumann, M. E. Meadows, C. D. King, and D. A. Dixon
Clim. Past, 8, 877–887, https://doi.org/10.5194/cp-8-877-2012, https://doi.org/10.5194/cp-8-877-2012, 2012
B. Fréchette and A. de Vernal
Clim. Past, 5, 347–359, https://doi.org/10.5194/cp-5-347-2009, https://doi.org/10.5194/cp-5-347-2009, 2009
Cited articles
Alley, R. B. and Ágústsdóttir, A. M.: The 8 k event: cause and consequences of a major Holocene abrupt climate change, Quaternary Sci. Rev., 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004, 2005.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and Clark, P. U.: Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology, 25, 483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2, 1997.
Amigo, \'A., Lara, L. E., and Smith, V. C.: Holocene record of large explosive eruptions from Chaitén and Michinmahuida Volcanoes, Chile, Andean Geol., 40, 227–248, https://doi.org/10.5027/andgeoV40n2-a03, 2013.
An, C.-B., Tang, L., Barton, L., and Chen, F.-H.: Climate change and cultural response around 4000 cal yr BP in the western part of Chinese Loess Plateau, Quaternary Res., 63, 347–352, https://doi.org/10.1016/j.yqres.2005.02.004, 2005.
An, Z., Porter, S. C., Kutzbach, J. E., Xihao, W., Suming, W., Xiaodong, L., Xiaoqiang, L., and Weijian, Z.: Asynchronous Holocene optimum of the East Asian monsoon, Quaternary Sci. Rev., 19, 743–762, https://doi.org/10.1016/S0277-3791(99)00031-1, 2000.
Arz, H. W., Lamy, F., Pätzold, J., Müller, P. J., and Prins, M.: Mediterranean moisture source for an Early-Holocene humid period in the Northern Red Sea, Science, 300, 118–121, https://doi.org/10.1126/science.1080325, 2003.
Arz, H. W., Lamy, F., and Pätzold, J.: A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea, Quaternary Res., 66, 432–441, https://doi.org/10.1016/j.yqres.2006.05.006, 2006.
Babu, P. and Stoica, P.: Spectral analysis of nonuniformly sampled data – a review, Digit. Signal Process., 20, 359–378, https://doi.org/10.1016/j.dsp.2009.06.019, 2009.
Baker, A. J., Sodemann, H., Baldini, J. U. L., Breitenbach, S. F. M., Johnson, K. R., van Hunen, J., and Pingzhong, Z.: Seasonality of westerly moisture transport in the East Asian Summer Monsoon: implications for interpreting precipitation δ18O, J. Geophys. Res., in review, 2015.
Baldini, J. U. L., McDermott, F., and Fairchild, I. J.: Structure of the 8200-year cold event revealed by a speleothem trace element record, Science, 296, 2203–2206, https://doi.org/10.1126/science.1071776, 2002.
Bar-Matthews, M. and Ayalon, A.: Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes, Holocene, 21, 163–171, https://doi.org/10.1177/0959683610384165, 2011.
Bar-Matthews, M., Ayalon, A., and Kaufman, A.: Late quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel, Quaternary Res., 47, 155–168, https://doi.org/10.1006/qres.1997.1883, 1997.
Bar-Matthews, M., Ayalon, A., and Kaufman, A.: Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq cave, Israel, Chem. Geol., 169, 145–156, https://doi.org/10.1016/S0009-2541(99)00232-6, 2000.
Berkelhammer, M., Sinha, A., Mudelsee, M., Cheng, H., Edwards, R. L., and Cannariato, K.: Persistent multidecadal power of the Indian Summer Monsoon, Earth Planet. Sc. Lett., 290, 166–172, https://doi.org/10.1016/j.epsl.2009.12.017, 2010.
Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. S. R., and Yoshimura, K.: An abrupt shift in the Indian monsoon 4000 years ago, in: Climates, Landscapes, and Civilizations, edited by: Giosan, L. Fuller, D. Q., Nicoll, K., Flad, R. K., and Clift, P. D., American Geophysical Union, Washington, D.C., 198, 75–87, https://doi.org/10.1029/2012GM001207, 2012.
Blaauw, M.: Methods and code for "classical" age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U.: Complex networks: structure and dynamics, Phys. Rep., 424, 175–308, https://doi.org/10.1016/j.physrep.2005.10.009, 2006.
Boivin, N., Blench, R., and Fuller, D. Q.: Archaeological, linguistic and historical sources on ancient seafaring: a multidisciplinary approach to the study of early maritime contact and exchange in the Arabian peninsula, in: The Evolution of Human Populations in Arabia, edited by: Petraglia, M. D. and Rose, J. I., Vertebrate Paleobiology and Paleoanthropology, Springer, Dordrecht, the Netherlands, 251–278, https://doi.org/10.1007/978-90-481-2719-1_18, 2010.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Borgaonkar, H., Sikder, A., Ram, S., and Pant, G.: El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis L. F.) trees from south India, Palaeogeogr. Palaeocl., 285, 74–84, https://doi.org/10.1016/j.palaeo.2009.10.026, 2010.
Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., and Haug, G. H.: Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India, Earth Planet. Sc. Lett., 292, 212–220, https://doi.org/10.1016/j.epsl.2010.01.038, 2010.
Breitenbach, S. F. M., Lechleitner, F., Plessen, B., Marwan, N., Cheng, H., Adkins, J. F., and Haug, G. H.: Reconstructing monsoon variations in India – evidence from speleothems, American Geophysical Union, Fall Meeting, San Francisco, CA, 3–7 December 2012, abstract #PP13D-02, 2012a.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012b.
Brockwell, P. J. and Davis, R. A.: Time Series: Theory and methods, 2nd Edn., Springer, New York, 2006.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary Sci. Rev., 29, 1078–1081, https://doi.org/10.1016/j.quascirev.2010.02.019, 2010.
Brooks, N.: Cultural responses to aridity in the Middle Holocene and increased social complexity, Quatern. Int., 151, 29–49, https://doi.org/10.1016/j.quaint.2006.01.013, 2006.
Buck, C. E. and Millard, A. R. (Eds.): Tools for Constructing Chronologies, in: Lecture Notes in Statistics, Springer, London, 177, https://doi.org/10.1007/978-1-4471-0231-1, 2004.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 years of European climate variability and human susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175, 2011.
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X., and Wang, X.: The variation of summer monsoon precipitation in central China since the last deglaciation, Earth Planet. Sc. Lett., 291, 21–31, https://doi.org/10.1016/j.epsl.2009.12.039, 2010.
Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R. L., Wang, X., Tan, L., Liang, F., Wang, J., and Kelly, M.: The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections, Earth Planet. Sc. Lett., 335–336, 135–144, https://doi.org/10.1016/j.epsl.2012.04.035, 2012.
Carter, R. A. and Philip, G.: Beyond the Ubaid: Transformation and Integration in the Late Prehistoric Societies of the Middle East, vol. 63 of Studies in Ancient Oriental Civilization, The Oriental Institute of the University of Chicago, Chicago, 2010.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., Zhang, R., and Wang, X.: Ice age terminations, Science, 326, 248–252, https://doi.org/10.1126/science.1177840, 2009.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander Jr., E. C.: Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sc. Lett., 371, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Cohen, R. and Havlin, S.: Complex Networks: Structure, Robustness and Function, Cambridge University Press, Cambridge, 2010.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian Monsoon failure and megadrought during the last millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188, 2010.
Cosford, J., Qing, H., Eglington, B., Mattey, D., Yuan, D., Zhang, M., and Cheng, H.: East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China, Earth Planet. Sc. Lett., 275, 296–307, https://doi.org/10.1016/j.epsl.2008.08.018, 2008.
Cullen, H. M., deMenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T., and Sirocko, F.: Climate change and the collapse of the Akkadian empire: evidence from the deep sea, Geology, 28, 379–382, https://doi.org/10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2, 2000.
Dahl, S. O., Nesje, A., Lie, Ø., Fjordheim, K., and Matthews, J. A.: Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacier readvances during the Erdalen Event at Jostedalsbreen, western Norway, Holocene, 12, 17–25, https://doi.org/10.1191/0959683602hl516rp, 2002.
deMenocal, P. B.: Cultural responses to climate change during the late Holocene, Science, 292, 667–673, https://doi.org/10.1126/science.1059827, 2001.
deMenocal, P. B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing, Quaternary Sci. Rev., 19, 347–361, https://doi.org/10.1016/S0277-3791(99)00081-5, 2000.
Dong, G., Jia, X., An, C., Chen, F., Zhao, Y., Tao, S., and Ma, M.: Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China, Quaternary Res., 77, 23–30, https://doi.org/10.1016/j.yqres.2011.10.004, 2012.
Dong, J., Wang, Y., Cheng, H., Hardt, B., Edwards, R. L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X., and Zhao, K.: A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China, Holocene, 20, 257–264, https://doi.org/10.1177/0959683609350393, 2010.
Donges, J. F., Donner, R. V., Rehfeld, K., Marwan, N., Trauth, M. H., and Kurths, J.: Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis, Nonlin. Processes Geophys., 18, 545–562, https://doi.org/10.5194/npg-18-545-2011, 2011a.
Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H. J., and Kurths, J.: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, P. Natl. Acad. Sci. USA, 108, 20422–20427, https://doi.org/10.1073/pnas.1117052108, 2011b.
Donges, J. F., Heitzig, J., Donner, R. V., and Kurths, J.: Analytical framework for recurrence network analysis of time series, Phys. Rev. E, 85, 046105, https://doi.org/10.1103/PhysRevE.85.046105, 2012.
Donges, J. F., Heitzig, J., Runge, J., Schultz, H. C., Wiedermann, M., Zech, A., Feldhoff, J. H., Rheinwalt, A., Kutza, H., Radebach, A., Marwan, N., and Kurths, J.: Advanced functional network analysis in the geosciences: the pyunicorn package, EGU General Assembly, Vienna, Austria, 7–12 April 2013, EGU2013-3558, 2013.
Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Ambiguities in recurrence-based complex network representations of time series, Phys. Rev. E, 81, 015101, https://doi.org/10.1103/PhysRevE.81.015101, 2010a.
Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Recurrence networks – a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033205, https://doi.org/10.1088/1367-2630/12/3/033025, 2010b.
Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., and Kurths, J.: Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos, 21, 1019–1046, https://doi.org/10.1142/S0218127411029021, 2011.
Donner, R. V., Donges, J. F., Zou, Y., and Feldhoff, J. H.: Complex Network Analysis of Recurrences, in: Recurrence Quantification Analysis: Theory and Best Practices, Understanding Complex Systems 2015, Springer, Berlin, Heidelberg, 101–163, https://doi.org/10.1007/978-3-319-07155-8_4, 2014
Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A., and von Rad, U.: High-resolution temperature and evaporation changes during the Late Holocene in the northeastern Arabian Sea, Paleoceanography, 16, 358–367, https://doi.org/10.1029/2000PA000511, 2001.
Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I., and Piccini, L.: Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone, Geology, 34, 101–104, https://doi.org/10.1130/G22103.1, 2006.
Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S. N., Baker, V. R., and Sandler, A.: High-resolution Holocene environmental changes in the Thar Desert, Northwestern India, Science, 284, 125–128, https://doi.org/10.1126/science.284.5411.125, 1999.
Eroglu, D., Marwan, N., Prasad, S., and Kurths, J.: Finding recurrence networks' threshold adaptively for a specific time series, Nonlin. Processes Geophys., 21, 1085–1092, https://doi.org/10.5194/npg-21-1085-2014, 2014.
Esper, J., Shiyatov, S. G., Mazepa, V. S., Wilson, R. J. S., Graybill, D. A., and Funkhouser, G.: Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends, Clim. Dynam., 21, 699–706, https://doi.org/10.1007/s00382-003-0356-y, 2003.
Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., and Xoplaki, E.: Long-term drought severity variations in Morocco, Geophys. Res. Lett., 34, L17702, https://doi.org/10.1029/2007GL030844, 2007.
Fairchild, I. J. and Baker, A.: Speleothem Science: From Process to Past Environments, Wiley-Blackwell, Chichester, 2012.
Feldhoff, J. H., Donner, R. V., Donges, J. F., Marwan, N., and Kurths, J.: Geometric detection of coupling directions by means of inter-system recurrence networks, Phys. Lett. A, 376, 3504–3513, https://doi.org/10.1016/j.physleta.2012.10.008, 2012.
Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A.: Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman, Science, 300, 1737–1739, https://doi.org/10.1126/science.1083130, 2003.
Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A. A., Buettner, A., Hippler, D., and Matter, A.: Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra), Quaternary Sci. Rev., 26, 170–188, https://doi.org/10.1016/j.quascirev.2006.04.012, 2007.
Fleitmann, D., Mudelsee, M., Burns, S. J., Bradley, R. S., Kramers, J., and Matter, A.: Evidence for a widespread climatic anomaly at around 9.2 ka before present, Paleoceanography, 23, PA1102, https://doi.org/10.1029/2007PA001519, 2008.
Francus, P., von Suchodoletz, H., Dietze, M., Donner, R. V., Bouchard, F., Roy, A.-J., Fagot, M., Verschuren, D., and Kröpelin, S.: Varved sediments of Lake Yoa (Ounianga Kebir, Chad) reveal progressive drying of the Sahara during the last 6100 years, Sedimentology, 60, 911–934, https://doi.org/10.1111/j.1365-3091.2012.01370.x, 2013.
Gao, H., Zhu, C., and Xu, W.: Environmental change and cultural response around 4200 cal yr BP in the Yishu River Basin, Shandong, J. Geogr. Sci., 17, 285–292, https://doi.org/10.1007/s11442-007-0285-5, 2007.
Gasse, F. and Campo, E. V.: Abrupt post-glacial climate events in West Asia and North Africa monsoon domains, Earth Planet. Sc. Lett., 126, 435–456, https://doi.org/10.1016/0012-821X(94)90123-6, 1994.
Gibbons, A.: How the Akkadian Empire was hung out to dry, Science, 261, 985, https://doi.org/10.1126/science.261.5124.985, 1993.
Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S., Durcan, J. A., Stevens, T., Duller, G. A. T., Tabrez, A. R., Gangal, K., Adhikari, R., Alizai, A., Filip, F., VanLaningham, S., and Syvitski, J. P. M.: Fluvial landscapes of the Harappan civilization, P. Natl. Acad. Sci. USA, 109, 1688–1694, https://doi.org/10.1073/pnas.1112743109, 2012.
Goswami, B., Heitzig, J., Rehfeld, K., Marwan, N., Ambili, A., Prasad, S., and Kurths, J.: Estimation of sedimentary proxy records together with associated uncertainty, Nonlin. Processes Geophys. Discuss., 1, 1023–1071, https://doi.org/10.5194/npgd-1-1023-2014, 2014.
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y., Cartwright, I., St. Pierre, E., Fischer, M. J., and Suwargadi, B. W.: Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise, Nat. Geosci., 2, 636–639, https://doi.org/10.1038/ngeo605, 2009.
Gupta, A., Anderson, D., and Overpeck, J.: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean, Nature, 421, 354–357, https://doi.org/10.1038/nature01340, 2003.
Haberle, S. G. and David, B.: Climates of change: human dimensions of Holocene environmental change in low latitudes of the PEPII transect, Quatern. Int., 118, 165–179, https://doi.org/10.1016/S1040-6182(03)00136-8, 2004.
Haug, G. H., Günther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A., and Aeschlimann, B.: Climate and the collapse of Maya civilization, Science, 299, 1731–1735, https://doi.org/10.1126/science.1080444, 2003.
Hou, J., Huang, Y., Shuman, B. N., Oswald, W. W., and Foster, D. R.: Abrupt cooling repeatedly punctuated early-Holocene climate in eastern North America, Holocene, 22, 525–529, https://doi.org/10.1177/0959683611427329, 2012.
Hoyos, C. D. and Webster, P. J.: The role of intraseasonal variability in the nature of Asian Monsoon precipitation, J. Climate, 20, 4402–4424, https://doi.org/10.1175/JCLI4252.1, 2007.
Hsiang, S. M., Meng, K. C., and Cane, M. A.: Civil conflicts are associated with the global climate, Nature, 476, 438–441, https://doi.org/10.1038/nature10311, 2011.
Hsiang, S. M., Burke, M., and Miguel, E.: Quantifying the influence of climate on human conflict, Science, 341, 1235367, https://doi.org/10.1126/science.1235367, 2013.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth Planet. Sc. Lett., 266, 221–232, https://doi.org/10.1016/j.epsl.2007.10.015, 2008.
Huang, C. C., Pang, J., and Li, P.: Abruptly increased climatic aridity and its social impact on the Loess Plateau of China at 3100 a BP, J. Arid Environ., 52, 87–99, https://doi.org/10.1006/jare.2002.0981, 2002.
Huang, C. C., Pang, J., Zha, X., Zhou, Y., Su, H., and Li, Y.: Extraordinary floods of 4100–4000 a BP recorded at the Late Neolithic ruins in the Jinghe River Gorges, middle reach of the Yellow River, China, Palaeogeogr. Palaeocl., 289, 1–9, https://doi.org/10.1016/j.palaeo.2010.02.003, 2010.
Huang, C. C., Pang, J., Zha, X., Su, H., and Jia, Y.: Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China, Quaternary Sci. Rev., 30, 460–468, https://doi.org/10.1016/j.quascirev.2010.12.007, 2011.
Jia, X., Dong, G., Li, H., Brunson, K., Chen, F., Ma, M., Wang, H., An, C., and Zhang, K.: The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China, Holocene, 23, 85–92, https://doi.org/10.1177/0959683612450203, 2013.
Johnson, K. R., Hu, C., Belshaw, N. S., and Henderson, G. M.: Seasonal trace-element and stable-isotope variations in a Chinese speleothem: the potential for high-resolution paleomonsoon reconstruction, Earth Planet. Sc. Lett., 244, 394–407, https://doi.org/10.1016/j.epsl.2006.01.064, 2006.
Kaniewski, D., Paulissen, E., Van Campo, E., Al-Maqdissi, M., Bretschneider, J., and Van Lerberghe, K.: Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes, P. Natl. Acad. Sci. USA, 105, 13941–13946, https://doi.org/10.1073/pnas.0803533105, 2008.
Kaniewski, D., Paulissen, E., Campo, E. V., Weiss, H., Otto, T., Bretschneider, J., and Lerberghe, K. V.: Late second–early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean, Quaternary Res., 74, 207–215, https://doi.org/10.1016/j.yqres.2010.07.010, 2010.
Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, 2nd Edn., Cambridge University Press, Cambridge, 2004.
Kennel, M. B., Brown, R., and Abarbanel, H. D. I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45, 3403–3411, https://doi.org/10.1103/PhysRevA.45.3403, 1992.
Kennett, D. J., Breitenbach, S. F. M., Aquino, V. V., Asmerom, Y., Awe, J., Baldini, J. U., Bartlein, P., Culleton, B. J., Ebert, C., Jazwa, C., Macri, M. J., Marwan, N., Polyak, V., Prufer, K. M., Ridley, H. E., Sodemann, H., Winterhalder, B., and Haug, G. H.: Development and disintegration of Maya political systems in response to climate change, Science, 338, 788–791, https://doi.org/10.1126/science.1226299, 2012.
Kerr, R. A.: Sea-floor dust shows drought felled Akkadian Empire, Science, 279, 325–326, https://doi.org/10.1126/science.279.5349.325, 1998.
Kudrass, H., Hofmann, A., Doose, H., Emeis, K., and Erlenkeuser, H.: Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 kyr, Geology, 29, 63–66, https://doi.org/10.1130/0091-7613(2001)029<0063:MAAOCC>2.0.CO;2, 2001.
Kulke, H. and Rothermund, D.: A History of India, 4th Edn., Routledge, Abingdon, 2004.
Kuper, R. and Kröpelin, S.: Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution, Science, 313, 803–807, https://doi.org/10.1126/science.1130989, 2006.
Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432, https://doi.org/10.1016/j.quascirev.2008.10.021, 2009.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V., Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., Surono, Pratomo, I., Wassmer, P., Hajdas, I., Hadmoko, D. S., and de Belizal, E.: Source of the great A. D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia, P. Natl. Acad. Sci. USA, 110, 16742–16747, https://doi.org/10.1073/pnas.1307520110, 2013.
Lee, Y. K.: Control strategies and polity competition in the lower Yi-Luo Valley, North China, J. Anthropol. Archaeol., 23, 172–195, https://doi.org/10.1016/j.jaa.2004.01.002, 2004.
Lemcke, G. and Sturm, M.: δ18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): preliminary results, in: Third Millenium BC Climate Change and Old World Collapse, edited by: Dalfes, H., Kukla, G., and Weiss, H., NATA ASU Series, Series I: Global Environmental Change, Springer, Berlin, 49, 178–196, 1997.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Levermann, A., Schewe, J., Petoukhov, V., and Held, H.: Basic mechanism for abrupt monsoon transitions, P. Natl. Acad. Sci. USA, 106, 20572–20577, https://doi.org/10.1073/pnas.0901414106, 2009.
Li, Y., Wu, J., Hou, S., Shi, C., Mo, D., Liu, B., and Zhou, L.: Palaeoecological records of environmental change and cultural development from the Liangzhu and Qujialing archaeological sites in the middle and lower reaches of the Yangtze River, Quatern. Int., 227, 29–37, https://doi.org/10.1016/j.quaint.2010.05.015, 2010.
Liu, F. and Feng, Z.: A dramatic climatic transition at 4000 cal yr BP and its cultural responses in Chinese cultural domains, Holocene, 22, 1181–1197, https://doi.org/10.1177/0959683612441839, 2012.
Liu, L.: Settlement patterns, chiefdom variability, and the development of early states in North China, J. Anthropol. Archaeol., 15, 237–288, https://doi.org/10.1006/jaar.1996.0010, 1996.
Liu, L.: The development and decline of social complexity in northern China: some environmental and social factors, Bulletin of the Indo-Pacific Prehistory Association (BIPPA), 4, 14–34, 2000.
Magee, P.: Settlement patterns, polities and regional complexity in the Southeast Arabian Iron Age, Paléorient, 24, 49–60, https://doi.org/10.3406/paleo.1998.4676, 1998.
Maher, B. A.: Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment, Holocene, 18, 861–866, https://doi.org/10.1177/0959683608095569, 2008.
Malik, N., Marwan, N., and Kurths, J.: Spatial structures and directionalities in Monsoonal precipitation over South Asia, Nonlin. Processes Geophys., 17, 371–381, https://doi.org/10.5194/npg-17-371-2010, 2010.
Malik, N., Zou, Y., Marwan, N., and Kurths, J.: Dynamical regimes and transitions in Plio-Pleistocene Asian monsoon, Europhys. Lett., 97, 40009, https://doi.org/10.1209/0295-5075/97/40009, 2012.
Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis, Int. J. Bifurcat. Chaos, 21, 1003–1017, https://doi.org/10.1142/S0218127411029008, 2011.
Marwan, N., Thiel, M., and Nowaczyk, N. R.: Cross recurrence plot based synchronization of time series, Nonlin. Processes Geophys., 9, 325–331, https://doi.org/10.5194/npg-9-325-2002, 2002.
Marwan, N., Trauth, M. H., Vuille, M., and Kurths, J.: Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods, Clim. Dynam., 21, 317–326, https://doi.org/10.1007/s00382-003-0335-3, 2003.
Marwan, N., Romano, M. C., Thiel, M., and Kurths, J.: Recurrence plots for the analysis of complex systems, Phys. Rep., 438, 237–329, https://doi.org/10.1016/j.physrep.2006.11.001, 2007.
Marwan, N., Donges, J., Zou, Y., Donner, R., and Kurths, J.: Complex network approach for recurrence analysis of time series, Phys. Lett. A, 373, 4246–4254, https://doi.org/10.1016/j.physleta.2009.09.042, 2009.
Marwan, N., Schinkel, S., and Kurths, J.: Recurrence plots 25 years later – gaining confidence in dynamical transitions, EPL-Europhys. Lett., 101, 20007, https://doi.org/10.1209/0295-5075/101/20007, 2013.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorph, J., Rosqvistd, G., Racki, F., Staubwasserj, M., Schneiderk, R. R., and Steigl, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Meyer, M. W.: Asia: a Concise History, Rowman & Littlefield, Lanham, 1997.
Morrill, C. and Jacobsen, R. M.: How widespread were climate anomalies 8200 years ago?, Geophys. Res. Lett., 32, L19701, https://doi.org/10.1029/2005GL023536, 2005.
Morrill, C., Overpeck, J. T., and Cole, J. E.: A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation, Holocene, 13, 465–476, https://doi.org/10.1191/0959683603hl639ft, 2003.
Mudelsee, M.: Ramp function regression: a tool for quantifying climate transitions, Comp. Geosci., 26, 293–307, 2000.
Mudelsee, M., Fohlmeister, J., and Scholz, D.: Effects of dating errors on nonparametric trend analyses of speleothem time series, Clim. Past, 8, 1637–1648, https://doi.org/10.5194/cp-8-1637-2012, 2012.
Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290–293, https://doi.org/10.1038/35077048, 2001.
Newman, M. E. J.: Networks: an Introduction, Oxford University Press, Oxford, 2010.
Parker, A. G., Goudie, A. S., Stokes, S., White, K., Hodson, M. J., Manning, M., and Kennet, D.: A record of Holocene climate change from lake geochemical analyses in southeastern Arabia, Quaternary Res., 66, 465–476, https://doi.org/10.1016/j.yqres.2006.07.001, 2006.
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.: Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum, Nature, 449, 452–455, https://doi.org/10.1038/nature06164, 2007.
Peters, J.: The dromedary: ancestry, history of domestication and medical treatment in early historic times, Tierarztl. Prax. G. N., 25, 559–565, 1997.
Plunkett, G. and Swindles, G.: Determining the Sun's influence on Lateglacial and Holocene climates: a focus on climate response to centennial-scale solar forcing at 2800 cal BP, Quaternary Sci. Rev., 27, 175–184, https://doi.org/10.1016/j.quascirev.2007.01.015, 2008.
Poincaré, H.: Sur la problème des trois corps et les équations de la dynamique, Acta Math.-Djursholm, 13, 3–270, 1890 (in French).
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E., Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res. Lett., 39, L03704, https://doi.org/10.1029/2011GL050722, 2012.
Possehl, G. L.: The transformation of the Indus Civilization, J. World Prehist., 11, 425–472, https://doi.org/10.1007/BF02220556, 1997.
Possehl, G. L.: The Indus Civilization: a Contemporary Perspective, Altamira Press, Oxford, 2002.
Potts, D.: The late prehistoric, protohistoric, and early historic periods in Eastern Arabia (ca. 5000–1200 BC), J. World Prehist., 7, 163–212, https://doi.org/10.1007/BF00975450, 1993.
Rehfeld, K. and Kurths, J.: Similarity estimators for irregular and age-uncertain time series, Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, 2014.
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series, Nonlin. Processes Geophys., 18, 389–404, https://doi.org/10.5194/npg-18-389-2011, 2011.
Rehfeld, K., Marwan, N., Breitenbach, S. F. M., and Kurths, J.: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data, Clim. Dynam., 41, 3–19, https://doi.org/10.1007/s00382-012-1448-3, 2013.
Riehl, S.: Climate and agriculture in the ancient Near East: a synthesis of the archaeobotanical and stable carbon isotope evidence, Veg. Hist. Archaeobot., 17, 43–51, https://doi.org/10.1007/s00334-008-0156-8, 2008.
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448, 2004.
Scargle, J. D.: Studies in astronomical time series, III: Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data, Astrophys. J., 343, 874–887, https://doi.org/10.1086/167757, 1989.
Schellnhuber, H.-J.: Discourse: Earth system analysis – The scope of the challenge, in: Earth system analysis: Integrating science for sustainability, edited by: Schellnhuber, H.-J. and Wenzel, V., Springer, Berlin, 3–195, 1998.
Schellnhuber, H. J.: Earth system analysis and the second Copernican revolution, Nature, 402, C19–C23, 1999.
Singh, U.: A History of Ancient and Early Medieval India: From the Stone Age to the 12th Century, Dorling Kindersley, Delhi, 2008.
Sinha, A., Cannariato, K., Stott, L., Li, H., You, C., Cheng, H., Edwards, R., and Singh, I.: Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød, Geology, 33, 813, https://doi.org/10.1130/G21498.1, 2005.
Sinha, A., Cannariato, K., Stott, L., Cheng, H., Edwards, R., Yadava, M., Ramesh, R., and Singh, I.: A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the core monsoon zone of India, Geophys. Res. Lett., 34, 16707, https://doi.org/10.1029/2007GL030431, 2007.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas, J.: The leading mode of Indian Summer Monsoon precipitation variability during the last millennium, Geophys. Res. Lett., 38, L15703, https://doi.org/10.1029/2011GL047713, 2011a.
Sinha, A., Stott, L., Berkelhammer, M., Cheng, H., Edwards, R., Buckley, B., Aldenderfer, M., and Mudelsee, M.: A global context for megadroughts in monsoon Asia during the past millennium, Quaternary Sci. Rev., 30, 47–62, https://doi.org/10.1016/j.quascirev.2010.10.005, 2011b.
Solheim, W.: Taiwan, Coastal South China and Northern Viet Nam and the Nusantai Maritime Trading Network, J. East Asian Archaeol., 2, 273–284, 2000.
Stanley, D. J., Chen, Z., and Song, J.: Inundation, sea-level rise and transition from Neolithic to Bronze Age cultures, Yangtze Delta, China, Geoarchaeology, 14, 15–26, https://doi.org/10.1002/(SICI)1520-6548(199901)14:1<15::AID-GEA2>3.0.CO;2-N, 1999.
Stanley, J.-D., Krom, M. D., Cliff, R. A., and Woodward, J. C.: Short contribution: Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence, Geoarchaeology, 18, 395–402, https://doi.org/10.1002/gea.10065, 2003.
Staubwasser, M. and Weiss, H.: Holocene climate and cultural evolution in late prehistoric–early historic West Asia, Quaternary Res., 66, 372–387, https://doi.org/10.1016/j.yqres.2006.09.001, 2006.
Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M.: Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability, Geophys. Res. Lett., 30, 1425, https://doi.org/10.1029/2002GL016822, 2003.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): IPCC, 2013: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324, 2014.
Swindles, G. T., Plunkett, G., and Roe, H. M.: A delayed climatic response to solar forcing at 2800 cal. BP: multiproxy evidence from three Irish peatlands, Holocene, 17, 177–182, https://doi.org/10.1177/0959683607075830, 2007.
Tainter, J.: The collapse of complex societies, in: New Studies in Archeology, Cambridge University Press, 1990.
Takens, F.: Detecting strange attractors in turbulence, in: Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a symposium held at the University of Warwick 1979–80, edited by: Rand, D. and Young, L.-S., Lecture Notes in Mathematics, Springer, New York, 898, 366–381, https://doi.org/10.1007/BFb0091924, 1981.
Tarling, N.: The Cambridge History of Southeast Asia Volume 1: From Early Times to c. 1800, Cambridge University Press, Cambridge, https://doi.org/10.1017/CHOL9780521355056, 1993.
Telford, R., Heegaard, E., and Birks, H.: All age-depth models are wrong: but how badly?, Quaternary Sci. Rev., 23, 1–5, https://doi.org/10.1016/j.quascirev.2003.11.003, 2004.
Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J. F.: Tropical climate instability: the Last Glacial Cycle from A Qinghai-Tibetan ice core, Science, 276, 1821–1825, https://doi.org/10.1126/science.276.5320.1821, 1997.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N.: A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores, Science, 289, 1916–1919, https://doi.org/10.1126/science.289.5486.1916, 2000.
Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P.-N., Henderson, K., and Mashiotta, T.: Tropical glacier and ice core evidence of climate change on annual to millennial time scales, Climatic Change, 59, 137–155, https://doi.org/10.1023/A:1024472313775, 2003.
Trauth, M. H., Bookhagen, B., Marwan, N., and Strecker, M. R.: Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes, Palaeogeogr. Palaeocl., 194, 109–121, https://doi.org/10.1016/S0031-0182(03)00273-6, 2003.
Treydte, K. S., Schleser, G., Helle, G., Frank, D., Winiger, M., Haug, G., and Esper, J.: The twentieth century was the wettest period in northern Pakistan over the past millennium, Nature, 440, 1179–1182, https://doi.org/10.1038/nature04743, 2006.
Treydte, K. S., Frank, D. C., Saurer, M., Helle, G., Schleser, G. H., and Esper, J.: Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record, Geochim. Cosmochim. Ac., 73, 4635–4647, https://doi.org/10.1016/j.gca.2009.05.057, 2009.
Uerpmann, M.: The dark millennium: remarks on the final Stone Age in the Emirates and Oman, in: Archaeology of the United Arab Emirates, edited by: Potts, D. T., Al-Naboodah, H., and Hellyer, P., Trident Press, London, 74–81, 2003.
van Geel, B., Buurman, J., and Waterbolk, H. T.: Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP, J. Quaternary Sci., 11, 451–460, https://doi.org/10.1002/(SICI)1099-1417(199611/12)11:6<451::AID-JQS275>3.0.CO;2-9, 1996.
von Rad, U., Schaaf, M., Michels, K. H., Schulz, H., Berger, W. H., and Sirocko, F.: A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea, Quaternary Res., 51, 39–53, 1999.
Wagner, M., Tarasov, P., Hosner, D., Fleck, A., Ehrich, R., Chen, X., and Leipe, C.: Mapping of the spatial and temporal distribution of archaeological sites of northern China during the Neolithic and Bronze Age, Quatern. Int., 344–357, https://doi.org/10.1016/j.quaint.2012.06.039, 2013.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: links to solar changes and North Atlantic climate, Science, 308, 854–857, https://doi.org/10.1126/science.1106296, 2005.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial-and orbital-scale changes in the East Asian monsoon over the past 224 000 years, Nature, 451, 1090–1093, https://doi.org/10.1038/nature06692, 2008.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Weiss, B.: The decline of Late Bronze Age civilization as a possible response to climatic change, Climatic Change, 4, 173–198, https://doi.org/10.1007/BF00140587, 1982.
Weiss, H.: Beyond the Younger Dryas – collapse as adaptation to abrupt climate change in ancient West Asia and the Eastern Mediterranean, in: Environmental Disaster and the Archaeology of Human Response, edited by: Bawden, G. and Reycraft, R., Anthropological Papers, Maxwell Museum of Anthropology, Albuquerque, 7, 75–98, 2000.
Weiss, H., Courty, M. A., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R., and Curnow, A.: The genesis and collapse of third millennium north Mesopotamian civilization, Science, 261, 995–1004, https://doi.org/10.1126/science.261.5124.995, 1993.
Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, O., Kubatzki, C., Rollefson, G., Todorova, H., and van Andel, T.: Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean, Quaternary Res., 66, 401–420, https://doi.org/10.1016/j.yqres.2006.06.009, 2006.
Widlok, T., Aufgebauer, A., Bradtmöller, M., Dikau, R., Hoffmann, T., Kretschmer, I., Panagiotopoulos, K., Pastoors, A., Peters, R., Schäbitz, F., Schlummer, M., Solich, M., Wagner, B., Weniger, G.-C., and Zimmermann, A.: Towards a theoretical framework for analyzing integrated socio-environmental systems, Quatern. Int., 274, 259–272, https://doi.org/10.1016/j.quaint.2012.01.020, 2012.
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F.-F.: Thermal controls on the Asian summer monsoon, Scientific Reports, 2, 404, https://doi.org/10.1038/srep00404, 2012.
Wu, W. and Liu, T.: Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China, Quatern. Int., 117, 153–166, https://doi.org/10.1016/S1040-6182(03)00125-3, 2004.
Wunsch, C.: Extremes, patterns, and other structures in oceanographic and climate records, in: Proceedings of the 15th 'Aha Huliko'a Hawaiian Winter Workshop on Extreme Events, University of Hawaii, Honolulu, 141–148, 2007.
Xiao, J., Chang, Z., Wen, R., Zhai, D., Itoh, S., and Lomtatidze, Z.: Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China, Holocene, 19, 899–908, https://doi.org/10.1177/0959683609336574, 2009.
Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F., Liu, J., Sigman, D. M., Peterson, L. C., and Haug, G. H.: Influence of the intertropical convergence zone on the East Asian monsoon, Nature, 445, 74–77, https://doi.org/10.1038/nature05431, 2007.
Yasuda, Y., Fujiki, T., Nasu, H., Kato, M., Morita, Y., Mori, Y., Kanehara, M., Toyama, S., Yano, A., Okuno, M., Jiejun, H., Ishihara, S., Kitagawa, H., Fukusawa, H., and Naruse, T.: Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization, Quatern. Int., 149–158, https://doi.org/10.1016/j.quaint.2004.02.016, 2004.
Yu, S., Zhu, C., Song, J., and Qu, W.: Role of climate in the rise and fall of Neolithic cultures on the Yangtze Delta, Boreas, 29, 157–165, https://doi.org/10.1111/j.1502-3885.2000.tb01208.x, 2000.
Zhang, D. D., Brecke, P., Lee, H. F., He, Y.-Q., and Zhang, J.: Global climate change, war, and population decline in recent human history, P. Natl. Acad. Sci. USA, 104, 19214–19219, https://doi.org/10.1073/pnas.0703073104, 2007.
Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., and An, Y.: The causality analysis of climate change and large-scale human crisis, P. Natl. Acad. Sci. USA, 108, 17296–17301, https://doi.org/10.1073/pnas.1104268108, 2011.
Zhou, J., Wang, S., Yang, G., and Xiao, H.: Younger Dryas event and cold events in Early-Mid Holocene: record from the sediment of Erhai Lake, Advances in Climate Change Research, 3 (Suppl.), 1673–1719, 2007.
Zickfeld, K., Knopf, B., Petoukhov, V., and Schellnhuber, H.: Is the Indian summer monsoon stable against global change?, Geophys. Res. Lett., 32, L15707, https://doi.org/10.1029/2005GL022771, 2005.
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the...