Articles | Volume 10, issue 2
https://doi.org/10.5194/cp-10-745-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-745-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary
D. K. Naik
Micropaleontology Laboratory, National Institute of Oceanography, Goa, India
R. Saraswat
Micropaleontology Laboratory, National Institute of Oceanography, Goa, India
N. Khare
Ministry of Earth Sciences, New Delhi, India
A. C. Pandey
Allahabad University, Allahabad, India
presently at: Bundelkhand University, Jhansi, India
R. Nigam
Micropaleontology Laboratory, National Institute of Oceanography, Goa, India
Related authors
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pleistocene
Monsoon-driven changes in aeolian and fluvial sediment input to the central Red Sea recorded throughout the last 200 000 years
Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy
Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP)
Contrasting late-glacial paleoceanographic evolution between the upper and lower continental slope of the western South Atlantic
Modal shift in North Atlantic seasonality during the last deglaciation
Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data
Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions
Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels
Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core
A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin
Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka)
Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II
Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dakota E. Holmes, Tali L. Babila, Ulysses Ninnemann, Gordon Bromley, Shane Tyrrell, Greig A. Paterson, Michelle J. Curran, and Audrey Morley
Clim. Past, 18, 989–1009, https://doi.org/10.5194/cp-18-989-2022, https://doi.org/10.5194/cp-18-989-2022, 2022
Short summary
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Patrick A. Rafter, Juan-Carlos Herguera, and John R. Southon
Clim. Past, 14, 1977–1989, https://doi.org/10.5194/cp-14-1977-2018, https://doi.org/10.5194/cp-14-1977-2018, 2018
Short summary
Short summary
Carbon’s radioactive isotope (radiocarbon) is a useful tool for oceanographers investigating carbon cycling in the modern ocean and ice age oceans (using foraminifera microfossils). Here we used sediment cores with excellent age constraints and abundant foraminifera microfossils to examine interspecies radiocarbon differences. All species demonstrate the same extreme radiocarbon depletion, and we argue that these observations represent important changes in seawater carbon chemistry.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Cited articles
Anilkumar, N., Luis, A. J., Somayajulu, Y. K., Ramesh Babu, V. M., Dash, K., Pednekar, S. M., Babu, K. N., Sudhakar, M., and Pandey, P. C.: Fronts, water masses and heat content variability in the Western Indian sector of the Southern Ocean during austral summer 2004, J. Mar. Syst., 63, 20–34, 2006.
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, in: Volume 2: Salinity, edited by: Levitus, S., NOAA Atlas NESDIS 69, US Government Printing Office, Washington, D.C., 184 pp., 2010.
Bader, J. and Latif, M.: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation, Geophys. Res. Lett., 30, 2169, https://doi.org/10.1029/2003GL018426, 2003.
Bard, E. and Rickaby, R. E. M.: Migration of the subtropical front as a modulator of glacial climate, Nature, 460, 380–383, 2009.
Barker, S. and Elderfield, H.: Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833–836, 2002.
Barker, S., Cacho, I., Benway, H., and Tachikawa, K.: Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum, Quaternary Sci. Rev., 24, 821–834, 2005.
Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., and Broecker, W. S.: Interhemispheric Atlantic seesaw response during the last deglaciation, Nature, 457, 1097–1102, 2009.
Bassinot, F. C., Labeyrie, L. D., Vincent, E. X. Q., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sc. Lett., 126, 91–108, 1994.
Bé, A. W. H. and Duplessy, J. C.: Subtropical convergence fluctuations and quaternary climates in the middle latitudes of the Indian Ocean, Science, 194, 419–422, 1976.
Bé, A. W. H. and Hutson, W. H.: Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean, Micropaleontology, 23, 369–414, 1977.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., and SCOR/WCRP/IAPSO Working Group: On the role of the Agulhas system in ocean circulation and climate, Nature, 472, 429–436, 2011.
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.: Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol., 73, 37–48, 2009.
Berger, W. H.: Deep-Sea carbonates: dissolution profiles from foraminiferal preservation, Cushman Foundation for Foraminiferal Research Special Publication, 13, 82–86, 1975.
Brathauer, U. and Abelmann, A.: Late Quaternary variations in sea surface temperatures and their relationship to orbital forcing recorded in the Southern Ocean (Atlantic sector), Paleoceanography, 14, 135–148, 1999.
Brown, S. J. and Elderfield, H.: Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of a shallow Mg-dependent dissolution, Paleoceanography, 11, 543–551, 1996.
Bryden, H. L. and Beal, L. M.: Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes, Deep-Sea Res. Pt. I, 48, 1821–1845, 2001.
Caley, T., Giraudeau, J., Malaizé, B., Rossignol, L., and Pierre, C.: Agulhas leakage as a key process in the modes of Quaternary climate changes, P. Natl. Acad. Sci., 109, 6835–6839, https://doi.org/10.1073/pnas.1115545109, 2012.
Chavaillaz, Y., Codron, F., and Kageyama, M.: Southern westerlies in LGM and future (RCP4.5) climates, Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, 2013.
Chave, K. E.: Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms, J. Geol., 62, 266–283, 1954.
Clemens, S. C., Prell, W. L., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the coiling direction paradox in Neogloboquadrina pachyderma, Paleoceanography, 21, PA2011, https://doi.org/10.1029/2005PA001189, 2006.
De Boer, A. M., Graham, R. M., Thomas, M. D., and Kohfeld, K. E.: The control of the Southern Hemisphere Westerlies on the position of the Subtropical Front, J. Geophys. Res.-Oceans, 118, 5669–5675, https://doi.org/10.1002/jgrc.20407, 2013.
de Ruijter, W. P. M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E., Matano, R. P., Pichevin, T., van Leeuwen, P. J., and Weijer, W.: Indian-Atlantic interocean exchange: dynamics, estimation and impact, J. Geophys. Res., 104, 20885–20910, 1999.
de Ruijter, W. P. M., Ridderinkhof, H., and Schouten, M. W.: Variability of the southwest Indian Ocean, Philos. T. Roy. Soc. A, 363, 63–76, 2005.
de Villiers, S.: Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera, Mar. Biol., 144, 45–49, 2004.
Donohue, K. A. and Toole, J.: A near-synoptic survey of the Southwest Indian Ocean, Deep-Sea Res., 50, 1893–1931, 2003.
Duplessy, J. C., Labeyrie, L., Juillet-Leclerc, A., Maitre, F., Duprat, J., and Sarnthein, M.: Surface salinity reconstruction of the north Atlantic Ocean during the last glacial maximum, Oceanol. Acta, 14, 311–324, 1991.
Durgadoo, J. V., Loveday, B. R., Reason, C. J. C., Penven, P., and Biastoch, A.: Agulhas leakage predominantly responds to the Southern Hemisphere westerlies, J. Phys. Oceanogr., 43, 2113–2131, https://doi.org/10.1175/JPO-D-13-047.1, 2013.
Ericson, D. B.: Coiling direction of Globigerina pachyderma as a climatic index, Science, 130, 219–220, 1959.
Fairbanks, R. G., Sverdlove, M. S., Free, R., Wiebe, P. H., and Bé, A. W. H.: Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature, 298, 841–844, 1982.
Fine, R. A.: Direct evidence using tritium data for through?ow from the Pacific into the Indian Ocean, Nature, 315, 478–480, 1985.
Flores, J. A., Gersonde, R., and Sierro, F. J.: Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record, Mar. Micropaleontol., 37, 1–22, 1999.
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model, Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008.
Fraile, I., Schulz, M., Mulitza, S., Merkel, U., Prange, M., and Paul, A.: Modeling the seasonal distribution of planktonic foraminifera during the Last Glacial Maximum, Paleoceanography, 24, PA2216, https://doi.org/10.1029/2008PA001686, 2009.
Francois, R., Bacon, M. P., Altabet, M. A., and Labeyrie, L. D.: Glacial/interglacial changes in sediment rain rate in the SW Indian Sector of subantarctic Waters as recorded by 230Th, 231Pa, U, and δ15N, Paleoceanography, 8, 611–629, https://doi.org/10.1029/93PA00784, 1993.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and 13C in nine modern species of planktic foraminifers, Earth Planet. Sc. Lett., 319–320, 133–145, 2012.
Gersonde, R., Abelmann, A., Brathauer, U., Becquey, S., Bianchi, C., Cortese, G., Grobe, H., Kuhn, G., Niebler, H. S., Segl, M., Sieger, R., Zielinski, U., and Fütterer, D. K.: Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic-Indian sector): A multiproxy approach, Paleoceanography, 18, 6-1–6-18, 2003.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice distribution of the Southern Ocean at the epilog Last Glacial Maximum-A circum-Antarctic view based on siliceous microfossil records, Quaternary Sci. Rev., 24, 869–896, 2005.
Gordon, A. L.: Interocean exchange of thermocline water, J. Geophys. Res., 91, 5037–5046, 1986.
Graham, R. M. and De Boer, A. M.: The Dynamical Subtropical Front, J. Geophys. Res.-Oceans, 118, 5676–5685, https://doi.org/10.1002/jgrc.20408, 2013.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean, Nature, 421, 354–357, 2003.
Hemleben, Ch., Spindler, M., and Anderson, O. R.: Modern Planktonic Foraminifera, 1st Edn., Springer-Verlag Inc., New York, 363 pp., 1989.
Hodell, D. A., Charles, C. D., and Sierro, F. J.: Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sc. Lett., 192, 109–124, 2001.
Howard, W. R. and Prell, W. L. A.: Comparison of Radiolarian and Foraminiferal Paleoecology in the Southern Indian Ocean: New Evidence for the Interhemispheric Timing of Climatic Change, Quaternary Res., 21, 244–263, 1984.
Howard, W. R. and Prell, W. L.: Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling, Paleoceanography, 9, 453–482, https://doi.org/10.1029/93PA03524, 1994.
Huang, C. J., Qiao, F., Shu, Q., and Song, Z.: Evaluating austral summer mixed-layer response to surface wave-induced mixing in the Southern Ocean, J. Geophys. Res., 117, C00J18, https://doi.org/10.1029/2012JC007892, 2012.
Ito, T., Parekh, P., Dutkiewicz, S., and Follows, M. J.: The Antarctic Circumpolar Productivity Belt, Geophys. Res. Lett., 32, L13604, https://doi.org/10.1029/2005GL023021, 2005.
Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A., Anderson, R. F., Sigman, D. M., and Haug, G. H.: Two modes of change in Southern Ocean productivity over the past million years, Science, 339, 1419–1423, 2013.
Katz, A.: The interaction of magnesium with calcite during crystal growth at 25–90 °C and one atmosphere, Geochim. Cosmochim. Acta, 37, 1563–1586, 1973.
King, A. L. and Howard, W. R.: Planktonic foraminiferal flux seasonality in Subantarctic sediment traps: A test for paleoclimate reconstructions, Paleoceanography, 18, 19-1–19-17, 2003.
King, A. L. and Howard, W. R.: δ18O seasonality of planktonic foraminifera from the Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions, Mar. Micropal., 56, 1–24, 2005.
Knorr, G. and Lohmann, G.: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation, Nature, 424, 532–536, 2003.
Kohfeld, K. E., Graham, R. M., d. Boer, A. M., Sime, L. C., Wolff, E. W., Quéré, C. L., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis, Quaternary Sci. Rev., 64, 104–120, 2013.
Kuroyangi, A. and Kawahata, H.: Vertical distribution of living planktonic foraminifera in the seas around Japan, Mar. Micropaleontol., 53, 173–196, 2004.
Lea, D. W., Mashiotta, T. A., and Spero, H. J.: Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing, Geochim. Cosmochim. Acta, 63, 2369–2379, 1999.
Le Bars, D., De Ruijter, W. P. M., and Dijkstra, H. A.: A New Regime of the Agulhas Current Retroflection: Turbulent Choking of Indian-Atlantic leakage, J. Phys. Oceanogr., 42, 1158–1172, 2012.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, in: Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 68, US Government Printing Office, Washington, D.C., 184 pp., 2010.
Lutjeharms, J. R. E. and Ansorge, I. J.: The Agulhas Return Current, J. Mar. Syst., 30, 115–138, 2001.
Lutjeharms, J. R. E. and van Ballegooyen, R. C.: The retroflection of the Agulhas Current, J. Phys. Oceanogr., 18, 1570–1583, 1988.
Marino, G., Zahn, R., Ziegler, M., Purcell, C., Knorr, G., Hall, I. R., Ziveri, P., and Elderfield, H.: Agulhas salt-leakage oscillations during abrupt climate changes of the Late Pleistocene, Paleoceanography, 28, 599–606, 2013.
Martin, P. A. and Lea, D. W.: A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca, Geochem. Geophy. Geosy., 3, 1–8, 2002.
Martínez-Méndez, G., Zahn, R., Hall, I. R., Peeters, F. J. C., Pena, L. D., Cacho, I., and Negre, C.: Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years, Paleoceanography, 25, PA4227, https://doi.org/10.1029/2009PA001879, 2010.
Mashiotta, T. A., Lea, D. W., and Spero, H. J.: Glacial–interglacial changes in Subantarctic sea surface temperature and d18O-water using foraminiferal Mg, Earth Planet. Sc. Lett., 170, 417–432, 1999.
Matano, R. P.: A numerical study of the Agulhas retroflection: The role of bottom topography, J. Phys. Oceanogr., 26, 2267–2278, 1996.
Matano, R. P., Simionatoe, C. G., de Ruijter, W. P., van Leeuween, P. J., Strub, P. T., Chelton, D. B., and Schlax, M. G.: Seasonal variability in the Agulhas Retroflection region, Geophys. Res. Lett., 25, 4361–4364, 1998.
Matano, R. P., Simionato, C. G., and Strub, P. T.: Modeling the wind-driven variability of the south Indian Ocean, J. Phys. Oceanogr., 29, 217–230, 1999.
McCorkle, D. C., Martin, P. A., Lea, D. W., and Klinkhammer, G. P.: Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca and Sr/Ca from the Ontong Java Plateau, Paleoceanography, 10, 699–714, 1995.
McCreary, J. P., Kohler Jr., K. E., Hood, R. R., and Olson, D. B.: A four-component ecosystem model of biological activity in the Arabian Sea, Prog. Oceanogr., 37, 193–240, 1996.
Mekik, F., Francois, R., and Soon, M.: A novel approach to dissolution correction of Mg/Ca-based paleothermometry in the tropical Pacific, Paleoceanography, 22, PA3217, https://doi.org/10.1029/2007PA001504, 2007.
Mortyn, P. G. and Charles, C. D.: Planktonic foraminiferal depth habitat and δ18O calibrations: Plankton tow results from the Atlantic sector of the Southern Ocean, Paleoceanography, 18, 15-1–15-14, https://doi.org/10.1029/2001PA000637, 2003.
Oomori, T., Kaneshima, H., and Maezato, Y.: Distribution coef?cient of Mg2+ ions between calcite and solution at 10–50 °C, Mar. Chem., 20, 327–336, 1987.
Ortiz, J. D., Mix, A. C., and Collier, R. W.: Environmental control of living symbiotic and asymbiotic foraminifera of the California Current, Paleoceanography, 10, 987–1009, 1995.
Peeters, F. J. C., Brummer, G. J. A., and Ganssen, G. M.: The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea, Global Planet. Change, 34, 269–291, 2002.
Peeters, F. J. C., Acheson, R., Brummer, G. J. A., de Ruijter, W. P. M., Schneider, R. R., Ganssen, G. M., Ufkes, E., and Kroon, D.: Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods, Nature, 430, 661–665, 2004.
Poulton, A. J., Stinchcombe, M. C., and Quartly, G. D.: High numbers of Trichodesmium and diazotrophic diatoms in the southwest Indian Ocean, Geophys. Res. Lett., 36, L15610, https://doi.org/10.1029/2009GL039719, 2009.
Prell, W. L. and Curry, W. B.: Faunal and isotopic indices of monsoonal upwelling: western Arabian Sea, Oceanol. Acta., 4, 91–98, 1981.
Quartly, G. D. and Srokosz, M. A.: Seasonal variations in the region of the Agulhas Retroflection: Studies with Geosat and FRAM, J. Phys. Oceanogr., 23, 2107–2124, 1993.
Quartly, G. D., Buck, J. J. H., Srokosz, M. A., and Coward, A. C.: Eddies around Madagascar: The retroflection re-considered, J. Mar. Syst., 63, 115–129, 2006.
Rau, A. J., Rogers, J., Lutjeharms, J. R. E., Giraudeau, J., Lee-Thorp, J. A., Chen, M. T., and Waelbroeck, C.: A 450-kyr record of hydrological conditions on the western Agulhas Bank slope, south of Africa, Mar. Geol., 180, 183–201, 2002.
Read, J. F. and Pollard, R. T.: Structure and transport of Antarctic circumpolar current and Agulhas Return Current at 40° E, J. Geophys. Res., 98, 12281–12295, 1993.
Regenberg, M., Nürnberg, D., Steph, S., Groeneveld, J., Garbe-Schönberg, D., Tiedemann, R., and Dullo, W. C.: Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: Evidence from Caribbean core tops, Geochem. Geophy. Geosy., 7, Q07P15, https://doi.org/10.1029/2005GC001019, 2006.
Reynolds, L. A. and Thunell, R. C.: Seasonal succession of planktonic foraminifera in the subpolar North Pacific, J. Foramin. Res., 15, 282–301, 1985.
Rintoul, S. R., Hughes, C., and Olbers, D.: The Antarctic Circumpolar Current system, in: Ocean Circulation and Climate, edited by: Siedler, J. C. G. and Gould, J., Academic Press, London, 271–302, 2001.
Rosenthal, Y. and Lohmann, G. P.: Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry, Paleoceanography, 17, 16-1–16-6, https://doi.org/10.1029/2001PA000749, 2002.
Rosenthal, Y., Lohman, G. P., Lohman, K. C., and Sherrell, R. M.: Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and 18O/16O of seawater, Paleoceanography, 15, 135–145, 2000.
Sautter, L. R. and Thunell, R. C.: Seasonal succession of planktonic foraminifera: Results from a four-year time-series sediment trap experiment in the northeast Pacific, J. Foramin. Res., 19, 253–267, 1989.
Sautter, L. R. and Thunell, R. C.: Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions: Sediment trap results from San Pedro Basin, Southern California Bight, J. Foramin. Res., 21, 347–363, 1991.
Schiebel, R., Bijma, J., and Hemleben, C.: Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic, Deep-Sea Res. Pt. I, 44, 1701–1713, 1997.
Schott, F. A., Xie, S. P., and McCreary Jr., J. P.: Indian Ocean circulation and climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009.
Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J., and Lutjeharms, J. R. E.: Translation, decay and splitting of Agulhas rings in the south-east Atlantic Ocean, J. Geophys. Res., 105, 21913–21925, 2000.
Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, C. D., and McManus, J. F.: The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 331–342, 2002.
Shulmeister, J., Goodwin, I., Renwick, J., Harle, K., Armand, L., McGlone, M. S., Cook, E., Dodson, J., Hesse, P. P., Mayewski, P., and Curran, M.: The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: A synthesis, Quatern. Int., 118/119, 23–53, 2004.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A. M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison, Quaternary Sci. Rev., 64, 104–120, 2013.
Simon, M. H., Arthur, K. L., Hall, I. R., Peeters, F. J. C., Loveday, B. R., Barker, S., Ziegler, M., and Zahn, R.: Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway, Earth Planet. Sc. Lett., 383, 101–112, 2013.
Stramma, L.: The South Indian Ocean Current, J. Phys. Oceanogr., 22, 421–430, 1992.
Stramma, L. and Lutjeharms, J. R. E.: The flow of the subtropical gyre of the South Indian Ocean, J. Geophys. Res., 102, 5513–5530, 1997.
Talley, L. D.: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports, Oceanography 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013.
Thunell, R. C. and Reynolds, L.: Sedimentation of planktonic foraminifera: Seasonal changes in species flux in the Panama Basin, Micropaleontology, 30, 241–260, 1984.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, Pergamon, New York, p. 390, 2003.
van Aken, H. M., Lutjeharms, J. R. E., Rouault, M., Whittle, C., and de Ruijter, W. P. M.: Observations of an early Agulhas Current Retroflection event in 2001: a temporary cessation of inter-ocean exchange south of Africa?, Deep-Sea Res. Pt. I, 72, 1–8, 2013.
Wyrtki, K.: Oceanographic Atlas of the International Indian Ocean Expedition, National Science Foundation, Washington, D.C., 531 pp., 1971.
Žarić, S., Schulz, M., and Mulitza, S.: Global prediction of planktic foraminiferal fluxes from hydrographic and productivity data, Biogeosciences, 3, 187–207, https://doi.org/10.5194/bg-3-187-2006, 2006.