Articles | Volume 9, issue 1
https://doi.org/10.5194/cp-9-377-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-9-377-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA
H. P. Affek
Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA
T. Marx
Institut für Umweltphysik, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
W. Aeschbach-Hertig
Institut für Umweltphysik, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
D. F. C. Riechelmann
Geographisches Institut, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 21, 55099 Mainz, Germany
D. Scholz
Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 21, 55099 Mainz, Germany
S. Riechelmann
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
A. Immenhauser
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
D. K. Richter
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
J. Fohlmeister
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
A. Wackerbarth
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
A. Mangini
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
C. Spötl
Institut für Geologie und Paläontologie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Related authors
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
T. Kluge and C. M. John
Biogeosciences, 12, 3289–3299, https://doi.org/10.5194/bg-12-3289-2015, https://doi.org/10.5194/bg-12-3289-2015, 2015
Short summary
Short summary
•Vaterite was synthesized from a NaCl-saturated CaCO3 solution at 23-91°C •Vaterite occurred as pure or dominating phase and amounted up to 235 mg per experiment •The precipitation technique allows thermal and isotopic equilibration and enables oxygen and clumped isotope analyses •18α(vaterite-H2O) has the same temperature dependence as calcite •Vaterite δ18O values can hardly be distinguished from calcite (offset +0.0±0.4‰) •Clumped isotope values are indistinguishable from calibration data
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
T. Kluge and C. M. John
Biogeosciences, 12, 3289–3299, https://doi.org/10.5194/bg-12-3289-2015, https://doi.org/10.5194/bg-12-3289-2015, 2015
Short summary
Short summary
•Vaterite was synthesized from a NaCl-saturated CaCO3 solution at 23-91°C •Vaterite occurred as pure or dominating phase and amounted up to 235 mg per experiment •The precipitation technique allows thermal and isotopic equilibration and enables oxygen and clumped isotope analyses •18α(vaterite-H2O) has the same temperature dependence as calcite •Vaterite δ18O values can hardly be distinguished from calcite (offset +0.0±0.4‰) •Clumped isotope values are indistinguishable from calibration data
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa
Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments
Different facets of dry–wet patterns in south-western China over the past 27 000 years
The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity
The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Jacek Pawlak
Clim. Past, 17, 1051–1064, https://doi.org/10.5194/cp-17-1051-2021, https://doi.org/10.5194/cp-17-1051-2021, 2021
Short summary
Short summary
Presently, central Europe is under the influence of two types of climate, transitional and continental. The 60 ka long multiproxy speleothem dataset from Slovakia records the climate of the Last Interglacial cycle and its transition to the Last Glacial. The interpretation of stable isotopic composition and trace element content proxies helps to distinguish which factor had the strongest influence on the δ18O record shape: the local temperature, the humidity or the source effect.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
A. Zander and A. Hilgers
Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, https://doi.org/10.5194/cp-9-719-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
A. Alexandre, J. Crespin, F. Sylvestre, C. Sonzogni, and D. W. Hilbert
Clim. Past, 8, 307–324, https://doi.org/10.5194/cp-8-307-2012, https://doi.org/10.5194/cp-8-307-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R.: Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35, 2779–2792, 1999.
Affek, H. P. and Eiler, J. M.: Abundance of mass 47 CO2 in urban air, car exhaust and human breath, Geochim. Cosmochim. Ac., 70, 1–12, 2006.
Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A., and Eiler, J. M.: Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by "clumped isotope" thermometry, Geochim. Cosmochim. Ac., 72, 5351–5360, 2008.
Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O. (Eds): Isotopes in the water cycle: past, present and future of a developing science, Springer, Dordrecht, 2005.
Arppe, L. and Karhu, J. A.: Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age, Quaternary Sci. Rev., 29, 1263–1275, 2010.
Blaser, P. C., Kipfer, R., Loosli, H. H., Walraevens, K., Van Camp, M., and Aeschbach-Hertig, W.: A 40 ka record of temperature and permafrost conditions in northwestern Europe from noble gases in the Ledo-Paniselian Aquifer (Belgium), J. Quaternary Sci., 25, 1038–1044, 2010.
Böhm, F., Joachimski, M. M., Dullo, W. C., Eisenhauer, A., Lehnert, H., Reitner J., and Worheide, G.: Oxygen isotope fractionation in marine aragonite of coralline sponges, Geochim. Cosmochim. Ac., 64, 1695–1703, 2000.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U^{k}37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, 2002.
Clark, I. D. and Fritz, P. (Eds.): Environmental Isotopes in Hydrologeology, Lewis Publishers, Boca Raton, 1997.
Cuffey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., and Saltus, R. W.: Large Arctic temperature change at the Wisconsin-Holocene glacial transition, Science, 270, 455–458, 1995.
Daëron, M., Guo, W., Eiler, J., Genty, K., Blamart, D., Boch, R., Drysdale, R. N., Maire, R., Wainer, K., and Zanchetta, G.: 13C-18O clumping in speleothems: Observations from natural caves and precipitation experiments, Geochim. Cosmochim. Ac., 75, 3303–3317, 2011.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N.: Past temperatures directly from the Greenland ice sheet, Science, 282, 268–271, 1998.
Dansgaard, W.: The abundance of 18O in atmospheric water and water vapourf, Tellus, 5, 461–469, 1953.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Darling, W. G.: Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective, Quaternary Sci. Rev., 23, 743–770, 2004.
Davis, B. A. S., Brewer, S., Stevenson, A. C., Guiot, J., and Data contributors: The temperature of Europe during the Holocene reconstructed from pollen data, Quaternary Sci. Rev., 22, 1701–1716, 2003.
Demény, A., Kele, S., and Siklósy, Z.: Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70 °C, Rapid Comm. Mass. Spec., 24, 3521–3526, 2010.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. W.: Defining an absolute reference frame for "clumped" isotope studies of CO2, Geochim. Cosmochim. Ac., 75, 7117–7131, 2011.
Dorale, J. A. and Liu, Z.: Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication, J. Cave Karst Stud., 71, 73–80, 2009.
Dorale, J. A., González, L. A., Reagan, M. K., Pickett, D. A., Murrell, M. T., and Baker, R. G.: A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa, Science, 258, 1626–1630, 1992.
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite, Geochim. Cosmochim. Ac., 75, 734–752, 2011
Duplessy, J. C., Labeyrie, J., Lalou, C., and Nguyen, H. V.: Continental climatic variations between 130,000 and 90,000 years BP, Nature, 226, 631–633, 1970.
Eiler, J. M.: "Clumped-isotope" geochemistry – The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sci. Lett., 262, 309–327, 2007.
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quaternary Sci. Rev., 30, 3575–3588, 2011.
Epstein, S. and Mayeda, T. K.: Variations of the 18O/16O ratio in natural water, Geochim. Cosmochim. Ac., 3, 213–224, 1953.
Fairchild, I. J. and Baker, A.: Speleothem Science, Wiley-Blackwell, 2012.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz. D., Pätzold, J., Al-Rousan, A., and Al-Moghrabi, S. M.: Increased seasonality in Middle East temperatures during the last interglacial period, Nature, 429, 164–168, 2004.
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D. F. C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D. K., and Mangini, A.: Bunker Cave stalagmites: an archive for central European Holocene climate variability, Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, 2012.
Friedman, I.: Deuterium content of natural waters and other substances, Geochim. Cosmochim. Ac., 4, 89–103, 1953.
Gascoyne, M.: Paleoclimate determination from cave calcite deposits, Quaternary Sci. Rev., 11, 609–632, 1992.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M.: 13C–18O bonds in carbonate minerals: A new kind of paleothermometer, Geochim. Cosmochim. Ac., 70, 1439–1456, 2006.
Gourcy, L. L., Groening, M., and Aggarwal, P. K.: Stable oxygen and hydrogen isotopes in precipitation, in: Isotopes in the water cycle: past, present and future of a developing science, edited by: Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O., Springer, Dordrecht, 39–51, 2005.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Guiot, J., Pons, A., de Beaulieu, J. L., and Reille, M.: A 140,000-year continental climate reconstruction from two European pollen records, Nature, 338, 309–313, 1989.
Guo, W.: Carbonate Clumped Isotope Thermometry: Application to carbonaceous chondrites and effects of kinetic isotope fractionation, Ph.D. Thesis, California, Institute of Technology, USA, 2008.
Heiri, O., Tinner, W., and Lotter, A.F.: Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic, Proc. Natl. Acad. Sci., 101, 15285–15288, 2004.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daëron, M., and Came, R.: Methods and limitations of "clumped" CO2 isotope ($\Delta_{47})$ analysis by gas-source isotope ratio mass spectrometry, J. Mass. Spectrom., 44, 1318–1329, 2009.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.: Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.
Klotz, S., Guiot, J., and Mosbrugger, V.: Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen, Global Planet. Change, 36, 277–294, 2003.
Kluge, T. and Affek, H. P.: Quantifying kinetic fractionation in Bunker Cave speleothems using \Delta47, Quaternary Sci. Rev., 49, 82–94, 2012.
Kluge, T., Marx, T., Scholz, D., Niggemann, S., Mangini, A., and Aeschbach-Hertig, W.: A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems, Earth Planet. Sci. Lett., 269, 407–414, 2008.
Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen isotope values, Quaternary Sci. Rev., 28, 412–432, 2009.
Loosli, H. H., Aeschbach-Hertig, W., Barbecot, F., Blaser, P., Darling, W. G., Dever, L., Edmunds, W. M., Kipfer, R., Purtschert, R., and Walraevens, K.: Isotopic methods and their hydrogeochemical context in the investigation of palaeowaters, in: Palaeowaters in Coastal Europe: evolution of groundwater since the late Pleistocene, edited by: Edmunds, W. M. and Milne, C. J., Geological Society, London, Special Publications, 189, 193–212, 2001.
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. L., Korotkevich, Y. S., and Kotlyakov, V. M.: A 150,000-year climatic record from Antarctic ice, Nature, 316, 591–596, 1985.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, Proc. Natl. Acad. Sci. USA, 105, 13252–13257, 2008.
MARGO project members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, 2009.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, Quaternary Sci. Rev., 23, 908–918, 2004.
McDermott, F., Atkinson, T. C., Fairchild, I. J., Baldini, L. M., and Mattey, D. P.: A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems, Global Planet. Change, 79, 275–287, 2011.
Meckler, A. N., Adkins, J. F., Eiler, J. M., and Cobb, K. M.: Constraints from clumped isotope analyses of a stalagmite on maximum tropical temperature change through the late Pleistocene, Goldschmidt Conference Abstracts, A 863, 2009.
Mickler, P. J., Stern, L. A., and Banner, J. L.: Large kinetic isotope effects in modern speleothems, GSA Bulletin, 118, 65–81, 2006.
Mühlinghaus, C., Scholz, D., and Mangini, A.: Modelling fractionation of stable isotopes in stalagmites, Geochim. Cosmochim. Ac., 73, 7275–7289, 2009.
NGRIP members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Niggemann, S., Mangini, A., Richter, D. K., and Wurth, G.: A paleoclimate record of the last 17600 years in stalagmites from the B7 cave, Sauerland, Germany, Quaternary Sci. Rev., 22, 555–567, 2003a.
Niggemann, S., Mangini, A., Mudelsee, M., Richter, D. K., and Wurth, G.: Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany, Earth Planet. Sci. Lett., 216, 539–547, 2003b.
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., and Cape Members: Simulating Arctic climate warmth and icefield retreat in the Last Interglaciation, Science, 311, 1751–1753, 2006.
Riechelmann, D. F. C., Deininger, M., Scholz, D., Riechelmann, S., Schröder-Ritzrau, A., Spötl, C., Richter, D. K., Mangini, A., and Immenhauser, A.: Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data, Geochim. Cosmochim. Acta, 103, 232–244, 2013.
Rozanski, K., Araguás-Araguás, L., and Gonfianti, R.: Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate, Science, 258, 981–998, 1992.
Rozanski, K., Araguás-Araguás, L., and Gonfianti, R.: Isotopic patterns in modern global Precipitation, in: Climate change in continental isotopic records, American Geophysical Union, edited by: Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., Washington, 1–36, 1993.
Scheidegger, Y., Baur, H., Brennwald, M.S., Fleitmann, D., Wieler, R., and Kipfer, R.: Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites, Chem. Geol., 272, 31–39, 2010.
Scheidegger, Y., Brennwald, M.S., Fleitmann, D., Jeannin, P., Wieler, R., and Kipfer, R.: Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions, Chem. Geol., 288, 61–65, 2011.
Scholz, D., Mühlinghaus, C., and Mangini, A.: Modelling $\delta ^{13}$C and δ18O in the solution layer on stalagmite surfaces, Geochim. Cosmochim. Ac., 73, 2592–2602, 2009.
Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, D., and McManus, J. F.: The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 331–342, 2002
Seppä, H. and Birks, H. J. B.: July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions, Holocene, 11, 527–539, 2001.
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L.: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gas in polar ice, Nature, 391, 141–146, 1998.
Sowers, T., Bender, M., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, D., Pichon, J. J., and Korotkevich, Y .S.: A 135,000-Year Vostok-Specmap common temporal framework, Paleocean., 8, 737–766, 1993.
Tremaine, D. M., Froelich, P. N., and Wang, Y.: Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system, Geochim. Cosmochim. Ac., 75, 4929–4950, 2011.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M.: 13C-18O isotope signatures and "clumped isotope" thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Ac., 74, 5697–5717, 2010.
Tütken, T., Vennemann, T. W., and Pfretzschner, H.-U.: Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nirtogen and REE analysis, Paleogeo. Paleoclim. Paleoecol., 266, 254–268, 2008.
Varsány, I., Palcsu, L., and Kovács, L.Ó.: Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary, Appl. Geochem., 26, 91–104, 2011.
Verschuren, D., Brifka, K. R., Hoelzmann, P., Barber, K., Barker, P., Scott, L., Snowball, I., Roberts, N., and Battarbee, R. W.: Climate variability in Europe and Africa: A PAGES-PEP III time stream I synthesis, in: Past climate variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht, 567–582, 2004.
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S. J.: A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P., Science, 284, 1654–1657, 1999.
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., van Calsteren, P., Quinif, Y., and Caillon, N.: Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5, Quaternary Sci. Rev., 30, 130–146, 2011.
Wang, Z., Schauble, E. A., and Eiler, J. M.: Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochim. Cosmochim. Ac., 68, 4779–4797, 2004.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückinger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M.,Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Zaarur, S., Olack G., and Affek, H. P.: Paleo-environmental implication of clumped isotopes in land snail shells, Geochim. Cosmochim. Ac., 75, 6859–6869, 2011.
Zagwijn, W. H.: An analysis of Eemian climate in western and central Europe, Quaternary Sci. Rev.,15, 451–469, 1996.