Articles | Volume 9, issue 1
Clim. Past, 9, 377–391, 2013
https://doi.org/10.5194/cp-9-377-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Advances in understanding and applying speleothem climate...
Research article 14 Feb 2013
Research article | 14 Feb 2013
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
T. Kluge et al.
Related authors
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
T. Kluge and C. M. John
Biogeosciences, 12, 3289–3299, https://doi.org/10.5194/bg-12-3289-2015, https://doi.org/10.5194/bg-12-3289-2015, 2015
Short summary
Short summary
•Vaterite was synthesized from a NaCl-saturated CaCO3 solution at 23-91°C •Vaterite occurred as pure or dominating phase and amounted up to 235 mg per experiment •The precipitation technique allows thermal and isotopic equilibration and enables oxygen and clumped isotope analyses •18α(vaterite-H2O) has the same temperature dependence as calcite •Vaterite δ18O values can hardly be distinguished from calcite (offset +0.0±0.4‰) •Clumped isotope values are indistinguishable from calibration data
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
T. Kluge and C. M. John
Biogeosciences, 12, 3289–3299, https://doi.org/10.5194/bg-12-3289-2015, https://doi.org/10.5194/bg-12-3289-2015, 2015
Short summary
Short summary
•Vaterite was synthesized from a NaCl-saturated CaCO3 solution at 23-91°C •Vaterite occurred as pure or dominating phase and amounted up to 235 mg per experiment •The precipitation technique allows thermal and isotopic equilibration and enables oxygen and clumped isotope analyses •18α(vaterite-H2O) has the same temperature dependence as calcite •Vaterite δ18O values can hardly be distinguished from calcite (offset +0.0±0.4‰) •Clumped isotope values are indistinguishable from calibration data
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
A. Zander and A. Hilgers
Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, https://doi.org/10.5194/cp-9-719-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
A. Alexandre, J. Crespin, F. Sylvestre, C. Sonzogni, and D. W. Hilbert
Clim. Past, 8, 307–324, https://doi.org/10.5194/cp-8-307-2012, https://doi.org/10.5194/cp-8-307-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R.: Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35, 2779–2792, 1999.
Affek, H. P. and Eiler, J. M.: Abundance of mass 47 CO2 in urban air, car exhaust and human breath, Geochim. Cosmochim. Ac., 70, 1–12, 2006.
Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A., and Eiler, J. M.: Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by "clumped isotope" thermometry, Geochim. Cosmochim. Ac., 72, 5351–5360, 2008.
Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O. (Eds): Isotopes in the water cycle: past, present and future of a developing science, Springer, Dordrecht, 2005.
Arppe, L. and Karhu, J. A.: Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age, Quaternary Sci. Rev., 29, 1263–1275, 2010.
Blaser, P. C., Kipfer, R., Loosli, H. H., Walraevens, K., Van Camp, M., and Aeschbach-Hertig, W.: A 40 ka record of temperature and permafrost conditions in northwestern Europe from noble gases in the Ledo-Paniselian Aquifer (Belgium), J. Quaternary Sci., 25, 1038–1044, 2010.
Böhm, F., Joachimski, M. M., Dullo, W. C., Eisenhauer, A., Lehnert, H., Reitner J., and Worheide, G.: Oxygen isotope fractionation in marine aragonite of coralline sponges, Geochim. Cosmochim. Ac., 64, 1695–1703, 2000.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U^{k}37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, 2002.
Clark, I. D. and Fritz, P. (Eds.): Environmental Isotopes in Hydrologeology, Lewis Publishers, Boca Raton, 1997.
Cuffey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., and Saltus, R. W.: Large Arctic temperature change at the Wisconsin-Holocene glacial transition, Science, 270, 455–458, 1995.
Daëron, M., Guo, W., Eiler, J., Genty, K., Blamart, D., Boch, R., Drysdale, R. N., Maire, R., Wainer, K., and Zanchetta, G.: 13C-18O clumping in speleothems: Observations from natural caves and precipitation experiments, Geochim. Cosmochim. Ac., 75, 3303–3317, 2011.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N.: Past temperatures directly from the Greenland ice sheet, Science, 282, 268–271, 1998.
Dansgaard, W.: The abundance of 18O in atmospheric water and water vapourf, Tellus, 5, 461–469, 1953.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Darling, W. G.: Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective, Quaternary Sci. Rev., 23, 743–770, 2004.
Davis, B. A. S., Brewer, S., Stevenson, A. C., Guiot, J., and Data contributors: The temperature of Europe during the Holocene reconstructed from pollen data, Quaternary Sci. Rev., 22, 1701–1716, 2003.
Demény, A., Kele, S., and Siklósy, Z.: Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70 °C, Rapid Comm. Mass. Spec., 24, 3521–3526, 2010.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. W.: Defining an absolute reference frame for "clumped" isotope studies of CO2, Geochim. Cosmochim. Ac., 75, 7117–7131, 2011.
Dorale, J. A. and Liu, Z.: Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication, J. Cave Karst Stud., 71, 73–80, 2009.
Dorale, J. A., González, L. A., Reagan, M. K., Pickett, D. A., Murrell, M. T., and Baker, R. G.: A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa, Science, 258, 1626–1630, 1992.
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite, Geochim. Cosmochim. Ac., 75, 734–752, 2011
Duplessy, J. C., Labeyrie, J., Lalou, C., and Nguyen, H. V.: Continental climatic variations between 130,000 and 90,000 years BP, Nature, 226, 631–633, 1970.
Eiler, J. M.: "Clumped-isotope" geochemistry – The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sci. Lett., 262, 309–327, 2007.
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quaternary Sci. Rev., 30, 3575–3588, 2011.
Epstein, S. and Mayeda, T. K.: Variations of the 18O/16O ratio in natural water, Geochim. Cosmochim. Ac., 3, 213–224, 1953.
Fairchild, I. J. and Baker, A.: Speleothem Science, Wiley-Blackwell, 2012.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz. D., Pätzold, J., Al-Rousan, A., and Al-Moghrabi, S. M.: Increased seasonality in Middle East temperatures during the last interglacial period, Nature, 429, 164–168, 2004.
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D. F. C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D. K., and Mangini, A.: Bunker Cave stalagmites: an archive for central European Holocene climate variability, Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, 2012.
Friedman, I.: Deuterium content of natural waters and other substances, Geochim. Cosmochim. Ac., 4, 89–103, 1953.
Gascoyne, M.: Paleoclimate determination from cave calcite deposits, Quaternary Sci. Rev., 11, 609–632, 1992.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M.: 13C–18O bonds in carbonate minerals: A new kind of paleothermometer, Geochim. Cosmochim. Ac., 70, 1439–1456, 2006.
Gourcy, L. L., Groening, M., and Aggarwal, P. K.: Stable oxygen and hydrogen isotopes in precipitation, in: Isotopes in the water cycle: past, present and future of a developing science, edited by: Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O., Springer, Dordrecht, 39–51, 2005.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Guiot, J., Pons, A., de Beaulieu, J. L., and Reille, M.: A 140,000-year continental climate reconstruction from two European pollen records, Nature, 338, 309–313, 1989.
Guo, W.: Carbonate Clumped Isotope Thermometry: Application to carbonaceous chondrites and effects of kinetic isotope fractionation, Ph.D. Thesis, California, Institute of Technology, USA, 2008.
Heiri, O., Tinner, W., and Lotter, A.F.: Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic, Proc. Natl. Acad. Sci., 101, 15285–15288, 2004.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daëron, M., and Came, R.: Methods and limitations of "clumped" CO2 isotope ($\Delta_{47})$ analysis by gas-source isotope ratio mass spectrometry, J. Mass. Spectrom., 44, 1318–1329, 2009.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.: Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.
Klotz, S., Guiot, J., and Mosbrugger, V.: Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen, Global Planet. Change, 36, 277–294, 2003.
Kluge, T. and Affek, H. P.: Quantifying kinetic fractionation in Bunker Cave speleothems using \Delta47, Quaternary Sci. Rev., 49, 82–94, 2012.
Kluge, T., Marx, T., Scholz, D., Niggemann, S., Mangini, A., and Aeschbach-Hertig, W.: A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems, Earth Planet. Sci. Lett., 269, 407–414, 2008.
Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen isotope values, Quaternary Sci. Rev., 28, 412–432, 2009.
Loosli, H. H., Aeschbach-Hertig, W., Barbecot, F., Blaser, P., Darling, W. G., Dever, L., Edmunds, W. M., Kipfer, R., Purtschert, R., and Walraevens, K.: Isotopic methods and their hydrogeochemical context in the investigation of palaeowaters, in: Palaeowaters in Coastal Europe: evolution of groundwater since the late Pleistocene, edited by: Edmunds, W. M. and Milne, C. J., Geological Society, London, Special Publications, 189, 193–212, 2001.
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. L., Korotkevich, Y. S., and Kotlyakov, V. M.: A 150,000-year climatic record from Antarctic ice, Nature, 316, 591–596, 1985.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, Proc. Natl. Acad. Sci. USA, 105, 13252–13257, 2008.
MARGO project members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, 2009.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, Quaternary Sci. Rev., 23, 908–918, 2004.
McDermott, F., Atkinson, T. C., Fairchild, I. J., Baldini, L. M., and Mattey, D. P.: A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems, Global Planet. Change, 79, 275–287, 2011.
Meckler, A. N., Adkins, J. F., Eiler, J. M., and Cobb, K. M.: Constraints from clumped isotope analyses of a stalagmite on maximum tropical temperature change through the late Pleistocene, Goldschmidt Conference Abstracts, A 863, 2009.
Mickler, P. J., Stern, L. A., and Banner, J. L.: Large kinetic isotope effects in modern speleothems, GSA Bulletin, 118, 65–81, 2006.
Mühlinghaus, C., Scholz, D., and Mangini, A.: Modelling fractionation of stable isotopes in stalagmites, Geochim. Cosmochim. Ac., 73, 7275–7289, 2009.
NGRIP members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Niggemann, S., Mangini, A., Richter, D. K., and Wurth, G.: A paleoclimate record of the last 17600 years in stalagmites from the B7 cave, Sauerland, Germany, Quaternary Sci. Rev., 22, 555–567, 2003a.
Niggemann, S., Mangini, A., Mudelsee, M., Richter, D. K., and Wurth, G.: Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany, Earth Planet. Sci. Lett., 216, 539–547, 2003b.
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., and Cape Members: Simulating Arctic climate warmth and icefield retreat in the Last Interglaciation, Science, 311, 1751–1753, 2006.
Riechelmann, D. F. C., Deininger, M., Scholz, D., Riechelmann, S., Schröder-Ritzrau, A., Spötl, C., Richter, D. K., Mangini, A., and Immenhauser, A.: Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data, Geochim. Cosmochim. Acta, 103, 232–244, 2013.
Rozanski, K., Araguás-Araguás, L., and Gonfianti, R.: Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate, Science, 258, 981–998, 1992.
Rozanski, K., Araguás-Araguás, L., and Gonfianti, R.: Isotopic patterns in modern global Precipitation, in: Climate change in continental isotopic records, American Geophysical Union, edited by: Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., Washington, 1–36, 1993.
Scheidegger, Y., Baur, H., Brennwald, M.S., Fleitmann, D., Wieler, R., and Kipfer, R.: Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites, Chem. Geol., 272, 31–39, 2010.
Scheidegger, Y., Brennwald, M.S., Fleitmann, D., Jeannin, P., Wieler, R., and Kipfer, R.: Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions, Chem. Geol., 288, 61–65, 2011.
Scholz, D., Mühlinghaus, C., and Mangini, A.: Modelling $\delta ^{13}$C and δ18O in the solution layer on stalagmite surfaces, Geochim. Cosmochim. Ac., 73, 2592–2602, 2009.
Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, D., and McManus, J. F.: The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 331–342, 2002
Seppä, H. and Birks, H. J. B.: July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions, Holocene, 11, 527–539, 2001.
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L.: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gas in polar ice, Nature, 391, 141–146, 1998.
Sowers, T., Bender, M., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, D., Pichon, J. J., and Korotkevich, Y .S.: A 135,000-Year Vostok-Specmap common temporal framework, Paleocean., 8, 737–766, 1993.
Tremaine, D. M., Froelich, P. N., and Wang, Y.: Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system, Geochim. Cosmochim. Ac., 75, 4929–4950, 2011.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M.: 13C-18O isotope signatures and "clumped isotope" thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Ac., 74, 5697–5717, 2010.
Tütken, T., Vennemann, T. W., and Pfretzschner, H.-U.: Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nirtogen and REE analysis, Paleogeo. Paleoclim. Paleoecol., 266, 254–268, 2008.
Varsány, I., Palcsu, L., and Kovács, L.Ó.: Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary, Appl. Geochem., 26, 91–104, 2011.
Verschuren, D., Brifka, K. R., Hoelzmann, P., Barber, K., Barker, P., Scott, L., Snowball, I., Roberts, N., and Battarbee, R. W.: Climate variability in Europe and Africa: A PAGES-PEP III time stream I synthesis, in: Past climate variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht, 567–582, 2004.
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S. J.: A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P., Science, 284, 1654–1657, 1999.
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., van Calsteren, P., Quinif, Y., and Caillon, N.: Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5, Quaternary Sci. Rev., 30, 130–146, 2011.
Wang, Z., Schauble, E. A., and Eiler, J. M.: Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochim. Cosmochim. Ac., 68, 4779–4797, 2004.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückinger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M.,Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Zaarur, S., Olack G., and Affek, H. P.: Paleo-environmental implication of clumped isotopes in land snail shells, Geochim. Cosmochim. Ac., 75, 6859–6869, 2011.
Zagwijn, W. H.: An analysis of Eemian climate in western and central Europe, Quaternary Sci. Rev.,15, 451–469, 1996.