Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2459-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2459-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia
A. Francke
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
V. Wennrich
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
M. Sauerbrey
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
O. Juschus
Eberswalde University for Sustainable Development, Eberswalde, Germany
M. Melles
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
J. Brigham-Grette
University of Massachusetts, Department of Geosciences, Amherst, USA
Related authors
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Alessia Masi, Alexander Francke, Caterina Pepe, Matthias Thienemann, Bernd Wagner, and Laura Sadori
Clim. Past, 14, 351–367, https://doi.org/10.5194/cp-14-351-2018, https://doi.org/10.5194/cp-14-351-2018, 2018
Short summary
Short summary
The first high-resolution Lake Dojran pollen record for the last 12 500 years is presented. The ecological succession shows Late Glacial steppe vegetation gradually replaced, since 11 500 yr BP, by Holocene mesophilous forests. The first human traces are recorded around 5000 yr BP and increased considerably since the Bronze Age. Pollen data and sedimentological, biomarker and diatom data available from the same core contribute to an understanding of the environmental history of the Balkans.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Alexander Francke, Bernd Wagner, Janna Just, Niklas Leicher, Raphael Gromig, Henrike Baumgarten, Hendrik Vogel, Jack H. Lacey, Laura Sadori, Thomas Wonik, Melanie J. Leng, Giovanni Zanchetta, Roberto Sulpizio, and Biagio Giaccio
Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, https://doi.org/10.5194/bg-13-1179-2016, 2016
Short summary
Short summary
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old. To recover a long paleoclimate record for the Mediterranean region, a deep drilling was carried out in 2013 within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site record.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
N. R. Nowaczyk, E. M. Haltia, D. Ulbricht, V. Wennrich, M. A. Sauerbrey, P. Rosén, H. Vogel, A. Francke, C. Meyer-Jacob, A. A. Andreev, and A. V. Lozhkin
Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, https://doi.org/10.5194/cp-9-2413-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski
Clim. Past, 8, 2069–2078, https://doi.org/10.5194/cp-8-2069-2012, https://doi.org/10.5194/cp-8-2069-2012, 2012
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Olaf Juschus, Mirosław Błaszkiewicz, and Lars Böttner
DEUQUA Spec. Pub., 4, 19–28, https://doi.org/10.5194/deuquasp-4-19-2022, https://doi.org/10.5194/deuquasp-4-19-2022, 2022
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Alessia Masi, Alexander Francke, Caterina Pepe, Matthias Thienemann, Bernd Wagner, and Laura Sadori
Clim. Past, 14, 351–367, https://doi.org/10.5194/cp-14-351-2018, https://doi.org/10.5194/cp-14-351-2018, 2018
Short summary
Short summary
The first high-resolution Lake Dojran pollen record for the last 12 500 years is presented. The ecological succession shows Late Glacial steppe vegetation gradually replaced, since 11 500 yr BP, by Holocene mesophilous forests. The first human traces are recorded around 5000 yr BP and increased considerably since the Bronze Age. Pollen data and sedimentological, biomarker and diatom data available from the same core contribute to an understanding of the environmental history of the Balkans.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Beth E. Caissie, Julie Brigham-Grette, Mea S. Cook, and Elena Colmenero-Hidalgo
Clim. Past, 12, 1739–1763, https://doi.org/10.5194/cp-12-1739-2016, https://doi.org/10.5194/cp-12-1739-2016, 2016
Short summary
Short summary
This paper presents the first millennial-scale reconstruction of Marine Isotope Stage (MIS) 11 (~400 ka) from the subarctic Pacific Ocean. We use diatoms, calcareous nannofossils, grain size, and carbon and nitrogen isotopes to examine changing productivity and sea ice. These change in sync with other regional and global records. Initially, MIS 11 is highly productive, due to increased upwelling. Sea ice declines gradually during this warm period, but is present throughout.
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Alexander Francke, Bernd Wagner, Janna Just, Niklas Leicher, Raphael Gromig, Henrike Baumgarten, Hendrik Vogel, Jack H. Lacey, Laura Sadori, Thomas Wonik, Melanie J. Leng, Giovanni Zanchetta, Roberto Sulpizio, and Biagio Giaccio
Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, https://doi.org/10.5194/bg-13-1179-2016, 2016
Short summary
Short summary
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old. To recover a long paleoclimate record for the Mediterranean region, a deep drilling was carried out in 2013 within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site record.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
K. Schittek, M. Forbriger, B. Mächtle, F. Schäbitz, V. Wennrich, M. Reindel, and B. Eitel
Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, https://doi.org/10.5194/cp-11-27-2015, 2015
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014, https://doi.org/10.5194/cp-10-209-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
N. R. Nowaczyk, E. M. Haltia, D. Ulbricht, V. Wennrich, M. A. Sauerbrey, P. Rosén, H. Vogel, A. Francke, C. Meyer-Jacob, A. A. Andreev, and A. V. Lozhkin
Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, https://doi.org/10.5194/cp-9-2413-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
R. M. D'Anjou, J. H. Wei, I. S. Castañeda, J. Brigham-Grette, S. T. Petsch, and D. B. Finkelstein
Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, https://doi.org/10.5194/cp-9-567-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski
Clim. Past, 8, 2069–2078, https://doi.org/10.5194/cp-8-2069-2012, https://doi.org/10.5194/cp-8-2069-2012, 2012
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Cenozoic
Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes
Late Miocene–Pliocene climate evolution recorded by the red clay cover on the Xiaoshuizi planation surface, NE Tibetan Plateau
Middle Miocene climate of southwestern Anatolia from multiple botanical proxies
Thenardite after mirabilite deposits as a cool climate indicator in the geological record: lower Miocene of central Spain
CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method
Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic
A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China
Christopher K. West, David R. Greenwood, Tammo Reichgelt, Alexander J. Lowe, Janelle M. Vachon, and James F. Basinger
Clim. Past, 16, 1387–1410, https://doi.org/10.5194/cp-16-1387-2020, https://doi.org/10.5194/cp-16-1387-2020, 2020
Short summary
Short summary
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high Arctic. Fossil plants from the Canadian High Arctic and Pacific Northwest of North America are a window into this past
greenhouse world. We used an improved method for plant fossil climate reconstruction that provides a consensus reconstruction from all available proxies. Results show that the early Eocene climate in northern North America was similar across a broad range of latitudes.
Xiaomiao Li, Tingjiang Peng, Zhenhua Ma, Meng Li, Zhantao Feng, Benhong Guo, Hao Yu, Xiyan Ye, Zhengchuang Hui, Chunhui Song, and Jijun Li
Clim. Past, 15, 405–421, https://doi.org/10.5194/cp-15-405-2019, https://doi.org/10.5194/cp-15-405-2019, 2019
Short summary
Short summary
Multiple proxies for the XSZ planation surface reveal that the climate was dry and stable during the late Miocene but became intermittently humid with more seasonality at 4.7–3.9 Ma. Regional climatic differences between the central and western CLP reveal that expansion of the paleo-EASM occurred during the early Pliocene. The warming of the high northern latitudes in response to the closure of the Panama Seaway may have been responsible for the thermodynamical enhancement of the paleo–EASM.
Johannes Martin Bouchal, Tuncay Hüseyin Güner, and Thomas Denk
Clim. Past, 14, 1427–1440, https://doi.org/10.5194/cp-14-1427-2018, https://doi.org/10.5194/cp-14-1427-2018, 2018
Short summary
Short summary
Verterbate fossils suggest tropical climates and environments for the middle Miocene of western Anatolia (mammal zone MN6). We used three palaeobotanical proxies and inferred warm temperate climates. The onset of Miocene cooling (middle Miocene climate transition, MMCT, 14.7–13.9 Ma) is characterized by fluctuating ratios of woody and herbaceous pollen types, while a herb-rich pollen zone indicates pronounced cooling at 13.9–13.8 Ma. Prior to the MMCT (MN5), forest vegetation prevailed.
M. J. Herrero, J. I. Escavy, and B. C. Schreiber
Clim. Past, 11, 1–13, https://doi.org/10.5194/cp-11-1-2015, https://doi.org/10.5194/cp-11-1-2015, 2015
Short summary
Short summary
Thenardite deposits from the lower Miocene unit of the Tajo basin, Spain, result from a mirabilite diagenetic transformation salt that forms under cool climatic conditions. The time of the mirabilite formation correlates with a Mi cooling event coincident with mammal assemblages related to a relatively cool and arid climate in other basins of the Iberian Peninsula. This diagenetic transformation can be used as an analog with deposits from extreme conditions such as Antarctica or Mars.
M. Chevalier, R. Cheddadi, and B. M. Chase
Clim. Past, 10, 2081–2098, https://doi.org/10.5194/cp-10-2081-2014, https://doi.org/10.5194/cp-10-2081-2014, 2014
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014, https://doi.org/10.5194/cp-10-209-2014, 2014
X. Wang, D. H. Sun, F. Wang, B. F. Li, S. Wu, F. Guo, Z. J. Li, Y. B. Zhang, and F. H. Chen
Clim. Past, 9, 2731–2739, https://doi.org/10.5194/cp-9-2731-2013, https://doi.org/10.5194/cp-9-2731-2013, 2013
Cited articles
ACIA: Impacts of a Warming Arctic-Arctic Climate Impact Assessment Cambridge and New York, Cambridge University Press, 144 pp., 2004.
An, Z. S., Kukla, G., Porter, S. C., and Xiao, J. L.: Late quaternary dust flow on the Chinese loess plateau, Catena, 18, 125–132, 1991.
Asikainen, C. A., Francus, P., and Brigham-Grette, J.: Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia, J. Paleolimnol., 37, 105–122, https://doi.org/10.1007/s10933-006-9026-5, 2007.
Axford, Y., Briner, J. P., Cooke, C. A., Francis, D. R., Michelutti, N., Miller, G. H., Smol, J. P., Thomas, E. K., Wilson, C. R., and Wolfe, A. P.: Recent changes in a remote Arctic lake are unique within the past 200,000 years, P. Natl. Acad. Sci., 106, 18443–18446, https://doi.org/10.1073/pnas.0907094106, 2009.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Berger, A., Li, X., and Loutre, M.: Modeling northern hemisphere ice volume over the last 3 Ma, Quaternary Sci. Rev., 18, 1–11, 1999.
Blott, S. J. and Pye, K.: GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Brigham-Grette, J., Melles, M., and Minyuk, P.: Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia, J. Paleolimnol., 37, 1–16, 2007.
Clark, C. D. and Pollard, D.: Origin of the Middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, 1998.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184, https://doi.org/10.1016/j.quascirev.2006.07.008, 2006.
Cremer, H. and Wagner, B.: The diatom flora in the ultra-oligotrophic Lake EI'gygytgyn, Chukotka, Polar Biol., 26, 105–114, https://doi.org/10.1007/s00300-002-0445-0, 2003.
deMenocal, P. B.: Plio-Pleistocene African Climate, Science, 270, 53–59, 1995.
Dietz, R. S. and McHone, J. F.: El'gygytgyn: Probably the world largest meteorite crater, Geology, 4, 391–392, 1977.
Fedorov, G. and Kupolov, A.: Gas Mercury Survey in the El'gygytgyn Crater, in: The Expedition El'gygytgyn Lake 2003 (Siberian Arctic), edited by: Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O., Reports on polar and marine research, AWI, Bremerhaven, 69–70, 2005.
Fedorov, G., Nolan, M., Brigham-Grette, J., Bolshiyanov, D., Schwamborn, G., and Juschus, O.: Preliminary estimation of Lake El'gygytgyn water balance and sediment income, Clim. Past, 9, 1455–1465, https://doi.org/10.5194/cp-9-1455-2013, 2013.
Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the significance of grain size parameters, J. Sediment. Res., 27, 3–26, 1957.
Gauch, H. G., Whittaker, R. H., and Wentworth, T. R.: A comparative study of reciprocal averaging and other ordination techniques, J. Ecol., 65, 157–174, 1977.
Glushkova, O. Y. and Smirnov, V. N.: Pliocene to Holocene geomorphic evolution and paleogeography of the El'gygytgyn Lake region, NE Russia, J. Paleolimnol., 37, 37–47, https://doi.org/10.1007/s10933-006-9021-x, 2007.
Gurov, E. P. and Gurova, E. P.: Stages of shock metamorphism of volcanic rocks of siliceous composition – Examples from the El'gygytgyn crater (Chukotka), Doklady Academii Nauk UkrSSR, 249, 1197–1201, 1979.
Gurov, E. P., Gurova, E. P., and Rakitskaia, R. B.: Stishovite and coesite in shock-metamorphosed rocks of the El'gygytgyn crater in Chukotka, Akademiia Nauk SSSR Doklady, 248, 213–216, 1979.
Gurov, E. P., Koeberl, C., and Yamnichenko, A.: El'gygytgyn impact crater, Russia: Structure, tectonics, and morphology, Meteor. Planet. Sci., 42, 307–319, 2007.
Haltia, E. M. and Nowaczyk, N. R.: Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic, Clim. Past Discuss., 9, 5077–5122, https://doi.org/10.5194/cpd-9-5077-2013, 2013.
Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V. A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P., Pettersson, L. H., Hasselmann, K., and Cattle, P.: Artic climate change: observed and modelled temperature and sea-ice variability, Tellus A, 56, 328–341, 2004.
Juschus, O., Melles, M., Wennrich, V., Nowaczyk, N., Brigham-Grette, J., and Minyuk, P.: Sedimentation in Lake Elgygytgyn, NE Russia, during the past 340.000 years, AGU Fall Meeting Abstracts, 11, 1303, 2009.
Juschus, O., Pavlov, M., Schwamborn, G., Preusser, F., Fedorov, G., and Melles, M.: Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia, Quaternary Res., 76, 441–451, https://doi.org/10.1016/j.yqres.2011.06.010, 2011.
Kashiwaya, K., Yamamoto, A., and Fukuyama, K.: Time variations of erosional force and grain size in Pleistocene lake sediments, Quaternary Res., 28, 61–68, https://doi.org/10.1016/0033-5894(87)90033-0, 1987.
Kashiwaya, K., Ryugo, M., Sakai, T., and Kawai, T.: Long-term climate-limnological oscillation during the past 2.5 million years in Lake Baikal sediments, Geophys. Res. Lett., 25, 659–662, 1998.
Kashiwaya, K., Ochiai, S., and Sakai, T.: Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal, Nature, 410, 71–74, 2001.
Kendall, D. G.: Seriation from abundance matrices, in: Mathematics in the archeological and history siences, edited by: Hodson, F. R., Kendall, D. G., and Tautu, P., Edinburgh University Press, 215–252, 1971.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Layer, P. W.: Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia, Meteor. Planet. Sci., 35, 591–599, 2000.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004pa001071, 2005.
Melles, M., Brigham-Grette, J., Glushkova, O. Y., Minyuk, P. S., Nowaczyk, N. R., and Hubberten, H. W.: Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn – a sensitive record of climate variability in the East Siberian Arctic during the past three glacial-interglacial cycles, J. Paleolimnol., 37, 89–104, https://doi.org/10.1007/s10933-006-9025-6, 2007.
Melles, M., Brigham-Grette, J., Minyuk, P., Koeberl, C., Andreev, A., Cook, T., Fedorov, G., Gebhardt, C., Haltia-Hovi, E., Kukkonen, M., Nowaczyk, N., Schwamborn, G., Wennrich, V., and and the El'gygytgyn Scientific Party: The Lake El'gygytgyn Scientific Drilling Project – Conquering Arctic Challenges through Continental Drilling, Scientific Drill., 11, 29–40, 2011.
Melles, M., Brigham-Grette, J., Minyuk, P., Nowaczyk, N., Wennrich, V., Deconto, R., Andersen, P., Andreev, A. A., Coletti, A., Cook, T., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Artic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315-320, https://doi.org/10.1126/science.1222135, 2012.
Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R., Eynaud, F. D. R., Gattacceca, J. R. M., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T. C., Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., Stein, R., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y.: The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601–605, 2006.
Mottaghy, D., Schwamborn, G., and Rath, V.: Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling, Clim. Past, 9, 119–133, https://doi.org/10.5194/cp-9-119-2013, 2013.
Mudelsee, M., Scholz, D., Röthlisberger, R., Fleitmann, D., Mangini, A., and Wolff, E. W.: Climate spectrum estimation in the presence of timescale errors, Nonlin. Processes Geophys., 16, 43–56, https://doi.org/10.5194/npg-16-43-2009, 2009.
Nie, J., King, J., and Fang, X.: Late Pliocene-early Pleistocene 100-ka problem, Geophys. Res. Lett., 35, L21606, https://doi.org/10.1029/2008GL035265, 2008.
Niessen, F., Gebhardt, A. C., Kopsch, C., and Wagner, B.: Seismic investigation of the El'gygytgyn impact crater lake (Central Chukotka, NE Siberia): preliminary results, J. Paleolimnol., 37, 49–63, https://doi.org/10.1007/s10933-006-9022-9, 2007.
Nolan, M.: Quantitative and qualitative constraints on hind-casting the formation of multiyear lake-ice covers at Lake El'gygytgyn, Clim. Past, 9, 1253–1269, https://doi.org/10.5194/cp-9-1253-2013, 2013.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and meteorology of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, https://doi.org/10.1007/s10933-006-9020-y, 2007.
Nolan, M., Cassano, E. N., and Cassano, J. J.: Synoptic climatology and recent climate trends at Lake El'gygytgyn, Clim. Past, 9, 1271–1286, https://doi.org/10.5194/cp-9-1271-2013, 2013.
Nowaczyk, N., Melles, M., and Minyuk, P.: A revised age model for core PG1351 from Lake El'gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations, J. Paleolimnol., 37, 65–76, https://doi.org/10.1007/s10933-006-9023-8, 2007.
Nowaczyk, N. R., Haltia, E. M., Ulbricht, D., Wennrich, V., Sauerbrey, M. A., Rosén, P., Vogel, H., Francke, A., Meyer-Jacob, C., Andreev, A. A., and Lozhkin, A. V.: Chronology of Lake El'gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses, Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, 2013.
Pienitz, R., Melles, M., and Zolitschka, B.: Results of recent sediment drilling activities in deep crater lakes, Pages News, 3, 117–118, 2009.
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H.: Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record, Science, 313, 492–495, https://doi.org/10.1126/science.1123296, 2006.
Sauerbrey, M. A., Juschus, O., Gebhardt, A. C., Wennrich, V., Nowaczyk, N. R., and Melles, M.: Mass movement deposits in the 3.6 Ma sediment record of Lake El'gygytgyn, Far East Russian Arctic, Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, 2013.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Serreze, M. and Francis, J.: The Artic Amplification Debate, Climatic Change, 76, 241–264, 2006.
Stone, D. B., Layer, P. W., and Raikevich, M. I.: Age and paleomagnetism of the Okhotsk-Chukotka Volcanic Belt (OCVB) near Lake El'gygytgyn, Chukotka, Russia, Stephan Mueller Special Publication Server, 4, 243–260, https://doi.org/10.5194/smsps-4-243-2009, 2009.
Sun, J. and Huang, X.: Half-precessional cycles recorded in Chinese loess: response to low-latitude insolation forcing during the Last Interglaciation, Quaternary Sci. Rev., 25, 1065–1072, https://doi.org/10.1016/j.quascirev.2005.08.004, 2006.
Sun, Y., Clemens, S. C., An, Z., and Yu, Z.: Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau, Quaternary Sci. Rev., 25, 33–48, https://doi.org/10.1016/j.quascirev.2005.07.005, 2006.
Swan, J. M. A.: An Examination of some ordination problems by use of simulated vegetation data, Ecology, 51, 89–102, 1970.
Thiede, J., Winkler, A., Wolf-Welling, T., Eldholm, O., Myhre, A., Baumann, K.-H., Henrich, R., and Stein, R.: Late Cenozoic history of the Polar North Atlantic: results from ocean drilling, Quaternary Sci. Rev., 17, 185–208, 1998.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J., Ellam, R. M., Lea, D. W., Lough, J. M., and Shimmield, G. B.: Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle, Science, 291, 1511-1517, https://doi.org/10.1126/science.1057969, 2001.
Tziperman, E. and Gildor, H.: On the mid-Pleistocene transition to 100 kyr glacial cycles and the asymmetry between glaciation and deglaciation times, Paleoceanography, 18, 1001, https://doi.org/10.1029/2001PA000627, 2003.
van den Bogaard, C., Jensen, B. J. L., Pearce, N. J. G., Froese, D. G., Portnyagin, M. V., Ponomareva, V. V., Garbe-Schönberg, D., and Wennrich, V.: Volcanic ash layers in Lake El'gygytgyn: eight new regionally significant chronostratigraphic markers for western Beringia, Clim. Past Discuss., 9, 5977–6034, https://doi.org/10.5194/cpd-9-5977-2013, 2013.
Vogel, H., Meyer-Jacob, C., Melles, M., Brigham-Grette, J., Andreev, A. A., Wennrich, V., Tarasov, P. E., and Rosén, P.: Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia, Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, 2013.
Vologina, E., Granin, N., Francus, P., Lomonosova, T., Kalashinkova, I., and Granina, L.: Ice transport of sand-silt material in southern lake Baikal, Russ. Geol. Geophys., 46, 186–192, 2005.
Washington, W. M. and Meehl, G. A.: High-latitude climate change in a global coupled ocean-atmosphere ice model with increasing atmospheric CO2, J. Geophys. Res., 101, 12795–12801, 1996.
Weber, M. E., Tougiannidis, N., Kleineder, M., Bertram, N., Ricken, W., Rolf, C., Reinsch, T., and Antoniadis, P.: Lacustrine sediments document millennial-scale climate variability in northern Greece prior to the onset of the northern hemisphere glaciation, Palaeogeogr. Palaeocl., 291, 360–370, https://doi.org/10.1016/j.palaeo.2010.03.007, 2010.
Wennrich, V., Francke, A., Dehnert, A., Juschus, O., Leipe, T., Vogt, C., Brigham-Grette, J., Minyuk, P. S., Melles, M., and El'gygytgyn Science Party: Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples, Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, 2013a.
Wennrich, V., Minyuk, P. S., Borkhodoev, V. Ya., Francke, A., Ritter, B., Nowaczyk, N., Sauerbrey, M. A., Brigham-Grette, J., and Melles, M.: Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data, Clim. Past Discuss., 9, 5899–5940, https://doi.org/10.5194/cpd-9-5899-2013, 2013.
Zech, R., Huang, Y., Zech, M., Tarozo, R., and Zech, W.: High carbon sequestration in Siberian permafrost loess-paleosols during glacials, Clim. Past, 7, 501–509, https://doi.org/10.5194/cp-7-501-2011, 2011.