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Abstract. Lake El’gygytgyn, located in the Far East Rus-
sian Arctic, was formed by a meteorite impact about 3.58 Ma
ago. In 2009, the International Continental Scientific Drilling
Program (ICDP) at Lake El’gygytgyn obtained a continu-
ous sediment sequence of the lacustrine deposits and the up-
per part of the impact breccia. Here, we present grain-size
data of the past 2.6 Ma. General downcore grain-size varia-
tions yield coarser sediments during warm periods and finer
ones during cold periods. According to principal component
analysis (PCA), the climate-dependent variations in grain-
size distributions mainly occur in the coarse silt and very
fine silt fraction. During interglacial periods, accumulation
of coarser material in the lake center is caused by redistri-
bution of clastic material by a wind-induced current pattern
during the ice-free period. Sediment supply to the lake is
triggered by the thickness of the active layer in the catch-
ment and the availability of water as a transport medium.
During glacial periods, sedimentation at Lake El’gygytgyn
is hampered by the occurrence of a perennial ice cover,
with sedimentation being restricted to seasonal moats and
vertical conduits through the ice. Thus, the summer tem-
perature predominantly triggers transport of coarse material
into the lake center. Time series analysis that was carried
out to gain insight into the frequency of the grain-size data
showed variations predominately on 98.5, 40.6, and 22.9 kyr
oscillations, which correspond to Milankovitch’s eccentric-
ity, obliquity and precession bands. Variations in the relative
power of these three oscillation bands during the Quaternary
suggest that sedimentation processes at Lake El’gygytgyn
are dominated by environmental variations caused by global

glacial–interglacial variations (eccentricity, obliquity), and
local insolation forcing and/or latitudinal teleconnections
(precession), respectively.

1 Introduction

The polar regions are known to play a crucial but not
yet well understood role within the global climate system
(Washington and Meehl, 1996; Johannessen et al., 2004), in-
fluencing both the oceanic and the atmospheric circulation.
The recent global warming trend has been, and is predicted to
be, most pronounced in the Arctic (ACIA, 2004; Serreze and
Francis, 2006). However, rather little is known about the nat-
ural and environmental variability on geological timescales.
Our current knowledge on the Cenozoic climate evolution of
the Arctic has long been based on sparse, often discontinuous
marine and terrestrial paleorecords of the Arctic Ocean and
adjacent landmasses (Thiede et al., 1998; Moran et al., 2006;
Axford et al., 2009; Pienitz et al., 2009; Zech et al., 2011).

The first continuous Pliocene–Pleistocene sediment record
in the terrestrial Arctic was recovered in 2009 during a deep
drilling campaign of the International Continental Scien-
tific Drilling Program (ICDP) at Lake El’gygytgyn in the
Far East Russian Artic (Fig. 1; Melles et al., 2011). Pi-
lot studies on Lake El’gygytgyn sediments covering the
last 2–3 glacial–interglacial cycles had already demonstrated
the usability of this archive for paleoclimate reconstruc-
tions (e.g. Brigham-Grette et al., 2007; Melles et al., 2007;
Niessen et al., 2007). Initial results from the upper part

Published by Copernicus Publications on behalf of the European Geosciences Union.



2460 A. Francke et al.: Multivariate statistic and time series analyses of grain-size data

of the 318 m-long sediment record in central parts of the
lake (ICDP site 5011-1) provided first details of Quaternary
history, focusing on interglacial variability during the past
2.8 Myr (Melles et al., 2012).

Here, we present new results of granulometric analyses on
ICDP core 5011-1 throughout the past 2.6 Myr. Grain-size
data have extensively been used before as a paleoenviron-
mental and -climatological proxy on long terrestrial and la-
custrine sedimentary records, including those from the Chi-
nese Loess Plateau (e.g. An et al., 1991; Sun and Huang,
2006; Sun et al., 2006) and from lakes Baikal (Kashiwaya
et al., 1998, 2001) and Biwa (Kashiwaya et al., 1987). At
Lake El’gygytgyn, previous studies of grain-size variations
are widely restricted to the sediments formed during the past
65 ka (Asikainen et al., 2007). During this period, particle-
size variations were predominantly controlled by the regional
climatic settings and their impacts on the physical properties
in the lake and its catchment. Our grain-size investigations on
ICDP core 5011-1 extend the results from this early research
to the entire Quaternary. Furthermore, we incorporated more
recent findings on the modern climatological, hydrological,
and sedimentological settings (Fedorov et al., 2013; Nolan et
al., 2013; Wennrich et al., 2013a). To better understand the
sedimentological processes operating in Lake El’gygytgyn,
we used principal component analysis (PCA) to detect dom-
inating variations in the grain-size distributions, and we em-
ployed time series analysis to reveal oscillations in the gran-
ulometric data and their relative dominance over time.

2 Site information

Lake El’gygytgyn is located in the Far East Russian Arc-
tic, in the central part of the Chukchi Peninsula (67◦30′ N,
172◦05′ E, 492 m a.s.l.; Fig. 1). It is formed within a mete-
orite impact crater (e.g. Dietz and McHone, 1977; Gurov et
al., 1979) dated to about 3.58 Ma (Layer, 2000). The lake has
a nearly circular shape with a diameter of about 12 km and
a depth of about 175 m (Nolan and Brigham-Grette, 2007),
whereas the catchment confined by the crater rim measures
about 18 km in diameter (corresponding to 293 km2). Today,
the lake is not located in the center of the crater but slightly
displaced to the southeast, resulting in an asymmetric catch-
ment area (Fig. 1).

The El’gygytgyn crater region is part of the central
Chukchi sector of the Okhotsk–Chukchi volcanic belt (Gurov
and Gurova, 1979; Gurov et al., 2007). It is dominated
by acid volcanic rocks, ignimbrites and tuffaceous clastic
rocks of the late Cretaceous (e.g. Gurov et al., 2007; Stone
et al., 2009). The lake is surrounded by continuous per-
mafrost, whose onset can presumably be traced back to the
late Pliocene (Glushkova and Smirnov, 2007), and which
is assumed to have a thickness of about 330–360 m with
an unfrozen talik underneath the lake today (Mottaghy et
al., 2013). The recent geomorphologic shape of the lake
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Fig. 1. (A) Location of Lake El’gygytgyn in the Far East Russian
Artic; (B) bathymetric map of the lake and topographic map of the
catchment area, including the approximately 50 inlet streams and
the Enmyvaam River outlet (Fedorov and Kupolov, 2005); red line:
profile A to B. (C) Schematic profile A to B with the locations of
the pilot core Lz 1024 and the three holes (A, B and C) at ICDP site
5011-1 with the Pliocene–Pleistocene boundary penetrated at ap-
proximately 123 m, and the transition to the impact breccia at 318 m
below lake floor (modified after Melles et al., 2011).

catchment is predominantly affected by permafrost processes
such as solifluction and cryogenic weathering (Glushkova
and Smirnov, 2007). In addition, distinct lake-level varia-
tions during the Middle Pleistocene to Holocene modified
the geomorphic shape of the area and resulted in various
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accumulative and erosional terraces at 35–40, 9–11 and 2.5–
3.0 m above as well as 10 m below the modern lake level
(Glushkova and Smirnov, 2007; Juschus et al., 2011).

The catchment of Lake El’gygytgyn is dissected by ap-
proximately 50 ephemeral inlet streams (see Fig. 1; Nolan
and Brigham-Grette, 2007), which deliver sediment in the
order of ca. 350 t yr−1 into the lake (Fedorov et al., 2013).
In 2003, main sediment discharge occurred during snowmelt
in spring and early summer, with highest values of 24 g s−1

in June and 0.33 g s−1 in August measured in creek 49
(cf. Fig. 1; Fedorov et al., 2013). Much of the sediment is
trapped in coastal lagoons at the mouths of several inlet-
streams, which are dammed by gravelly shore bars generated
by ice floe pressure or storms (Glushkova and Smirnov, 2007;
Nolan and Brigham-Grette, 2007; Fedorov et al., 2013). The
lake is drained by the Enmyvaan River towards the south-
east (Fig. 1), which was likely the only discharge during
the lake’s history (Glushkova and Smirnov, 2007; Nolan and
Brigham-Grette, 2007).

The regional climate at Lake El’gygytgyn is cold, dry, and
windy (Nolan and Brigham-Grette, 2007), with a mean an-
nual air temperature of−10.4◦C and an annual precipita-
tion between 70 and 200 mm measured between 2002 and
2008 (Nolan, 2013). Strong (up to 21 m s−1) and very persis-
tent winds (mean of 5.6 m s−1 in 2002) of north-northwestern
and south-southeastern directions are dominant (Nolan and
Brigham-Grette, 2007).

Lake El’gygytgyn is characterized as monomictic and
oligotrophic to ultra-oligotrophic, with a low bioproductiv-
ity demonstrated by low diatom accumulation (Cremer and
Wagner, 2003; Nolan and Brigham-Grette, 2007). Today, the
water column is fully mixed with almost complete oxygen
saturation during summer, but a thermal stratification occur-
ring during winter (Cremer and Wagner, 2003). During peak
glacial periods, in contrast, anoxic bottom water conditions
prevailed, resulting from a perennial ice cover (Melles et al.,
2007).

According to initial results from ICDP core 5011-1,
the Quaternary sediments in the central basin of Lake
El’gygytgyn can clearly be differentiated into three pelagic
facies (Melles et al., 2012). Dark gray to black, finely lam-
inated silt and clay with sporadic clasts are linked to peak
glacial periods (facies A). In contrast, warm and peak warm
(“super interglacial”) interglacial conditions are reflected
by olive gray to brownish, massive to faintly bedded silt
(facies B) and laminated brownish silt (facies C), respec-
tively. Beside these pelagic sediments, eight volcanic ash
beds (cf. van den Bogaard et al., 2013) as well as numer-
ous mass movement deposits (MMDs) of different type (turb-
dites, slumps, slides, grain flows, debrites) have been identi-
fied (Juschus et al., 2009; Sauerbrey et al., 2013).

3 Material and methods

Within the scope of this study, 1019 samples of Lake
El’gygytgyn sediments originating from pelagic sediments
in core composite of ICDP site 5011-1 (862 samples) and
the pilot core Lz1024 (157 samples, locations see Fig. 1)
have been analyzed for their grain-size distribution with a
sampling resolution of 8 cm. Detailed descriptions about the
lithostratigraphy, MMD’s, and the creation of the compos-
ite profile are given by Melles et al. (2012), Sauerbrey et
al. (2013), and by Nowaczyk et al. (2013) and Wennrich
et al. (2013b), respectively. The age model of the Lake
El’gygytgyn sediment sequence is primarily based on mag-
netostratigraphic data (Haltia and Nowaczyk, 2013). It is
further improved by tuning of sediment proxies (including
grain-size data) to the global marine benthic isotope stack of
Lisiecki and Raymo (2005, LR04) and to local insolation pat-
terns inferred from orbital parameters according to Laskar et
al. (2004), Melles et al. (2012) and Nowaczyk et al. (2013).

Prior to the grain-size analyses, a multi-step chemical
treatment procedure was developed to remove autochthonous
sediment components without altering the clastic material.
The results of each treatment step were subsequently val-
idated by elemental analyses, Fourier-transformed infrared
spectroscopy (FTIRS), X-ray diffraction (XRD), scanning
electron microscopy (SEM) and optical microscopy. In a
first step, approximately 0.75 g of dry sediment was treated
with 15 mL H2O2 (30 % v/v, 50◦C, 18 h) to remove or-
ganic remains. Subsequently, authigenic precipitated vi-
vianite ((Fe)3(PO4)2 · 8 H2O) was dissolved according to
Asikainen et al. (2007) by treating the sediment with 15 mL
HNO3 (0.5 M, 50◦C, 5 h, 30 min shaking in between). Fi-
nally, biogenic silica (opal), whose content can exceed 50 %
in Lake El’gygytgyn sediments (Vogel et al., 2013), was
removed by adding 2× 15 mL NaOH (1 M, 85◦C, 30 min)
with manual shaking during the reaction. Between the single
pre-treatment steps, the samples were centrifuged and neu-
tralized with deionized (DI) water. The remaining sediment
fraction was dispersed in 60 mL of demineralized and de-
gassed water, mixed with Na4P2O7 (m/v, 0.05 %) and shaken
for 12 h. Prior to the analysis, samples were ultrasonified
for one minute to remove air bubbles and to achieve re-
dispersing. In a last step the sediment was sieved to 600 µm,
as previous studies have shown that coarse sand- and gravel-
sized particles only sporadically occur in Lake El’gygytgyn
sediments (Asikainen et al., 2007). Single, coarse grains in
the sediment produced big errors during grain-size analyses
with the particle analyzer.

Grain-size analyses were performed using a Saturn Digi-
Sizer 5200 laser particle analyzer, equipped with a Master
Tech 52 autosampler (Micromeritics Co., USA). The ana-
lyzer is able to detect particle diameters between 0.1 and
1000 µm. For the measurement, the flow rate was set to
10 L min−1 and the obscuration was adjusted to 20 %. The
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Fig. 2. Selected grain-size parameters (mean, sand, silt, clay) and sample scores of PC1 and PC2 in the Quaternary sediments of the core
composite at ICDP site 5011-1 in central Lake El’gygytgyn. The timing of the Middle Pleistocene transition (MPT) from the 41 kyr world,
including the Pliocene–early Pleistocene 100 kyr problem after Nie et al. (2008), to the 100 kyr world is derived from the time series analysis
(cf. Fig. 6). Facies bar was modified from Melles et al. (2012); marine isotope stages of “super interglacial” facies C (after Melles et al.,
2012) are labeled below.

grain-size distribution of three measurements was finally
averaged.

Grain-size statistics were calculated with the software
GRADISTAT version 8.0 (Blott and Pye, 2001), and are
given according to the method by Folk and Ward (1957). Fur-
thermore, a PCA was calculated with the software XLSTAT
(Addinsoft Corp.). After an initial linear correlation test of
the variables and standardization of the data, the PCA was
carried out on the volume frequency of each grain diameter
measured by the laser particle analyzer. The grain-size frac-
tions as well as the mean, median and mode values were cho-
sen as additional variables to simplify the visualization of the
results.

For time series analysis of the PCA results, the bulk spec-
trum of the temporally unevenly spaced samples was cal-
culated using the Fortran 90 program REDFIT by Schulz
and Mudelsee (2002). Evolutionary spectra of the grain-size
data and the benthic marine isotope stack LR04 (Lisiecki
and Raymo, 2005) were plotted with the software package
ESALAB (Weber et al., 2010).

4 Results

4.1 Grain-size data

Variations in the grain-size distributions are rather small,
but still distinct (Fig. 2). The sand content does not exceed
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15.5 %, with medium sand being the coarsest grain-size frac-
tion that occurs. The average silt and clay contents are about
69.2 and 27.7 %, respectively, showing minor fluctuations of
not more than 15 % within both fractions. The mean values
range between 2.5 and 9.3 µm (after Folk and Ward, 1957)
and, thus, are classified as very fine (2–4 µm) to medium silt
(8–16 µm). In general, this corresponds to earlier investiga-
tions on the grain-size distributions of the past 65 kyr in Lake
El’gygytgyn (Asikainen et al., 2007).

Characteristic grain-size distribution patterns that describe
the pelagic sediments of Lake El’gygytgyn at ICDP site
5011-1 are shown in Fig. 3. Samples from peak glacial pe-
riods (facies A) are fine-grained, do not contain any sand
and mostly show a trimodal distribution, eventually includ-
ing a double peak around 10 µm (Fig. 3, blue). Their grain-
size distributions are commonly slightly asymmetric, which
is caused by the lack of a normal tailing to coarse sediments
and a coarse-skewed shoulder. Samples from interglacial (fa-
cies B) and super interglacial (facies C) periods are compa-
rable (Fig. 3, red and yellow). Both sediment types comprise
sand, are coarser than deposits from facies A, and are poorly
sorted as indicated by the polymodal pattern of the grain-
size distribution. A common feature of grain-size distribu-
tions from warm time periods is the lack of normal tailing
but the occurrence of a peak or coarse-skewed shoulder at ap-
proximately 100 µm (Fig. 3). Sediments from climatic tran-
sitions (Fig. 3, green) are commonly finer than interglacial
period deposits and coarser than glacial period deposits. The
grain-size distributions can be comparable to typical patterns
of glacial or interglacial sediments, but most transitional de-
posits appear polymodal and exhibit a peak or coarse-skewed
shoulder at around 100 µm.
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4.2 PCA

The PCA of the pelagic sediment yield 3 major principal
components (PCs) explaining 75.4 % of the total variance in
the grain-size data, with PC1, PC2 and PC3 covering vari-
ances of 42.8, 20.4, and 12.2 %, respectively. The plot of
the active variables (PC1 vs. PC2; variance: 63.2 %; Fig. 4)
clearly shows an arch spanning from clay to very coarse silt
(Fig. 4), with highest negative factor loadings of PC1 reveal-
ing a grain diameter of 23.6 µm (coarse silt) and highest posi-
tives of 1.9 µm (clay to very fine silt). Grain diameters coarser
than 44.5 µm (very coarse silt to medium sand) and finer than
0.6 µm (clay) focus to the origin of the diagram, which results
in a horseshoe pattern (Fig. 4). The sample scores of PC1
(Fig. 2) show a high correlation to the mean (R2 = 0.93) and
the median values (R2 = 0.91), whereas only a weaker cor-
respondence to the mode values (R2 = 0.56) is noticeable. In
contrast, PC2 is highly correlated to medium silt (R2 = 0.83)
and PC3 is not correlated to any grain-size fraction.

4.3 Time series analysis

To gain insight into the frequency of the grain-size data,
time series analyses of PC1 samples scores have been per-
formed. The bulk spectrum yields three important peaks with
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dominant oscillations at 98.5, 40.6, and 22.9 kyr, which ex-
ceed the significance level of 99 %χ2 (Fig. 5).

As evolutionary power spectrum of PC1 sample scores
(Fig. 6a) was carried with a window width of 240 ka and
overlapping window segments were used for the calcula-
tions, the reported time period is between 2478 and 120 ka.
During this period, the evolutionary power spectrum yields
distinct variations in the relative power of the three domi-
nate cycles (98.5, 40.6, and 22.9 kyr). The 98.5 kyr period is
highly variable throughout the analyzed time period, with a
strong relative power prior to 2300 and from 2100 to 1800 ka,
from 1250 to 1000 ka, and after 800 ka, but a weak domi-
nance in the periods 2200 to 2100 ka, 1800 to 1600 ka and
1000 to 800 ka. The 40.6 kyr cycle is more consistent with a
strong relative power from 2400 to 1250 ka and from 950 to
670 ka, whereas a low signal occurs around 1750 ka and af-
ter 670 ka. The 22.9 kyr cycle occurs from 1900 to 1300 ka,
from 1100 to 900 ka, and during two short time periods at
2250 and 130 ka.

5 Discussion

5.1 Sedimentation processes at Lake El’gygytgyn

The Quaternary grain-size variability of core 5011-1 from
Lake El’gygytgyn is strongly connected to climate varia-
tion, with coarse-grained, polymodal distributed sediments
occurring during warm periods and fine-grained, trimodal
distributed deposits during cold periods (Fig. 3). Grain-size
distributions from samples deposited during a transition from
interglacial to glacial periods appear mostly polymodal but
are less coarse than samples from warm conditions (Fig. 3).
The climate dependency of the grain-size distributions is also
confirmed by a comparison of the mean grain size to other
climate-dependent proxies of the Lake El’gygytgyn record
(cf. Fig. 7). The Si/Ti ratio is a measure of the biogenic sil-
ica content (BSi) in the sediment and, thus, of the primary
production by diatoms if grain-size effects by XRF scan-
ning can be excluded (Melles et al., 2007, 2012; Vogel et
al., 2013; Wennrich et al., 2013b). High Si/Ti ratios reflect a
high content of BSi in the sediments, which is related to high
primary production in the lake under warm climate condi-
tions (Melles et al., 2007, 2012; Vogel et al., 2013; Wennrich
et al., 2013b). For the analyzed data, the grain-size distri-
bution is independent from the content of BSi in the sedi-
ment as diatoms were removed during sample pre-treatment
for grain-size analyses. As both proxies show very similar
variations, this supports the assumption of climate-dependent
clastic sedimentation processes at Lake El’gygytgyn (Fig. 7).

As shown for modern conditions, the supply of clastic ma-
terial to Lake El’gygytgyn is mainly restricted to spring and
early summer, when snowmelt and warm temperatures re-
sult in the availability of fluvial discharge (cf. Fedorov et
al., 2013). Additionally, the thickness of the active layer of
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the local permafrost should be linked to the availability of
clastic material. During snowmelt, even pebble- to cobble-
sized rocks as well as clumps of tundra are transported to the
beach and close to the shoreline in the lake (cf. Asikainen et
al., 2007; Nolan and Brigham-Grette, 2007). Coarse material
may be filtered by the shore bars, explaining the lack of a
normal tailing to coarse sediments in Lake El’gygytgyn de-
posits. Subsequently, sand-sized and finer sediments are re-
distributed by a wind-induced current pattern in the lake. The
geochemical, mineralogical and sedimentological analyses
of surface sediments from Lake El’gygytgyn, inlet streams,
and source rocks have shown that clastic material that is
transported to the lake is re-distributed by lake-internal cur-
rents (Wennrich et al., 2013a). These current systems are
induced by strong wind conditions of predominantly north-
ern or southern directions and result in the occurrence of a
suspension cloud focused to the lake center (Wennrich et
al., 2013a). In relation to the suspension cloud, a tongue
of coarse-grained and poorly sorted sediments focused to
the lake center can be observed in the surface sediments
of Lake El’gygytgyn (cf. Wennrich et al., 2013a). Wind
speed, current speed of the water body and transport en-
ergy for transportation of clastic material are very closely
connected within this sedimentation system. Surface sedi-
ments from central parts of Lake El’gygytgyn exhibit com-
parable grain-size diameters and distribution patterns to sedi-
ments from interglacial periods. This implies that sedimenta-
tion processes described for the modern conditions persisted
during interglacial periods throughout the entire Quaternary.
In addition, no remarkable differences in the grain-size dis-
tributions from interglacial facies B and super interglacial
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the entire record. Variations on a glacial–interglacial timescale but
also of higher frequency are well reflected by the grain-size data.
Grain-size distributions during MIS11 do not differ compared to
other interglacials.

facies C could be observed (cf. Figs. 2, 3 and 7). Thus, the
maximum transport energy during both interglacial periods
was likely comparable. Variable transport energies during
both types of interglacials could be indicated by the typ-
ical polymodal pattern of the grain-size distributions and
the occurrence of the coarse-skewed shoulder or indepen-
dent peak at∼ 100 µm (cf. Fig. 3a). However, polymodal
grain-size distributions could also be triggered by additional
sedimentation processes, such as eolian or ice floe trans-
portation. For modern conditions, eolian sediment input to
Lake El’gygytgyn was estimated by measuring the particle
concentration of the snow on the lake ice prior to the ice
breakup. The amount of the eolian supply is calculated as
2 to 5 % of the total sediment deposition (Fedorov et al.,
2013). After ice breakup, random ice floe transport of sed-
iments of fluvial origin could have significantly contributed
to the sediment supply of ICDP site 5011-1. Modern obser-
vations recorded sediment supply by inlet streams onto the
ice cover during snowmelt, wherefrom the sediment is peri-
odically flushed out when the temperatures are high enough
(Fedorov et al., 2013). Sediment supply onto the ice cover
and subsequent redistribution by ice floe transportation is
also described for other seasonally ice-covered lakes, e.g. for
Lake Baikal (Vologina et al., 2005).
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Varying transport energies in the lake-water body, eolian
supply and ice floe transportation can explain the coarse-
grained, poorly sorted occurrence of interglacial grain-size
distributions. The finer, better-sorted sediments from glacial
periods, in contrast, suggest low transport energies and prob-
ably reduced eolian supply or ice floe transportation. Re-
duced eolian supply and ice floe transportation can be ex-
plained by a very short ice-free summer season or a perennial
ice cover. An enhanced deposition of eolian deposits at the
end of a long period with a perennial ice cover is not observed
in the data, likely because of the low sample resolution. How-
ever, eolian sediment can be deposited despite a perennial ice
cover during cold and dry periods (Asikainen et al., 2007;
Melles et al., 2007). Material of eolian origin is able to move
through the ice along grain boundaries and vertical conduits,
whereby it might be compacted to 1–2 mm clasts (Nolan,
2013). These clasts are not observed in the grain-size data,
likely because they are destroyed during the sample pre-
treatment. A perennial lake ice cover also excludes the redis-
tribution of clastic material by a wind-induced current pat-
tern. In general, sediment supply to Lake El’gygytgyn under
such conditions is widely restricted to seasonal moats around
the perennial lake ice, formed in late summer (Asikainen et
al., 2007; Melles et al., 2007). The transportation of clas-
tic material to the lake center likely depends on relatively
weak lake-internal currents triggered by temperature differ-
ences between the seasonal moats with warmer water tem-
peratures and deeper parts of Lake El’gygytgyn. The forma-
tion of a perennial lake-ice cover and the occurrence of sea-
sonal moats predominantly depends on the summer temper-
ature (Nolan, 2013). Summer temperature also triggers the
thickness of the active layer of the permafrost and restricts
the availability of water as a major transport medium for clas-
tic material. A thin active layer and limited water availability
hamper the supply of coarse material to the lake. Overall, the
deposition of clastic material at ICDP site 5011-1 seems to
be very sensitive to variations of the local summer tempera-
ture at Lake El’gygytgyn. Gradual transitions from warm to
cold conditions on an interglacial–glacial timescale are well
reflected by the mean grain size, and even higher amplitude
variations (e.g. between MIS 11 and 10, Fig. 7) are present
in the data. This implies gradual rather than abrupt changes
of the sedimentation processes at Lake El’gygytgyn during
such transitions.

5.2 PCA

Factor loadings of PC1 yield the most important grain di-
ameter (fractions) contributing to the grain-size distribution
(Fig. 4). High positive or negative factor loadings imply a
high importance of the coarse silt or the very fine silt fraction,
respectively. As variations in the grain-size data are primar-
ily attributed to climate variability, sample scores of PC1 can
be interpreted to represent climate variations. High negative
PC1 scores are associated with warmer climate conditions

with ice-free conditions during summer and enhanced sedi-
mentation of coarse silt. In contrast, high positive PC1 scores
are linked to glacial climate conditions and the enrichment of
very fine silt. Silt, in particular medium silt, shows the weak-
est correlation to PC1 but high factor loading on PC2. The
high correlation of medium silt to PC2 is apparently mainly
triggered by the occurrence of the horseshoe pattern (Fig. 4).
The horseshoe pattern is a mathematic artifact in PCA re-
sults (cf. Kendall, 1971; Gauch et al., 1977), which occurs if
the analyzed data set is only influenced by one long gradient
and each variable (inhere: grain diameter) is successively re-
placed by the next one, resulting in a unimodal response to
the gradient (Swan, 1970; Gauch et al., 1977). Thus, PCA re-
sults substantiate the interpretation that grain-size variations
of Lake El’gygytgyn sediments predominantly reflect varia-
tions in the sedimentary processes controlled by climate in-
fluences. Additional processes, such as lake-level variations
or changes in the geomorphic shape of the catchment, have
only limited influence on the grain-size distribution. In line
with this result, a direct connection between the grain-size
data and lake-level fluctuations recorded by the occurrence
of lacustrine terraces in the area and in sediment cores from
marginal parts of the lake (cf. Juschus et al., 2011) is not
present.

5.3 Time series analysis

To distinguish between time periods, which are dominated by
global glacial–interglacial or shorter-term variations, a time
series analysis on PC1 sample scores was carried out. As the
age model of core 5011-1 was derived by tuning sediment
proxies with local insolation and the global marine isotope
stack LR04 (Melles et al., 2012; Nowaczyk et al., 2013), the
bulk spectrum (Fig. 5) yields dominant oscillations above
the 99 %χ2 confidence level at Milankovitch’s eccentric-
ity (98.5 kyr), obliquity (40.6 kyr) and precession oscillations
(22.9 kyr). Despite the tuned age model of core 5011-1, the
relative dominance of these three oscillations clearly differs
from these of LR04 during the Quaternary (Fig. 6). Oscil-
lations of higher frequency that exceed the red noise level
(cf. Fig. 5) were not included in further analyses, as the
temporal resolution of the grain-size data ranges between
0.02 and 19.79 ka (average: 2.56 ka, cf. Fig. 6b). Cycles of
98.5 and 40.6 ka are interpreted to be a result of global cli-
mate variability and variations of the global ice volume, as
reflected by marine isotope stack LR04 (Lisiecki and Raymo,
2005; cf. Fig. 6c). In contrast, the 22.9 ka band is closely
connected to local orbital precession forcing at the latitude
of Lake El’gygytgyn, with coarser grain-size distributions
associated with high insolation values. Consequently, ice-
free summertime is extended during high insolation forcing,
which is consistent with results of previous studies on the
sedimentation pattern of Lake El’gygytgyns, e.g. magnetic
susceptibility and TOC data (Melles et al., 2007; Nowaczyk
et al., 2007). On the other hand, the strong precession cycle
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in the Lake El’gygytgyn grain-size data could be a latitudi-
nal teleconnection, as the precession cycle is rather weak in
polar but stronger in equatorial regions (Berger and Loutre,
1991). Tropical to subtropical climate oscillations that are as-
sociated with variations on a precession cycle are the East
Asian Monsoon (Sun et al., 2006) and the El Niño–Southern
Oscillation (Tudhope et al., 2001). In transect from Lake
El’gygytgyn to southern direction, winter monsoon variabil-
ity on a precession cycle is recorded from the Chinese Loess
Plateau (Sun et al., 2006).

During the early Pleistocene (2600 to 780 ka; see also
Fig. 2), when global climate conditions were dominated by
the 41 kyr band (e.g. Clark et al., 2006), similarities and
dissimilarities between 5011-1 and LR04 occur (Fig. 6).
The strong oscillation of the 41.7 kyr cycle in the grain-
size data of 5011-1 well reflect global climate variability
on the obliquity oscillation band. In contrast, the 98.5 kyr
cycle in the grain-size data is more variable, with a strong
response to climate forcing between 2450 and 2300 ka and
between 2100 and 1800 ka, and a reduced power between
1800 and 1600 ka (Fig. 6). These findings partly agree
with descriptions of Nie et al. (2008) about the 100 ka
band during the early Pleistocene. Following their descrip-
tion of the “late Pliocene–early Pleistocene 100 kyr prob-
lem”, there is a strong response of climate proxies be-
tween 3000 and 1800 ka, although forcing is strong between
2300 and 1300 ka. However, Lake El’gygytgyn grain-size
data indicate only a weak 98.5 kyr cycle between 2300 and
2100 ka.

During the early Pleistocene, the 22.9 kyr precession band
is strong around 2250 ka and between 1900 and 1300 ka
when relative eccentricity or obliquity powers are low. Thus,
the precession band at Lake El’gygytgyn mostly interplays
with the eccentricity band and is therefore closely connected
with the late Pliocene–early Pleistocene 100 kyr problem.
The absence of the 23 ka band between 3000 and 1000 ka
in global benthic isotope records (cf. Fig. 6) despite a strong
precession cycle at all latitudes has been explained with an
out-of-phase ice sheet growth and melt at each pole (Raymo
et al., 2006). Grain-size data at Lake El’gygytgyn is not
directly coupled to global ice-volume variability and, thus,
shows the 23 ka precession band to be important for the cli-
mate conditions during specific time intervals. Variations on
a 23 ka oscillation band during the early Pleistocene are also
reported from the Chinese Loess Plateau (Sun et al., 2006)
and African dust records (deMenocal, 1995).

The time periods of the Middle Pleistocene transition
(MPT; see also Fig. 2) and the late Pleistocene are marked
by the transition of the climate variability from the domi-
nance of the obliquity oscillation to eccentricity oscillation
(e.g. Clark et al., 2006). In our data set this transition is rather
gradual with an initial onset of the 98.5 kyr cycle at 1250 ka,
low power from 1000 to 800 ka and strong power afterwards
until at least 130 ka. A weakening of the 100 ka eccentricity
band around 1000 ka is also present in LR04 (Fig. 6c). At

Lake El’gygytgyn, this period until 800 ka is characterized
by an initially strong 22.9 kyr cycle and subsequent strong
40.6 kyr cycle. The decreasing relative power of the obliq-
uity oscillation during the late Pleistocene implies that the
MPT at Lake El’gygytgyn lasted from 1250 to 670 ka. Such
a gradual transition is also described for LR04 with an ini-
tial onset at 1250 ka, a disturbance of the eccentricity cycle
for 100 kyr around 1000 ka, and a completion of the transi-
tion to the 100 kyr world at 700 ka (Clark et al., 2006). The
mechanism leading to the emergence of the 100 kyr band is
hypothesized to have been triggered by a long-term cool-
ing trend induced by decreasingpCO2 (Berger et al., 1999;
Tziperman and Gildor, 2003) and/or increasing ice sheet
thickness due to exposure of high-friction crystalline bedrock
(Clark and Pollard, 1998), whereas orbital forcing can be ex-
cluded (Clark et al., 2006).

6 Conclusions

Variations in the grain-size distribution of Lake El’gygytgyn
sediments during the past 2600 ka have shown to be mainly
influenced by summer temperature and thus, by global and
regional climate conditions. Main factors triggering the clas-
tic sedimentation in the lake are assumed to be the exis-
tence and duration of an annual lake-ice cover, the permafrost
stability around the lake and the intensity of fluvial trans-
port processes in the catchment. Studies on the modern sed-
imentation in the lake have shown that a wind-induced cur-
rent pattern of different strengths triggers the occurrence of
coarse-grained deposits at the center of the lake during ice-
free periods (Wennrich et al., 2013a). Our data suggest that
this process persisted throughout the entire Quaternary. Un-
der glacial climate conditions, sediment supply to the lake is
likely restricted to seasonal moats close to the shore and to
vertical conduits in the ice.

Principal Component Analysis allowed identifying most
important grain-size fractions attributed to variations in the
data set. Coarse silt and very fine silt could be emphasized
to be the major players in climate-dependent variations in
the grain-size data, whereas medium silt does not show this
climate dependency.

Time series analysis reveals major oscillation and their rel-
ative dominance in the grain-size data during the Quaternary.
It can be concluded that duration of annual lake-ice cover and
thickness of the active layer during summer are triggered by
global glacial–interglacial cycles (98.5, 40.6 kyr) and by lo-
cal insolation forcing and/or latitudinal teleconnections (pre-
cession band, 22.9 kyr). Early Pleistocene variations on a
98.5 kyr oscillation band partly agree with descriptions of
the late Pliocene–early Pleistocene 100 kyr problem” by Nie
et al. (2008). Additionally, our data suggest an interplay of
the 98.5 and 22.9 kyr cycles during the early Pleistocene.
Oscillations on the eccentricity band (98.5 kyr) likely re-
flect global climate variability at Lake El’gygytgyn, whereas
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variations on the precession band (22.9 kyr) are probably
connected with regional insolation variations or latitudinal
climatic teleconnections. The MPT is well reflected by our
data between 1250 and 670 ka.
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