Articles | Volume 9, issue 6
Research article
05 Nov 2013
Research article |  | 05 Nov 2013

Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia

A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette

Abstract. Lake El'gygytgyn, located in the Far East Russian Arctic, was formed by a meteorite impact about 3.58 Ma ago. In 2009, the International Continental Scientific Drilling Program (ICDP) at Lake El'gygytgyn obtained a continuous sediment sequence of the lacustrine deposits and the upper part of the impact breccia. Here, we present grain-size data of the past 2.6 Ma. General downcore grain-size variations yield coarser sediments during warm periods and finer ones during cold periods. According to principal component analysis (PCA), the climate-dependent variations in grain-size distributions mainly occur in the coarse silt and very fine silt fraction. During interglacial periods, accumulation of coarser material in the lake center is caused by redistribution of clastic material by a wind-induced current pattern during the ice-free period. Sediment supply to the lake is triggered by the thickness of the active layer in the catchment and the availability of water as a transport medium. During glacial periods, sedimentation at Lake El'gygytgyn is hampered by the occurrence of a perennial ice cover, with sedimentation being restricted to seasonal moats and vertical conduits through the ice. Thus, the summer temperature predominantly triggers transport of coarse material into the lake center. Time series analysis that was carried out to gain insight into the frequency of the grain-size data showed variations predominately on 98.5, 40.6, and 22.9 kyr oscillations, which correspond to Milankovitch's eccentricity, obliquity and precession bands. Variations in the relative power of these three oscillation bands during the Quaternary suggest that sedimentation processes at Lake El'gygytgyn are dominated by environmental variations caused by global glacial–interglacial variations (eccentricity, obliquity), and local insolation forcing and/or latitudinal teleconnections (precession), respectively.