Articles | Volume 8, issue 1
https://doi.org/10.5194/cp-8-307-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-307-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
A. Alexandre
CEREGE, UMR7330, Aix-Marseille Université, CNRS, IRD, Europôle de l'Arbois, BP80, 13545 Aix en Provence, Cedex 04, France
J. Crespin
CEREGE, UMR7330, Aix-Marseille Université, CNRS, IRD, Europôle de l'Arbois, BP80, 13545 Aix en Provence, Cedex 04, France
F. Sylvestre
CEREGE, UMR7330, Aix-Marseille Université, CNRS, IRD, Europôle de l'Arbois, BP80, 13545 Aix en Provence, Cedex 04, France
C. Sonzogni
CEREGE, UMR7330, Aix-Marseille Université, CNRS, IRD, Europôle de l'Arbois, BP80, 13545 Aix en Provence, Cedex 04, France
D. W. Hilbert
CSIRO Ecosystem Sciences, Tropical Forest Research Centre, P.O. Box 780, Atherton, QLD 4883, Australia
CEREGE, UMR7330, Aix-Marseille Université, CNRS, IRD, Europôle de l'Arbois, BP80, 13545 Aix en Provence, Cedex 04, France
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa
Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments
Different facets of dry–wet patterns in south-western China over the past 27 000 years
The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity
The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Jacek Pawlak
Clim. Past, 17, 1051–1064, https://doi.org/10.5194/cp-17-1051-2021, https://doi.org/10.5194/cp-17-1051-2021, 2021
Short summary
Short summary
Presently, central Europe is under the influence of two types of climate, transitional and continental. The 60 ka long multiproxy speleothem dataset from Slovakia records the climate of the Last Interglacial cycle and its transition to the Last Glacial. The interpretation of stable isotopic composition and trace element content proxies helps to distinguish which factor had the strongest influence on the δ18O record shape: the local temperature, the humidity or the source effect.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
A. Zander and A. Hilgers
Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, https://doi.org/10.5194/cp-9-719-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
T. Kluge, H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spötl
Clim. Past, 9, 377–391, https://doi.org/10.5194/cp-9-377-2013, https://doi.org/10.5194/cp-9-377-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Alexandre, A., Meunier, J. D., Colin, F., and Koud, J. M.: Plant impact on the biogeochemical cycle of silicon and related weathering processes, Geochim. Cosmochim. Acta, 61, 677–682, 1997.
Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A., and Schwartz, D.: Phytoliths: indicators of grassland dynamics during the Late Holocene in intertropical Africa, Palaeogeogr. Palaeocl., 136, 213–229, 1998.
Alexandre, A., Meunier, J. D., Mariotti, A., and Soubies, F.: Late Holocene paleoenvironmental record from a latosol at Salitre (Southern Central Brazil): phytolith and carbon isotope evidence, Quaternary Res., 51, 187–194, 1999.
Alexandre, A., Sonzogni, C., Basile, I., Sylvestre, F., Parron, C., Meunier, J. D., and Colin, F.: Oxygen isotope analyses of fine silica grains using laser-extraction technique: comparison with oxygen isotope data obtained from ion microprobe analyses and application to quartzite and silcrete cement investigation, Geochim. Cosmochim. Acta, 70, 2827–2835, 2006.
Barboni, D., Bremond, L., and Bonnefille, R.: Comparative study of modern phytolith assemblages from inter-tropical Africa, Palaeogeogr. Palaeocl., 246, 454–470, 2007.
Blatt, H.: Oxygen isotopes and the origin of quartz, J. Sediment. Petrol., 57, 373–377, 1986.
Bowen, G. J. and Wilkinson, B.: Spatial distribution of δ18O in meteoric precipitation, Geology, 30, 315–318, 2002.
Boyd, W. E., Lentfer, C. J., and Parr, J.: Interactions between human activity, volcanic eruptions and vegetation during the Holocene at Garua and Numundo, West New Britain, PNG, Quaternary Res., 64, 384–398, 2005.
Brandriss, M. E., O'Neil, J. R., Edlund, M. B., and Stoermer, E. F.: Oxygen isotope fractionation between diatomaceous silica and water, Geochim. Cosmochim. Acta, 62, 1119–1125, 1998.
Bremond, L., Alexandre, A., Peyron, O., and Guiot, J.: Grass water stress estimated from phytoliths in West Africa, J. Biogeogr., 32, 11–32, 2005a.
Bremond, L., Alexandre, A., Hely, C., and Guiot, J.: A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon, Global Planet. Change, 45, 277–293, 2005b.
Bremond, L., Alexandre, A., Peyron, O., and Guiot, J.: Grassland biomes estimated from phytoliths in West Africa, J. Biogeogr., 35, 2039–2048, 2008a.
Bremond, L., Alexandre, A., Wooller, M. J., Hély, C., Williamson, D., Schäfer, P. A., Majule, A., and Guiot, J.: Phytolith indices as proxy of grass subfamilies dominance on tropical mountains from three sites in East Africa: Mt Kenya (Kenya), Mt Rungwe and Lake Masoko (Tanzania), Global Planet. Change, 61, 209–224, 2008b.
Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, 1996.
Cary, L., Alexandre, A., Meunier, J. D., Boeglin, J. L., and Braun, J. J.: Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon), Biogeochemistry, 74, 101–114, 2005.
Chapligin, B., Leng, M., Webb, E., Alexandre, A., Dodd, J., Faure, K., Ijiri, A., Lücke, A., Shemesh, A., Abelmann, A., Herzschuh, U., Longstaffe, F., Meyer, H., Moschen, R., Okazaki, Y., Rees, N. H., Sharp, Z., Sloane, H. J., Sonzogni, C., Swann, G., Sylvestre, F., Tyler, J., and Yam, R.: Interlaboratory comparison of oxygen isotopes from biogenic silica, submitted to Geochim. Cosmochim. Acta, 2012.
Clayton, R. N., O'Neil, J. R., and Mayeda, T. K.: Oxygen isotope exchange between quartz and water, J. Geophys. Res., 77, 3057–3067, 1972.
Crespin, J., Alexandre, A., Sylvestre, F., Sonzogni, C., Paillès, C., and Garreta, V.: IR-laser-extraction technique adapted to oxygen isotopes analysis of small biogenic silica samples, Anal. Chem., 80, 2372–2378, 2008.
Crespin, J., Sylvestre, F., Alexandre, A., Sonzogni, C., Paillès, C., Perga, M. E.: Re examination of the temperature-dependent relationship between δ18O$_{\rm diatoms}$ and δ18O$_{\rm lake water}$ for Lake Annecy (France). Implications for palaeoclimatic applications, J. Paleolimnol., 44, 547–557, https://doi.org/10.1007/s10933-010-9436-2, 2010.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 4, 436–468, 1964.
Danzeglocke, U., Jöris, O., and Weninger, B.: CalPal-2007$^{\rm online}$, http://www.calpal-online.de/, last access: 27 October 2011.
DASETT: Nomination of Wet Tropical Rainforests of North-east Australia by the Government of Australia for inclusion in the World Heritage List, Department of Arts, Sports, the Environment, Tourism and Territories, 31 pp., 1986.
Dayem, K. E., Molnar, P., Battisti, D. S., and Roe, G. H.: Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia, Earth Planet. Sc. Lett., 295, 219–230, 2010.
Dodd, J. P. and Sharp, Z. D.: A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments, Geochim. Cosmochim. Acta, 74, 1381–1390, 2010.
Eslinger, E., Mayer, L. M., Durst, T. L., Hower, J., and Savin, S. M.: An X-ray technique for distinguishing between detrital and secondary quartz in the fine-grained fraction of sedimentary rocks, J. Sediment. Petrol., 43, 540–543, 1973.
Flanagan, L. B., Bain, J. F., and Ehleringer, J. R.: Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions, Oecologia, 88, 394–400, 1991.
Fraysse, F., Pokrovsky, O. S., Schott, J., and Meunier, J. D.: Surface chemistry and reactivity of plant phytoliths in aqueous solutions, Chem. Geol., 258, 197–206, 2009.
Fredlund, G. and Tieszen, L. T.: Modern phytolith assemblages from the North American Great Plains, J. Biogeogr., 21, 321–335, 1994.
Fricke, H. C. and O'Neil, J. R.: The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time, Earth Planet. Sc. Lett., 170, 181–196, 1999.
Garlick, G. D. and Epstein, S.: Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks, Geochim. Cosmochim. Acta, 31, 181–214, 1967.
Gat, J. R.: Atmospheric water balance-the isotopic perspective, Hydrol. Process., 14, 1357–1369, 2000.
Gat, J. R. and Matsui, E.: Atmospheric water balance in the Amazon basin: an isotopic evapotranspiration model, J. Geophys. Res., 96, 13179–13188, 1991.
Gat, J. R., Mook, W. G., and Meijer, A. J.: Environmental Isotopes in the hydrological cycle, in: Principles and applications IHP-V Technical Documents in Hydrology, 39, UNESCO-IAEA, 2001.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data, Nature, 421, 833–837, 2003.
Girard, J. P., Freyssinet, P., and Chazot, G.: Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated study from Yaou, French Guiana, Geochim. Cosmochim. Acta, 64, 409–426, 2000.
Godfred-Spenning, C. R. and Reason, C. J. C.: Interannual variability of lower troposheric moisture transport during the australian monsoon, Int. J. Climatol., 22, 509–532, 2002.
Gonfiantini, R., Roche, M. A., Olivry, J. C., Fontes, J. C., and Zuppi, G. M.: The alitude effect on the isotopic composition of tropical rains, Chem. Geol., 181, 147–167, 2001.
Graham, C. M., Valley, J. W., and Winter, B. L.: Ion microprobe analysis of 18O/16O in authigenic and detrital quartz in the St. Peter Sandstone, Michigan Basin and Wisconsin Arch, USA: contrasting diagenetic histories, Geochim. Cosmochim. Acta, 60, 5101–5116, 1996.
Haberle, S. G.: A 23,000-yr pollen record from Lake Euramoo, Wet Tropics of NE Queensland, Australia, Quaternary Res., 64, 343–356, 2005.
Houlder, D., Hutchinson, M., Nix, H., and McMahon, J.: ANUCLIM User's Guide, Australian National University, Canberra, 2000.
Hsieh, J. C. C., Chadwick, O. A., Kelly, E. F., and Savin, S. M.: Oxygen isotopic composition of soil water: quantifying evaporation and transpiration, Geoderma, 82, 269–293, 1998.
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, E.: Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405, https://doi.org/10.1029/2005GL025583, 2006.
Hutchinson, M. F.: The application of thin plate smoothing splines to continent-wide data assimilation, in: Data Assimilation Systems, edited by: Jasper, J. D., Bureau of Meteorology Research Report No. 27, Melbourne, 104–113, 1991.
Hutchinson, M. F.: Interpolating mean rainfall using thin plate smoothing splines, Int. J. Geogr. Inf. Syst., 9, 385–403, 1995.
Hutley, L. B., Doley, D., and Yates, D. J.: Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog, Aust. J. Bot., 45, 311–329, 1997.
Jenkinson, D. J. and Rayner, J. H.: The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci., 123, 298–305, 1977.
Juillet-Leclerc, A. and Labeyrie, L.: Temperature dependence of the oxygen isotopic fractionation between diatom silica and water, Earth Planet. Sc. Lett., 84, 69–74, 1987.
Kelly, E. F.: Methods for extracting opal phytoliths from soils and plant material, Internal Report, Colorado State University, Fort Collins, 1990.
Kershaw, A. P., Bretherton, S. C., and van der Kaars, S.: A complete pollen record of the last 230 ka from Lynch's Crater,north-eastern Australia, Palaeogeogr. Palaeocl., 251, 23–45, 2007.
Kondo, R., Childs, C., and Atkinson, I.: Opal phytoliths of New Zealand, Manaaki Whenua Press, 85 pp., 1994.
Labeyrie, L. and Juillet, A.: Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for paleoclimatic studies, Geochim. Cosmochim. Acta, 46, 967–975, 1982.
Lachniet, M. S. and Patterson, W. P.: Stable isotope values of Costa Rican surface waters, J. Hydrol., 260, 135–150, 2002.
Lachniet, M. S. and Patterson, W. P.: Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects, Earth Planet. Sc. Lett., 284, 435–446, 2009.
Lecuyer, C., Reynard, B., and Martineau, F.: Stable isotope fractionation between mollusc shells and marine waters from Martinique Island, Chem. Geol., 213, 293–305, 2004.
Leng, M. J. and Barker, P. A.: A review of the oxygen isotope composition of lacustrine diatom silica for paleoclimate reconstruction, Earth Sci. Rev., 75, 5–27, 2006.
Lentfer, C. and Torrence, R.: Holocene volcanic activity, vegetation succession, and ancient human land use: unraveling the interactions on Garua Island, Papua New Guinea, Rev. Palaeobot. Palynol., 143, 83–105, 2007.
Liu, W., Li, X., Zhang, L., An, Z., and Xu, L.: Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau, Chem. Geol., 268, 126–136, 2009.
Longinelli, A., Anglesio, E., Flora, O., Iacumin, P., and Selmo, E.: Isotopic composition of precipitation in Northern Italy: Reverse effect of anomalous cliamtic events, J. Hydrol., 329, 471–476, 2006.
Madella, M., Alexandre, A., and Ball, T.: ICPN Working Group (2005) International Code for Phytolith Nomenclature 1.0, Ann. Bot.-London, 96, 253–260, 2005.
Martinelli, L. A., Victoria, R. L., Sternberg, L. S. L., Ribeiro, A., and Moreira, M. Z.: Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon Basin, J. Hydrol., 183, 191–204, 1996.
Matsuhisa, Y., Goldsmith, J. R., and Clayton, R. N.: Oxygen isotopic fractionation in the system quartz-albite-anorthite-water, Geochim. Cosmochim. Acta, 43, 1131–1140, 1979.
McJannet, D., Wallace, J., and Reddell, P.: Precipitation interception in Australian tropical rainforests: I. Measurment of stemflow, throughfall and cloud interception, Hydrol. Process., 21, 1692–1702, 2007a.
McJannet, D., Wallace, J., and Reddell, P.: Precipitation interception in Australian tropical rainforests: I. Altitudinal gradient of cloud interception, stemflow, throughfall and interception, Hydrolo. Process., 21, 1703–1718, 2007b.
McMahon, J. P., Hutchinson, M. F., Nix, H. A., and Ord, K. D.: ANUCLIM user's guide, version 1, Centre for Resource and Environmental Studies, Australian National University, Canberra, 1995.
Moschen, R., Lücke, A., and Schleser, G. H.: Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and paleoclimatology, Geophys. Res. Lett., 32, L07708, https://doi.org/10.1029/2004GL022167, 2005.
Moss, P. T. and Kershaw, A. P.: The last glacial cycle from the humid tropics of northeastern Australia: comparison of a terrestrial and a marine record, Palaeogeogr. Palaeocl., 155, 155–176, 2000.
Mulholland, S. C.: Phytoliths shape frequencies in North Dakota grasses: A comparison to general patterns, J. Archaeol. Sci., 16, 489–511, 1989.
Neumann, K., Fahmy, A., Lespez, L., Ballouche, A., and Huysecom, E.: The Early Holocene palaeoenvironment of Ounjougou (Mali): phytoliths in a miltiproxy context, Palaeogeogr. Palaeocl., 276, 87–106, 2009.
Njitchoua, R., Sigha-Nkamdjou, L., Dever, L., Marlin, C., Sighomnou, D., and Nia, P.: Variations of the stable isotopic composition of rainfall events from the Cameroon rainforest, Central Africa, J. Hydrol., 223, 17–23, 1999.
Nott, J., Haig, J., Neil, H., and Gillieson, D.: Greater frequency variability of land falling tropical cyclones at centennial compared to seasonal and decadal scales, Earth Planet. Sc. Lett., 255, 367–372, 2007.
Ometto, J. P. H., Flanagan, L. B., Martinelli, L. A., and Ehrleringer, J. R.: Oxygen isotope ratios of waters and respired CO2 in Amazonian forest and pasture ecosystems, Ecol. Appl., 15, 58–70, 2005.
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Sci. Soc. Am. J., 51, 1173–1179, 1987.
Perry, C. C. and Keeling-Tucker, T.: Biosilicification: the role of organic matrix in structure control, J. Biol. Inorg. Chem., 5, 537–550, 2000.
Piperno, D. R.: Phytoliths: a comprehensive guide for archaeologists and paleoecologists, Altamira Press, Lanham, p. 238, 2006.
Piperno, D. R. and Becker, P.: Vegetational history of a site in the central Amazon Basin derived from phytolith and charcoal records from natural soils, Quaternary Res., 45, 202–209, 1996.
Poage, M. A. and Chamberlain, C. P.: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change, Am. J. Sci., 301, 1–15, 2001.
Prior, C. A., Carter, J. A., and Rieser, U.: Are phytolith radiocarbon dates reliable?, 10th International Conference on Accelerator Mass Spectrometry, Berkeley, USA, 2005.
Rieser, U. and Wust, R. A. J.: OSL chronology of Lynch's Crater, the longest terrestrial record in NE-Australia, Quatern. Geochronol., 5, 233–236, 2010.
Rieser, U., Carter, J. A., and Prior, C. A.: Phytoliths: a chronometer for the late Quaternary, Poster presented at the INQUA 2007 Conference, Cairns, Australia, July/August 2007.
Rietti-Shatti, M., Yam, R., Karlen, W., and Shemesh, A.: Stable isotope composition of tropical high-altitude fresh-waters on Mt Kenya, Equatorial East Africa, Chem. Geol., 166, 341–350, 2000.
Robertson, A. W., Kirshner, S., Smyth, P., Charles, S. P., and Bates, B. C.: Subseasonal-to-Interdecadal variability of the Australian monsoon over North Queensland, Q. J. Roy. Meteorol. Soc., 131, 1–26, 2005.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitations, in: Climate change in continental climate records, edited by: Swart, P. K., Lohmann, K. C., Mc Kenzie, J., and Savin, S., American Geophysical Union, Geophys. Monogr., 78, 1–36, 1993.
Runge, F.:The opal phytolith inventory of soils in central Africa – quantities, shapes, classification, and spectra, Rev. Palaeobot. Palynol., 107, 23–53, 1999.
Salati, E., Dall'Ollio, A., Gat, J., and Matsui, E.: Recycling of water in the Amazon basin: an isotope study, Water Resour. Res., 15, 1250–1258, 1979.
Santos, G. M., Southon, J. R., Druffel-Rodriguez, K. C., Griffin, S., and Mazon, M.: Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: A report on sample preparation at KCCAMS at the University of California, Irvine, Radiocarbon, 46, 165–173, 2004.
Santos, G. M., Alexandre, A., Coe, H. H. G., Reyerson, P. E., Southon, J. R., and De Carvalho, C. N.: The Phytolith 14C puzzle: a tale of background determinations and accuracy tests, Radicarbon, 52-1, 113–128, 2010.
Savin, S. M. and Epstein, S.: The oxygen isotopic compositions of coarse grained sedimentary rocks and minerals, Geochim. Cosmochim. Acta, 34, 323–329, 1970.
Scurfield, G., Anderson, C. A., and Segnit, E. R.: Silica in woody stems, Aust. J. Bot., 22, 211–229, 1974.
Shahack-Gross, R., Shemesh, A., Yakir, D., and Weiner, S.: Oxygen isotopic composition of opaline phytoliths: potential for terrestrial climatic reconstruction, Geochim. Cosmochim. Acta, 60, 3949–3953, 1996.
Sharp, Z. D. and Kirschner, D. L.: Quartz-calcite oxygen isotope thermometry: A calibration based on natural isotopic variations, Geochim. Cosmochim. Acta, 58, 4491–4501, 1994.
Shemesh, A., Charles, C. D., and Fairbanks, R. G.: Oxygen isotopes in Biogenic Silica: Global Changes in Ocean Temperature and Isotopic Composition, Science, 256, 1434–1436, 1992.
Siegenthaler, U. and Oeschger, H.: Correlation of 18O in precipitation with temperature and altitude, Nature, 285, 314–317, 1980.
Strömberg, C. A. E.: Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America, P. Natl. Acad. Sci., 102, 11980–11984, 2005.
Suppiah, R., Collins, D. A., and Della-Marta, P. M. Observed changes in australian climate, supporting document for: Climate change projections for australia, Technical report, CSIRO Atmospheric Research, Aspendale, Australia, 2001.
Tracey, J. G.: The vegetation of the humid tropical region of North Queensland, CSIRO, 128 pp., 1982.
Twiss, P. C.: Predicted world distribution of C3 and C4 grass phytoliths, in: Phytolith Systematiccs, edited by: Rapp, G. and Mulholand, S. C., Emerging Issues. Adv. Archeol. Mus. Sci. I, 113–128, 1992.
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S. J.: A Mid-European decadal isotope-climate record from 15,500 to 5000 years B.P., Science, 284, 1654–1657, 1999.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate, Science 308, 854–857, 2005.
Webb, E. A. and Longstaffe, F. J.: The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate, Geochim. Cosmochim. Acta, 64, 767–780, 2000.
Webb, E. A. and Longstaffe, F. J.: Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass, Geochim. Cosmochim. Acta, 66, 1891–1904, 2002.
Webb, E. A. and Longstaffe, F. J.: The relationship between phytolith-and plant water δ18O values in grasses, Geochim. Cosmochim. Acta, 67, 1437–1449, 2003.
Webb, E. A. and Longstaffe, F. J.: Identifying the δ18O signature of precipitation in grass cellulose and phytoliths: Refining the paleoclimate model, Geochim. Cosmochim. Acta, 70, 2417–2426, 2006.
Webb, J. A. and Golding, S. D.: Geochemical mass-balance and oxygen-isotope constraints on silcrete formation and its paleoclimatic implications in southern Australia, J. Sediment. Res., 68, 981–993, 1998.
Webb, L. J. and Tracey, J. G.: The rainforests of northern Australia, in: Australian vegetation, edited by: Groves, R. H., Cambridge University Press, 87–130, 1994.
Yanes, Y., Romanek, C. S., Delgado, A., Brant, H. A., Noakes, J. E., Alonso, M. R., and Ibanez, M.: Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island, Geochim. Cosmochim. Acta, 73, 4077–4099, 2009.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8716 KB) - Metadata XML