Articles | Volume 8, issue 1
https://doi.org/10.5194/cp-8-1-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-1-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites
R. Winkler
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL/CEA/CNRS/UVSQ), UMR8212, Orme des Merisiers, 91191 Gif-sur-Yvette, France
A. Landais
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL/CEA/CNRS/UVSQ), UMR8212, Orme des Merisiers, 91191 Gif-sur-Yvette, France
H. Sodemann
Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
L. Dümbgen
Department of Mathematics and Statistics, Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland
F. Prié
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL/CEA/CNRS/UVSQ), UMR8212, Orme des Merisiers, 91191 Gif-sur-Yvette, France
V. Masson-Delmotte
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL/CEA/CNRS/UVSQ), UMR8212, Orme des Merisiers, 91191 Gif-sur-Yvette, France
B. Stenni
Department of Geosciences, University of Trieste, Via E. Weiss 4, 34127 Trieste, Italy
J. Jouzel
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL/CEA/CNRS/UVSQ), UMR8212, Orme des Merisiers, 91191 Gif-sur-Yvette, France
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Holocene
An annually resolved chronology for the Mount Brown South ice cores, East Antarctica
An age scale for new climate records from Sherman Island, West Antarctica
The new Kr-86 excess ice core proxy for synoptic activity: West Antarctic storminess possibly linked to Intertropical Convergence Zone (ITCZ) movement through the last deglaciation
A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years: GICC21
How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores
Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing
Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years
Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact
A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination
High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland
Greenland temperature and precipitation over the last 20 000 years using data assimilation
Holocene atmospheric iodine evolution over the North Atlantic
The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting
Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores
Particle shape accounts for instrumental discrepancy in ice core dust size distributions
Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium
Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land
Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records
A method for analysis of vanillic acid in polar ice cores
Dating a tropical ice core by time–frequency analysis of ion concentration depth profiles
A new Himalayan ice core CH4 record: possible hints at the preindustrial latitudinal gradient
Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes
Greenland ice core evidence of the 79 AD Vesuvius eruption
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023, https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
Short summary
We present an age scale for a new type of ice core from a vulnerable region in West Antarctic, which is lacking in longer-term (greater than a few centuries) ice core records. The Sherman Island core extends to greater than 1 kyr. We provide modelling evidence for the potential of a 10 kyr long core. We show that this new type of ice core can be robustly dated and that climate records from this core will be a significant addition to existing regional climate records.
Christo Buizert, Sarah Shackleton, Jeffrey P. Severinghaus, William H. G. Roberts, Alan Seltzer, Bernhard Bereiter, Kenji Kawamura, Daniel Baggenstos, Anaïs J. Orsi, Ikumi Oyabu, Benjamin Birner, Jacob D. Morgan, Edward J. Brook, David M. Etheridge, David Thornton, Nancy Bertler, Rebecca L. Pyne, Robert Mulvaney, Ellen Mosley-Thompson, Peter D. Neff, and Vasilii V. Petrenko
Clim. Past, 19, 579–606, https://doi.org/10.5194/cp-19-579-2023, https://doi.org/10.5194/cp-19-579-2023, 2023
Short summary
Short summary
It is unclear how different components of the global atmospheric circulation, such as the El Niño effect, respond to large-scale climate change. We present a new ice core gas proxy, called krypton-86 excess, that reflects past storminess in Antarctica. We present data from 11 ice cores that suggest the new proxy works. We present a reconstruction of changes in West Antarctic storminess over the last 24 000 years and suggest these are caused by north–south movement of the tropical rain belt.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Thomas Münch, Martin Werner, and Thomas Laepple
Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021, https://doi.org/10.5194/cp-17-1587-2021, 2021
Short summary
Short summary
We analyse Holocene climate model simulation data to find the locations of Antarctic ice cores which are best suited to reconstruct local- to regional-scale temperatures. We find that the spatial decorrelation scales of the temperature variations and of the noise from precipitation intermittency set an effective sampling length scale. Following this, a single core should be located at the
target site for the temperature reconstruction, and a second one optimally lies more than 500 km away.
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021, https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Abigail G. Hughes, Tyler R. Jones, Bo M. Vinther, Vasileios Gkinis, C. Max Stevens, Valerie Morris, Bruce H. Vaughn, Christian Holme, Bradley R. Markle, and James W. C. White
Clim. Past, 16, 1369–1386, https://doi.org/10.5194/cp-16-1369-2020, https://doi.org/10.5194/cp-16-1369-2020, 2020
Short summary
Short summary
An ice core drilled on the Renland ice cap (RECAP) in east-central Greenland contains a continuous climate record dating through the last glacial period. Here we present the water isotope record for the Holocene, in which high-resolution climate information is retained for the last 8 kyr. We find that the RECAP water isotope record exhibits seasonal and decadal variability which may reflect sea surface conditions and regional climate variability.
Jessica A. Badgeley, Eric J. Steig, Gregory J. Hakim, and Tyler J. Fudge
Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, https://doi.org/10.5194/cp-16-1325-2020, 2020
Juan Pablo Corella, Niccolo Maffezzoli, Carlos Alberto Cuevas, Paul Vallelonga, Andrea Spolaor, Giulio Cozzi, Juliane Müller, Bo Vinther, Carlo Barbante, Helle Astrid Kjær, Ross Edwards, and Alfonso Saiz-Lopez
Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, https://doi.org/10.5194/cp-15-2019-2019, 2019
Short summary
Short summary
This study provides the first reconstruction of atmospheric iodine levels in the Arctic during the last 11 700 years from an ice core record in coastal Greenland. Dramatic shifts in iodine level variability coincide with abrupt climatic transitions in the North Atlantic. Since atmospheric iodine levels have significant environmental and climatic implications, this study may serve as a past analog to predict future changes in Arctic climate in response to global warming.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Michael Döring and Markus C. Leuenberger
Clim. Past, 14, 763–788, https://doi.org/10.5194/cp-14-763-2018, https://doi.org/10.5194/cp-14-763-2018, 2018
Short summary
Short summary
We present a novel approach for ice-core-based temperature reconstructions, which is based on gas-isotope data measured on enclosed air bubbles in ice cores. The processes of air movement and enclosure are highly temperature dependent due to heat diffusion in and densification of the snow and ice. Our method inverts a model, which describes these processes, to desired temperature histories. This paper examines the performance of our novel approach on different synthetic isotope-data scenarios.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Pascal Bohleber, Tobias Erhardt, Nicole Spaulding, Helene Hoffmann, Hubertus Fischer, and Paul Mayewski
Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, https://doi.org/10.5194/cp-14-21-2018, 2018
Short summary
Short summary
The Colle Gnifetti (CG) glacier is the only drilling site in the European Alps offering ice core records back to some 1000 years. We aim to fully exploit these unique long-term records by establishing a reliable long-term age scale and an improved ice core proxy interpretation for reconstructing temperature. Our findings reveal a site-specific temperature-related signal in the trends of the mineral dust proxy Ca2+ that may supplement other proxy evidence over the last millennium.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
Clim. Past, 12, 1565–1581, https://doi.org/10.5194/cp-12-1565-2016, https://doi.org/10.5194/cp-12-1565-2016, 2016
Short summary
Short summary
Ice-core oxygen isotope ratios are a key climate archive to infer past temperatures, an interpretation however complicated by non-climatic noise. Based on 50 m firn trenches, we present for the first time a two-dimensional view (vertical × horizontal) of how oxygen isotopes are stored in Antarctic firn. A statistical noise model allows inferences for the validity of ice coring efforts to reconstruct past temperatures, highlighting the need of replicate cores for Holocene climate reconstructions.
F. Adolphi and R. Muscheler
Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, https://doi.org/10.5194/cp-12-15-2016, 2016
Short summary
Short summary
Here we employ common variations in tree-ring 14C and Greenland ice core 10Be records to synchronize the Greenland ice core (GICC05) and the radiocarbon (IntCal13) timescale over the Holocene. We propose a transfer function between both timescales that allows continuous comparisons between radiocarbon dated and ice core climate records at unprecedented chronological precision.
M. M. Grieman, J. Greaves, and E. S. Saltzman
Clim. Past, 11, 227–232, https://doi.org/10.5194/cp-11-227-2015, https://doi.org/10.5194/cp-11-227-2015, 2015
M. Gay, M. De Angelis, and J.-L. Lacoume
Clim. Past, 10, 1659–1672, https://doi.org/10.5194/cp-10-1659-2014, https://doi.org/10.5194/cp-10-1659-2014, 2014
S. Hou, J. Chappellaz, D. Raynaud, V. Masson-Delmotte, J. Jouzel, P. Bousquet, and D. Hauglustaine
Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, https://doi.org/10.5194/cp-9-2549-2013, 2013
T. Kobashi, K. Goto-Azuma, J. E. Box, C.-C. Gao, and T. Nakaegawa
Clim. Past, 9, 2299–2317, https://doi.org/10.5194/cp-9-2299-2013, https://doi.org/10.5194/cp-9-2299-2013, 2013
C. Barbante, N. M. Kehrwald, P. Marianelli, B. M. Vinther, J. P. Steffensen, G. Cozzi, C. U. Hammer, H. B. Clausen, and M.-L. Siggaard-Andersen
Clim. Past, 9, 1221–1232, https://doi.org/10.5194/cp-9-1221-2013, https://doi.org/10.5194/cp-9-1221-2013, 2013
Cited articles
Angert, A., Cappa, C. D., and Paolo, D. D.: Kinetic \don effects in the hydrological cycle: Indirect evidence and implications, Geochim. Cosmochim. Acta, 68, 3487–3495, 2004.
Barkan, E. and Luz, B.: High precision measurements of 17{O}/16{O} and 18{O }/16{O} ratios in H}2{O, Rapid Comm. Mass Spect., 19, 3737–3742, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of H}$_2^{16}${O}/{H}$_2^{17}${O and H}$_2^{16}${O}/{H}$_2^{18}${O in air and their implications for isotope hydrology, Rapid Comm. Mass Spect., 21, 2999–3005, 2007.
Cappa, C., Hendricks, M. B., De Paolo, D. J., and Cohen, R.: Isotopic fractionation of water during evaporation, J. Geophys. Res., 108, 4525–4535, 2003.
Ciais, P. and Jouzel, J.: Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes, J. Geophys. Res., 99, 16793–16803, 1994.
Coplen, T. B.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Comm. Mass Spect., 25, 2538–2560, 2011.
Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta, 12, 133–149, 1957.
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133, 1702–1703, 1961.
Craig, H. and Gordon, L.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere., Symposium on Marine Geochemistry, Narraganset Marine Laboratory, University of Rhode Island Publication, 3, 277–374, 1965.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 169, 436–468, 1964.
Delmotte, M., Masson, V., Jouzel, J., and Magon, V.: A seasonal deuterium excess signal at {L}aw {D}ome, coastal {E}astern {A}ntarctica: A {S}outhern ocean signature, J. Geophys. Res., 105, 7187–7197, 2000.
Ekaykin, A. and Lipenkov, V. Y.: Formation of the Ice Core Isotopic Composition, in: PICR II"Physics of Ice-Core Records", edited by: Hondoh, T., Institue of Low Temperature Science, Hokkaido University Press, Sapporo, 299–314, 2009.
Ekaykin, A. A., Lipenkov, V. Y., Kuzmina, I., Petit, J.-R., Masson-Delmotte, V., and Johnsen, S. J.: The changes in isotope composition and accumulation of snow at {V}ostok station, {E}ast {A}ntarctica, over the past 200 years, Ann. Glaciol., 39, 569–575, 2004.
EPICA-Members: Eight glacial cycles from {A}ntarctic ice core, Nature, 429, 623–628, 2004.
Franz, P. and Röckmann, T.: High-precision isotope measurements of {H}$_2^{16}${O, H}$_2^{17}${O and H}$_2^{18}${O and the Δ17{O}-anomaly of water vapour in the S}outhern lowermost stratosphere, 2005.
Gallee, H. and Gorodetskaya, I.: Validation of a limited area model over D}ome {C, {A}ntarctic {P}lateau, during winter, Clim. Dynam., 34, 61–72, 2010.
Gat, J. R. and Mook, W. G.: Stable Isotope processes in the water cycle, Environmental Isotopes in the Hydrological cycle, edited by: Mook, W. G., Chap. 3, U. N. Educ. Sci. and Cult. Org. IAEA, Paris, 2, 17–42, 1994.
Johnsen, S., Dansgaard, W., and White, J.: The origin of {A}rctic precipitation under present and glacial conditions, Tellus, 41, 452–468, 1989.
Jouzel, J. and Koster, R. D.: A reconsideration of the initial conditions used for stable water isotope models, J. Geophys. Res., 101, 22933–22938, 1996.
Jouzel, J. and Merlivat, L.: Deuterium and Oxygen 18 in precipitation: Modelling of the isotopic effects during snow formation, J. Geophys. Res., 89, 11749–11757, 1984.
Jouzel, J., Merlivat, L., and Lorius, C.: Deuterium excess in an {E}ast {A}ntarctic ice core suggests higher normalized relative humidity at the oceanic surface during the last glacial maximum, Nature, 299, 688–691, 1982.
Jouzel, J., Vimeux, F., Caillon, N., Delaygue, G., Hoffmann, G., Masson-Delmotte, V., and Parrenin, F.: Magnitude of isotope/temperature scaling for interpretation of {C}entral {A}ntarctic ice cores, J. Geophys. Res., 108, 4361–4372, 2003.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J., Chapellaz, J., Fischer, H., Gallet, J., Johnsen, S., Leuenberger, M., Loulergue, L., L�thi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J., Stenni, B., Stocker, T., Tison, J., Werner, M., and Wolff, E.: {O}rbital and {M}illenial {A}ntarctic {C}limate {V}ariability over the Past 800 000 Years, Science, 317, 793(2007), https://doi.org/10.1126/science.1141038, 2007.
Kaiser, J.: Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements, Biogeosciences, 8, 1793–1811, https://doi.org/10.5194/bg-8-1793-2011, 2011.
Kavanaugh, J. and Cuffey, K.: Space and time variation of \deo and dD in {A}ntarctic precipitation revisited, Global Biogeochem. Cy., 17, 1017–1030, 2003.
Laepple, T., Werner, M., and Lohmann, G.: Synchronicity of {A}ntarcitc temperatures and local solar insolation on orbital timescales, Nature, 471, 91–94, 2011.
Lamy, F., Kilian, R., Arz, H. W., François, J.-P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the {S}outhern westerly wind belt, Nat. Geosci., 3, 695–699, 2010.
Landais, A., Barkan, E., and Luz, B.: Record of δ18{O} and 17{O}-excess in ice from {V}ostok {A}ntarctica during the last 150 000 years, Geophys. Res. Lett., 35, L02709–L02713, 2008a.
Landais, A., Barkan, E., and Luz, B.: Reply to comment by Martin F. Miller on: Record of δ18{O} and 17{O}-excess in ice from {V}ostok {A}ntarctica during the last 150 000 years, Geophys. Res. Lett., 35, L23709, https://doi.org/10.1029/2008GL034694, 2008b.
Landais, A., Steen-Larsen, H.-C., Guillevic, M., Masson-Delmotte, V.,Vinther, B., and Winkler, R. : Isotopic composition of oxygen in surface snow and water vapour at NEEM, Geochim. Cosmochim. Acta, accepted, 2011.
Landais, A., Barkan, E., Vimeux, F., Masson-Delmotte, V., and Luz, B.: Combined Analysis of Water Stable Isotope ({H}$_2^{16}${O}, H}$_2^{17}${O, H}$_2^{18}${O, HD}16{O}), in: {PICR II"Physics of Ice-Core Records", edited by: Hondoh, T., Institue of Low Temperature Science, Hokkaido University Press, Sapporo, 315–327, 2009.
Luz, B. and Barkan, E.: The isotopic ratios $^{17}{O}/^{16}${O} and $^{18}{O}/^{16}${O} in molecular oxygen and their significance in bio-geochemistry, Geochim. Cosmochim. Acta., 69, 1099–1110, 2004.
Luz, B. and Barkan, E.: Net and gross oxygen production from {O}-2/{A}r, {O}-17/{O}-16 and {O}-18/{O}-16 ratios, Aquat. Microb. Ecol., 56, 133–145, 2009.
Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H., and Boering, K. A.: Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity, Nature, 400, 547–550, 1999.
Luz, B., Barkan, E., Yam, R., and Shemesh, A.: Fractionation of oxygen and hydrogen isotopes in evaporating water, Geochim. Cosmochim. Acta., 73, 6697–6703, 2009.
Majoube, M.: Fractionnement en 18{O} entre l'eau et sa vapeur d'eau, Journal Chem. Phys., 10, 1473, 1971{a}.
Majoube, M.: Fractionnement en 18{O} entre la glace et la vapeur d'eau, J. Climate Phys., 68, 625–636, 1971{b}.
Masson-Delmotte, V., Stenni, B., and Jouzel, J.: Common millennial-scale variability of A}ntarctic and {S}outhern Ocean temperatures during the past 5000 years reconstructed from the {EPICA {D}ome C ice core, Holocene, 14, 145–151, 2004.
Masson-Delmotte, V., Landais, A., Stievenard, M., , Cattani, O., Falourd, S., Jouzel, J., Johnsen, S., Dahl-Jensen, D., Sveinsbjomdottir, A., White, J., and Popp, T.: Holocene climatic changes in G}reenland: Different deuterium-excess signals at {G}reenland ice core project {(GRIP) and N}orth{GRIP, J. Geophys. Res., 110, D14102–D14116, 2005.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J., Royer, A., Uemura, R., Schmidt, G., Schlosser, E., Simoes, J., Steig, E., Stenni, B., Stievenard, M., Van Den Broeke, M., Van de Waal, R., Van de Berg, W., Vimeux, F., and White, J.: A review of {A}ntarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling, J. Climate, 21, 3359–3387, 2008.
Masson-Delmotte, V., Stenni, B., Blunier, T., Cattani, O., Chapellaz, J., Cheng, H., Dreyfus, G., Edwards, R. L., Falourd, S., Govin, A., Kawamura, K., Johnsen, S., Jouzel, J., Landais, A., Lemieux-Doudon, B., Lourantou, A., Marshall, G., Minster, B., Mudelsee, M., Pol, K., Röthlisberger, R., Selmo, E., and Waelbroeck, C.: Abrupt change of A}ntarctic moisture origin at the end of {T}ermination {II, PNAS, 2010.
Masson-Delmotte, V., Buiron, D., Ekaykin, A., Frezzotti, M., Gallée, H., Jouzel, J., Krinner, G., Landais, A., Motoyama, H., Oerter, H., Pol, K., Pollard, D., Ritz, C., Schlosser, E., Sime, L. C., Sodemann, H., Stenni, B., Uemura, R., and Vimeux, F.: A comparison of the present and last interglacial periods in six Antarctic ice cores, Clim. Past, 7, 397–423, https://doi.org/10.5194/cp-7-397-2011, 2011.
Mc Glone, M., Turney, C. S. M., Wilmshurst, J. M., Renwick, J., and Pahnke, K.: Divergent trends in land and ocean temperature in the {S}outhern {O}cean over the past 18'000 years, Nat. Geosci., 3, 622–626, 2010.
Meijer, H. A. J. and Li, W. J.: The use of electrolysis for accurate \deo and \don Isotope measurements in water, Isotopes Environ. Health Stud., 34, 349–369, 1998.
Merlivat, L.: The Dependence of Bulk Evaporation Coefficients on Air-Water Interfacial Conditions as Determined by the Isotopic Method, J. Geophys. Res., 83, 2977–2980, 1978.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5033, 1979.
Merlivat, L. and Nief, G.: Fractionnement isotopique lors des changements d'Etat solid-vapeur et liquide-vapeur de l'eau des températures inférieures à 0 degrées C., Tellus, 1, 1967.
Miller, M. F.: Isotopic fractionation and the quantification of \seventeeno anomalies in the oxygen three-isotope system: an appraisal and geochemical significance, Geochim. Cosmochim. Ac., 66, 1881–1889, 2002.
Miller, M. F.: Comment on "{R}ecord of δ18{O} and 17{O}-excess in ice from {V}ostok {A}ntarctica during the last 150'000 years" by {A}maelle {L}andais et al., Geophys. Res. Lett., 35, L23709, https://doi.org/10.1029/2008GL034505, 2008.
Mook, W.: Environmental Isotopes in the Hydrological Cycle: Introduction, UNESCO IAEA, Paris, 1, 1994.
Mook, W. G. and Grootes, P. M.: The measuring procedure and corrections for the high precision mass spectrometric analysis of isotopic abundance ratios, especially referring to carbon, oxygen and nitrogen, Int. J. Mass Spectrom. Ion Phys., 12, 273–298, 1973.
Noone, D.: The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and {A}ntarctic precipitation, J. Geophys. Res., 113, D04102–D04114, 2008.
Papula, L.: Mathematik für {I}ngenieure und {N}aturwissenschaftler {B}and 3, Viewegs Fachbücher der Technik, Braunschweig Wiesbaden, 740 pp., 2001.
Petit, J. R., White, J. W. C., Young, N. W., Jouzel, J., and Korotkevich, Y. S.: Deuterium Excess in recent {A}ntarctic Snow, J. Geophys. Res., 96, 5113–5122, 1991.
Putnam, A. E., Denton, G. H., Schaefer, J. M., Barrell, D. J. A., Andersen, B. G., Finkel, R. C., Schwartz, R., Doughty, A. M., Kaplan, M. R., and Schlüchter, C.: Glacier advance in {S}outhern middle-latitudes during the {A}ntarctic {C}old {R}eversal, Nat. Geosci., 3, 700–704, 2010.
R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0, 2011.
Risi, C., Landais, A., Bony, S., Jouzel, J., Masson-Delmotte, V., and Vimeux, F.: Understanding the \ex glacial-interglacial variations in {V}ostok precipitation, J. Geophys. Res., 115, D10112–D10126, 2010.
Scarchilli, C., Frezzotti, M., and Ruti, P.: Snow precipitation at four ice core sites in {E}ast {A}ntarctica: provenance, seasonality and blocking factors, Clim. Dynam., 4, 946–964, 2010.
Sodemann, H. and Stohl, A.: Asymmetries in the moisture origin of {A}ntarctic precipitation, Geophys. Res. Lett., 36, L22803–L22807, 2009.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of {G}reenland winter precipitation sources: {L}agrangian moisture diagnostic and {N}orth {A}tlantic {O}scillation influence, Geophys. Res. Lett., 113, D03107–D03123, 2008.
Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Röthlisberger, R., and Selmo, E.: An {O}ceanic {C}old {R}eversal during the last deglaciation, Science, 293, 2074–2077, 2001.
Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S. J., Longinelli, A., Sachs, J. P., Selmo, E., Souchez, R., Steffensen, J. P., and Udisti, R.: A late-glacial high-resolution site and source temperature record derived from the EPICA {D}ome C isotope records ({E}ast {A}ntarctica), Earth Planet. Sci. Lett., 217, 183–195, 2003.
Stenni, B., Masson-Delmotte, V., Selmo, E., Oerter, H., Meyer, H., Röthlisberger, R., Jouzel, J., Cattani, O., Falourd, S., Fischer, H., Hoffmann, G., Iacumin, P., Johnsen, S. J., Minster, B., and Udisti, R.: The deuterium excess records of EPICA {D}ome C and {D}ronning {M}aud {L}and ice cores ({E}ast {A}ntarctica), Quarternary Sci. Rev., 29, 146–159, 2010.
Stenni, B., Buiron, D., Frezzotti, M., Albani, S., Barbante, C., Bard, E., Barnola, J., Baroni, M., Baumgartner, M., Bonazza, M., Capron, E., Castellano, E., Chapellaz, J., Delmonte, B., Falourd, S., Genoni, L., Iacumin, P., Jouzel, J., Kipfstuhl, S., Landais, A., Lemieux-Dudon, B., Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R., Narcisi, B., Oerter, H., Parrenin, F., Petit, J., Ritz, C., Scarchilli, C., Schilt, A., Schübbach, S., Schwander, J., Selmo, E., Stocker, T., and Udisti, R.: Expression of the bipolar sea-saw in {A}ntarctic climate records during the last deglaciation, Nat. Geosci., 4, 46–49, 2011.
Stohl, A. and Sodemann, H.: Characteristics of the atmospheric transport into the Antarctic troposphere, J. Geophys. Res., D02305–D02320, 2009.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Uemura, R., Barkan, E., Abe, O., and Luz, B.: Triple isotopic composition of oxygen in atmospheric water vapor, Geophys. Res. Lett., 37, L04402–L04405, 2010.
Van Hook, W. A.: Vapour Pressures of Isotopic Waters and Ices, J. Phys. Chem.-US, 72, 1234–1244, 1968.
Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.: Glacial-interglacial changes in the ocean surface conditions in the {S}outhern {H}emisphere, Nature, 398, 410–413, 1999.
Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J. R., and Stievenard, M.: A 420,000 year deuterium excess record from {E}ast {A}ntarctica: {I}nformation on past changes in the origin of precipitation at {V}ostok, J. Geophys. Res., 106, 31863–31873, 2001.
Vimeux, F., Cuffey, K. M., and Jouzel, J.: New insights into {S}outhern {H}emisphere temperature changes from {V}ostok ice cores using deuterium excess correction, Earth Planet. Sci. Lett., 203, 829–843, 2002.
Werner, M., Heimann, M., and Hoffmann, G.: Isotopic composition and origin of polar precipitation in present and glacial climate simulations, Tellus, 53, 53–71, 2001.
Zahn, A., Barth, V., Pfeilsticker, K., and Platt, U.: Deuterium, Oxygen-18 and Tritium as tracers for water vapour transport in the lower stratosphere and tropopause region., Journal Atmos. Chem., 30, 25–47, 1998.