Articles | Volume 7, issue 1
https://doi.org/10.5194/cp-7-91-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-7-91-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia
K. Arpe
Max Planck Institute for Meteorology, Hamburg, Germany
Institute for the Environment, Brunel University, West London, UK
S. A. G. Leroy
Institute for the Environment, Brunel University, West London, UK
U. Mikolajewicz
Max Planck Institute for Meteorology, Hamburg, Germany
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Last Glacial Maximum climate and atmospheric circulation over the Australian region from climate models
Contrasting the Penultimate and Last Glacial Maxima (140 and 21 ka BP) using coupled climate-ice sheet modelling
The effects of orbital forcing on the East Asian Summer Monsoon for the past 450 kyr
Uncertainties originating from GCM downscaling and bias correction with application to the MIS-11c Greenland Ice Sheet
Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1
A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps
Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka
On the importance of moisture conveyor belts from the tropical eastern Pacific for wetter conditions in the Atacama Desert during the mid-Pliocene
Modeled storm surge changes in a warmer world: the Last Interglacial
No changes in overall AMOC strength in interglacial PMIP4 time slices
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3
Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model
The role of land cover in the climate of glacial Europe
Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Evaluation of Arctic warming in mid-Pliocene climate simulations
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
An empirical evaluation of bias correction methods for palaeoclimate simulations
Hypersensitivity of glacial summer temperatures in Siberia
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Understanding the Australian Monsoon change during the Last Glacial Maximum with a multi-model ensemble
Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM
The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology
Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics
Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia
Global sensitivity analysis of the Indian monsoon during the Pleistocene
Interaction of ice sheets and climate during the past 800 000 years
Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth
Impact of geomagnetic excursions on atmospheric chemistry and dynamics
Assessing the impact of Laurentide Ice Sheet topography on glacial climate
Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation
Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation
Why could ice ages be unpredictable?
Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3
Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model
A new global reconstruction of temperature changes at the Last Glacial Maximum
Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM
Modelling large-scale ice-sheet–climate interactions following glacial inception
Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial
The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Yanxuan Du, Josephine R. Brown, and J. M. Kale Sniderman
Clim. Past, 20, 393–413, https://doi.org/10.5194/cp-20-393-2024, https://doi.org/10.5194/cp-20-393-2024, 2024
Short summary
Short summary
This study provides insights into regional Australian climate variations (temperature, precipitation, wind, and atmospheric circulation) during the Last Glacial Maximum (21 000 kyr ago) and the interconnections between climate variables in different seasons from climate model simulations. Model results are evaluated and compared with available palaeoclimate proxy records. Results show model responses diverge widely in both the tropics and mid-latitudes in the Australian region.
Violet L. Patterson, Lauren J. Gregoire, Ruza Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, and Lachlan C. Astfalck
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-10, https://doi.org/10.5194/cp-2024-10, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate Glacial Maxima.
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
EGUsphere, https://doi.org/10.5194/egusphere-2024-307, https://doi.org/10.5194/egusphere-2024-307, 2024
Short summary
Short summary
It is unclear how various climatic forcings, such as insolation, ice volume, and greenhouse gases, impact the variability of the East Asian Summer Monsoon (EASM). We present a climate model simulation using MRI–CGCM2.3 to elucidate the impact of insolation changes over the past 450 kyr. We find that EASM precipitation is influenced by insolation changes through alterations in atmospheric circulation caused by the intensification of the North Pacific High and the North Pacific subtropical high.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Robert Beyer, Mario Krapp, and Andrea Manica
Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, https://doi.org/10.5194/cp-16-1493-2020, 2020
Short summary
Short summary
Even the most sophisticated global climate models are known to have significant biases in the way they simulate the climate system. Correcting model biases is therefore essential for creating realistic reconstructions of past climate that can be used, for example, to study long-term ecological dynamics. Here, we evaluated three widely used bias correction methods by means of a global dataset of empirical temperature and precipitation records from the last 125 000 years.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020, https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Short summary
The paper shows, using climate simulations, that the Pacific–North American (PNA) teleconnection was distorted or completely broken at the Last Glacial Maximum (LGM). The results suggest that ENSO would have little direct impact on North American climates at the LGM.
Mi Yan, Bin Wang, Jian Liu, Axing Zhu, Liang Ning, and Jian Cao
Clim. Past, 14, 2037–2052, https://doi.org/10.5194/cp-14-2037-2018, https://doi.org/10.5194/cp-14-2037-2018, 2018
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Short summary
The behaviour of dust in terms of climate can be investigated using past climate. The Last Glacial Maximum (LGM; 21000 years before present) is known to be dustier. We investigated the impact of plausible dust distribution on the climate of the LGM using an Earth system model and found that the higher dust load results in less cooling over the polar regions. The main finding is that radiative perturbation by the high dust loading does not necessarily cool the surface surrounding Antarctica.
Leah Birch, Timothy Cronin, and Eli Tziperman
Clim. Past, 14, 1441–1462, https://doi.org/10.5194/cp-14-1441-2018, https://doi.org/10.5194/cp-14-1441-2018, 2018
Short summary
Short summary
We investigate the regional dynamics at the beginning of the last ice age, using a nested configuration of the Weather Research and Forecasting (WRF) model with a simple ice flow model. We find that ice sheet height causes a negative feedback on continued ice growth by interacting with the atmospheric circulation, causing warming on Baffin Island, and inhibiting the initiation of the last ice age. We conclude that processes at larger scales are needed to overcome the regional warming effect.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
P.M. Langebroek and K. H. Nisancioglu
Clim. Past, 10, 1305–1318, https://doi.org/10.5194/cp-10-1305-2014, https://doi.org/10.5194/cp-10-1305-2014, 2014
I. Suter, R. Zech, J. G. Anet, and T. Peter
Clim. Past, 10, 1183–1194, https://doi.org/10.5194/cp-10-1183-2014, https://doi.org/10.5194/cp-10-1183-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
M.-O. Brault, L. A. Mysak, H. D. Matthews, and C. T. Simmons
Clim. Past, 9, 1761–1771, https://doi.org/10.5194/cp-9-1761-2013, https://doi.org/10.5194/cp-9-1761-2013, 2013
I. Nikolova, Q. Yin, A. Berger, U. K. Singh, and M. P. Karami
Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, https://doi.org/10.5194/cp-9-1789-2013, 2013
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
T. Tharammal, A. Paul, U. Merkel, and D. Noone
Clim. Past, 9, 789–809, https://doi.org/10.5194/cp-9-789-2013, https://doi.org/10.5194/cp-9-789-2013, 2013
J. D. Annan and J. C. Hargreaves
Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, https://doi.org/10.5194/cp-9-367-2013, 2013
H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner
Clim. Past, 8, 1801–1819, https://doi.org/10.5194/cp-8-1801-2012, https://doi.org/10.5194/cp-8-1801-2012, 2012
J. M. Gregory, O. J. H. Browne, A. J. Payne, J. K. Ridley, and I. C. Rutt
Clim. Past, 8, 1565–1580, https://doi.org/10.5194/cp-8-1565-2012, https://doi.org/10.5194/cp-8-1565-2012, 2012
P. Bakker, C. J. Van Meerbeeck, and H. Renssen
Clim. Past, 8, 995–1009, https://doi.org/10.5194/cp-8-995-2012, https://doi.org/10.5194/cp-8-995-2012, 2012
D. Hofer, C. C. Raible, A. Dehnert, and J. Kuhlemann
Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, https://doi.org/10.5194/cp-8-935-2012, 2012
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
Clim. Past, 7, 1225–1246, https://doi.org/10.5194/cp-7-1225-2011, https://doi.org/10.5194/cp-7-1225-2011, 2011
F. S. R. Pausata, C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu
Clim. Past, 7, 1089–1101, https://doi.org/10.5194/cp-7-1089-2011, https://doi.org/10.5194/cp-7-1089-2011, 2011
Cited articles
Allen, J. R. M., Huntley, B., and Watts, W. A.: The vegetation and climate of northwest Iberia over the last 14 000 yr, J. Quaternary Sci., 11, 125–147, 1996.
Arpe, K., Hagemann, S., and Jacob, D.: The realism of the ECHAM5 models to simulate the hydrological cycle in the Arctic and North European area, Nord. Hydrol., 36, 349–367, 2005.
Aura Tortosa, J. E., Jordá Pardo, J. F., Pérez Ripoll, M., Rodrigo García, M. J., Badal García, E., and Guillem Calatayud, P.: The far south: the Pleistocene-Holocene transition in Nerja Cave (Andalucía, Spain), Quatern. Int., 93–94, 19–30, 2002.
Baese, K. and Arpe, K.: Der Jahresgang der charakteristischen Temperatur der Polarfront in verschiedenen Standardniveaus, Meteorol. Rundsch., 27, 100–109, 1974.
Beaudouin, C., Jouet, G., Suc, J.-P., Berné, S., and Escarguel, G.: Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology, Quaternary Sci. Rev., 26(7–8), 1037–1054, 2007.
Bengtsson, L., Hodges, K., and Roeckner, E.: Storm Tracks and Climate Change, J. Climate, 19, 3518–3543, 2006.
Boessenkool, K. P., Brinkhuis, H., Schonfeld, J., and Targarona, J.: North Atlantic sea-surface temperature changes and the climate of western Iberia during the last deglaciation; a marine palynological approach, Global Planet. Change, 30(1), 33–39, 2001.
Bottema, S.: Pollen analytical investigations in Thessaly (Greece), Palaeohistoria, 21, 19–40, 1979.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^{i}né, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Buccheri, G., Capretto, G., Di Donato, V., Esposito, P., Ferruzza, G., Pescatore, T., Russo Ermolli, E., Senatore, M. R., Sprovieri, M., Bertoldo, M., Carella, D., and Madonia, G.: A high resolution record of the last deglaciation in the southern Tyrrhenian Sea: environmental and climatic evolution, Mar. Geol., 186, 447–470, 2002.
Canali, G., Capraro, L., Donnici, S., Rizzetto, F., Serandrei-Barbero, R., and Tosi, L.: Vegetational and environmental changes in the eastern Venetian coastal plain (Northern Italy) over the past 80,000 years, Palaeogeogr. Palaeocl., 253(3–4), 300–316, 2007.
Carrión, J. S.: Patterns and process of late Quaternary environmental change in a montane region of south Western Europe, Quaternary Sci. Rev., 21, 2047–2066, 2002.
Carrión, J. S., Finlayson, C., Fernández, S., Finlayson, G., Allué, E., López-Sáez, J. A., López-García, P., Gil-Romera, G., Bailey, G., and González-Sampériz, P.: A coastal reservoir of biodiversity for Upper Pleistocene human populations: palaeoecological investigations in Gorham's Cave (Gibraltar) in the context of the Iberian Peninsula, Quaternary Sci. Rev., 27, 2118–2135, 2008.
Cheddadi, R., Vendramin, G. G., Litt, T., François, L., Kageyama, M., Lorentz, S., Laurent, J.-M., de Beaulieu, J.-L., Sadori, L., Jost, A., and Lunt, D.: Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris, Global Ecol. Biogeogr., 15, 271–282, 2006.
CLIMAP: Seasonal reconstructions of the Earth's surface at the last glacial maximum, Geological Society of America, Map Chart Ser., MC-36, 1981.
Combourieu-Nebout, N., Paterne, M., Turon, J.-L., and Siani, G.: A high-resolution record of the last deglaciation in the central Mediterranean Sea: Palaeovegetation and palaeohydrological evolution, Quaternary Sci. Rev., 17(4), 303–317, 1998.
Comes, H. P. and Kadereit, J. W.: The effect of Quaternary climatic changes on plant distribution and evolution, Trends Plant Sci., 3, 432–438, 1998.
Cordova, C. E.: Holocene mediterranization of the southern Crimean vegetation: Paleoecological records, regional climate change, and possible non-climatic influences, The Black Sea Flood Question: Changes in Coastline, climate and Human Settlement, in: NATO Science Series IV – Earth and Environmental Sciences, edited by: Yanko-Hombach, V., Gilbert, A., Panin, N., and Dolukhanov, P., Springer, Berlin, New York , 319–344, 2007.
Cortés-Sánchez, M., Morales-Muñiz, A., Simón-Vallejo, M. D., Bergadà-Zapata, M., Delgado-Huertas, A., López-García, P., López-Sáez, J. A., Lozano-Francisco, M. C., Riquelme-Cantal, J. A., Roselló-Izquierdo, E., Sánchez-Marco, A., and Vera-Peláez, J. L.: Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene, Quaternary Sci. Rev., 27(23–24), 2176–2193, 2008.
Djamali, M., de Beaulieu, J.-L., Shah-Hosseini, M., Andrieu-Ponel, V., Ponel, P., Amini, A., Akhani, H., Leroy, S. A. G., Stevens, L., Lahijani, H., and Brewer, S.: A Late Pleistocene long pollen record from Lake Urmia, NW Iran, Quaternary Res., 69, 413–420, 2008.
Filipova-Marinova, M.: Paleoenvironmental changes along the southern Black Sea coast of Bulgaria during the last 29 000 years, Phytologia Balcanica, 9(2), 275–292, 2003.
Fletcher, W. J. and Sánchez-Goñi, M. F.: Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr, Quaternary Res., 70, 451–464, 2008.
Florineth, D. and Schlüchter, C.: Alpine Evidence for Atmospheric Circulation Patterns in Europe during the Last Glacial Maximum, Quaternary Res., 54, 295–308, 2000.
Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project, B. Amer. Meteor. Soc., 73, 1962–1970, 1992.
Geraga, M., Ioakim, Chr., Lykousis, V., Tsaila-Monopolis, St., and Mylona, G.: The high-resolution palaeoclimatic and palaeoceanographic history of the last 24,000 years in the central Aegean Sea, Greece, Palaeogeogr. Palaeocl., 287, 101–115, 2010.
González-Sampériz, P., Leroy, S. A. G., Fernández, S., García-Antón, M., Gil-García, M. J., Uzquiano, P., Valero-Garcés, B., and Figueiral I.: Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula, Rev. Palyn. Palaeobot, 162(3), 427–457, 2010.
González-Sampériz, P., Valero-Garcés, B., Carrión, J., Peña-Monné, J. L., García-Ruiz, J. M., and Martí-Bono, C.: Glacial and Lateglacial vegetation in Northeastern Spain: new data and a review, Quatern. Int., 140–141, 4–20, 2005.
Grosswald, M. G.: Late Weichselian ice sheet of northern Eurasia, Quaternary Res., 13, 1–32, 1980.
Hammer, C. U., Andersen, K. K., Clausen, H. B., Dahl-Jensen, D., Hvidberg, C. S., and Iversen, P.: The stratigraphic dating of the GRIP ice core, Special Report of the Geophysical Department, Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, GRIP-GISP CD-ROM (file gripstrt), Copenhagen, Denmark, 1997.
Huffman, G. J., Adler, R. F., Arkin, P. A., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., Joyce, R. J., McNab, A., Rudolf, B., Schneider, U., and Xie, P.: The Global Precipitation Climatology Project (GPCP) combined precipitation data set, B. Am. Meteor. Soc., 78, 5–20, 1996.
Jankovská, V. and Pokorn\'{y}, P.: Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic), Preslia, 80, 307–324, 2008.
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P. J., and Ramstein, G.: High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?, Clim. Dynam., 24, 577–590, https://doi.org/10.1007/s00382-005-0009-4, 2005.
Kageyama, M., Valdes, P. J., Ramstein, G., Hewitt, C. D., and Wyputta, U.: Northern Hemisphere Storm Tracks in Present Day and Last Glacial Maximum Climate Simulations: A Comparison of the European PMIP Models, J. Climate, 12, 742–760, 1999.
Kageyama, M., Laîné, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C. D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesneri, B., Peltierj, W. R., Rosell-Melé, A., Vettorettij, G., Weberl, S. L., and Yu, Y.: MARGO Project Members, 2006, Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quaternary Sci. Rev., 25, 2082–2102, 2006.
Kaltenrieder, P., Belis, C. A., Hofstetter, S., Ammann, B., Ravazzi, C., and Tinner, W.: Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers, New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy), Quaternary Sci. Rev., 28, 2647–2662, 2009.
Kelts, K. and Shahrabi, M.: Holocene sedimentalogy of hypersaline Lake Urmia, northwestern Iran, Paleogeogr. Paleocl., 54, 105–130, 1986.
Kotthoff, U., Müller, U. C., Pross, J., Schmiedl, G., Lawson, I. T., van de Schootbrugge, B., and Schulz, H.: Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives, Holocene, 18, 1019–1032, 2008.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Chen, M. T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of Sea-Surface Temperatures from Assemblages of Planktonic Foraminifera: Multi-Technique Approach Based on Geographically Constrained Calibration Data Sets and Its Application to Glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, 2005.
Laurent, J.-M., Bar-Hen, A., François, L., Ghislain, M., and Cheddadi, R.: Refining vegetation simulation models: From plant functional types to bioclimatic affinity groups of plants, J. Veg. Sci., 15, 739–746, 2004.
Leemans, R. and Cramer, W.: The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid, International Institute for Applied Systems Analysis (IIASA), RR-91-18, 1991.
Leroy, S. A. G.: Progress in palynology of the Gelasian-Calabrian Stages in Europe: ten messages, Revue de Micropaléontologie, 50, 293–308, 2007.
Leroy, S. A. G. and Arpe, K.: Glacial refugia for summer-green trees in Europe and S-W Asia as proposed by ECHAM3 time slice atmospheric model simulations, J. Biogeogr., 34, 2115–2128, https://doi.org/10.1111/j.1365-2699.2007.01754.x, 2007.
Leroy, S. A. G., Marret, F., Gibert, E., Chalié, F., Reyss, J.-L. and Arpe, K.: River inflow and salinity changes in the Caspian Sea during the last 5500 years, Quaternary Sci. Rev., 26, 3359–3383, 2007.
Lorenz, S., Grieger, B., Helbig, P., and Herterich, K.: Investigating the sensitivity of the Atmospheric Global circulation Model ECHAM3 to paleoclimatic boundary conditions, Geolog. Rundsch., 85, 513–524, 1996.
Lucchi, M. R.: Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge, Quaternary Sci. Rev., 27, 2456–2466, 2008.
Margari, V., Gibbard, P. L., Bryant, C. L., and Tzedakis, P. C.: Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece, Quaternary Sci. Rev., 28, 1317–1339, 2009.
Mikolajewicz, U., Vizcaino, M., Jungclaus, J., and Schurgers, G.: Effect of ice sheet interactions in anthropogenic climate change simulations, Geophys. Res. Lett., 34, L18706, https://doi.org/10.1029/2007GL031173, 2007.
Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., and Sostizzo, I.: Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment, Rev. Palaeobot. Palynol., 141, 53–81, 2006.
Mix, A. C., Bard, E., and Schneider, R.: Environmental processes of the ice age: land, oceans, glaciers (EPILOG), Quaternary Sci. Rev., 20, 627–657, 2001.
Naughton, F., Sanchez Goñi, M. F., Desprat, S., Turon, J.-L., Duprat, J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., AND Freitas, M. C.: Present-day and past (last 25 000 years) marine pollen signal off western Iberia, Mar. Micropaleontol., 62, 91–114, 2007.
Niklewski, J. and Van Zeist, W.: A Late Quaternary pollen diagram from northwestern Syria, Acta Bot. Neerl., 19(5), 737–754, 1970.
Okuda, M., Yasuda, Y., and Setoguchi, T.: Middle to Late Pleistocene vegetation history and climatic changes at Lake Kopais, Southeast Greece, Boreas, 30(1), 73–82, 2001.
Otto-Bliesner, B. L., Schneider, R., Brady, E. C., Kucera, M., Abe-Ouchi, A., Bard, E., Braconnot, P., Crucifix, M., Hewitt, C. D., Kageyama, M., Marti, O., Paul, A., Rosell-Melé, A., Waelbroeck, C., Weber, S. L., Weinelt, M., and Yu, Y.: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum, Clim. Dynam., 799–815, 2009.
Paganelli, A.: Evolution of vegetation and climate in the Veneto-Po plain during the late-glacial and the Early Holocene using pollen-stratigraphic data, Il Quaternario, 9(2), 581–590, 1996.
Pantaleón-Cano, J., Yll, E. I., Pérez-Obiol, R., and Roure, J. M.: Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almeria, Spain), Holocene, 13, 109–119, 2003.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth Planet. Sci., 32, 111–149, 2004.
Peltier, W. R. and Fairbanks, R. G.: Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record, Quaternary Sci. Rev., 25, 3322–3337, 2006.
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V.: Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen Data, Quaternary Res., 49, 183–196, 1998.
Pons, A. and Reille, M.: The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study, Palaeogeogr. Palaeocl., 66, 243–263, 1988.
Quan, X.-W., Diaz, H. F., and Hoerling, M. H.: Changes in the Tropical Hadley Cell since 1950, in: The Hadley Circulation: Present, Past, and Future, Advances in Global Change Research, 21, edited by: Diaz, H. F. and Bradley, R. S., Springer, The Netherlands, ISBN 978-1-4020-2943-1, 85–120, https://doi.org/10.1007/978-1-4020-2944-8, 2004.
Ramstein, G., Kageyama, M., Guiot, J., Wu, H., Hély, C., Krinner, G., and Brewer, S.: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison, Clim. Past, 3, 331–339, https://doi.org/10.5194/cp-3-331-2007, 2007.
Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., and Windelband, M.: Simulation of the present-day climate with the ECHAM Model: Impact of model physics and resolution, Max-Planck-Institut für Meteorologie Report, Hamburg, 93, 171 pp., 1992.
Roeckner, E.: ECHAM5_T106L31_AMIP Control Run Monthly Means, World Data Center for Climate, CERA-DB "EH5_T106L31_AMIP_MM" http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5_T106L31_AMIP_MM, last access: 10 December 2010, and ECHAM5_T31L19_AMIP Control Run Monthly Means, CERA-DB "EH5_T31L19_AMIP_MM" http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5_T31L19_AMIP_MM, (last access: 10 December 2010), 2003.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5, Part I: Model description, Max Planck Institute for Meteorology, Hamburg, Report no. 349, 2003.
Rossignol-Strick, M. and Planchais, N.: Climate patterns revealed by pollen and oxygen isotope records of a Tyrrhenian sea core, Nature, 342, 413–416, 1989.
Roucoux, K. H., de Abreu, L., Shackleton, N. J., and Tzedakis, P. C.: The response of NW berian vegetation to North Atlantic climate oscillations during the last 65 kyr, Quaternary Sci. Rev., 24, 1637–1653, 2005.
Ruiz Zapata, M. B., Gil García, M. J., Dorado Valiño, M., Valdeolmillos Rodríguez, A., and Pérez-González, A.: Clima y vegetación durante el Pleistoceno superior y el Holoceno en la Sierra de Neila (Sistema Ibérico Noroccidental), Cuaternario y Geomorfología, 16(10-4), 9–20, 2002.
Sarnthein, M., Gersonde, R., Niebler, S., Pflaumann, U., Spielhagen, R., Thiede, J., Wefer, G., and Weinelt, M.: Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000), Paleoceanography, 18(2), 1030, 8/1–6, https://doi.org/10.1029/2002PA000769, 2003.
Starnberger, R., Terhorst, B., Rähle, W., Peticzka, R., and Haas, J. N.: Palaeoecology of Quaternary periglacial environments during OIS-2 in the forefields of the Salzach Glacier (Upper Austria), Quatern. Int., 198, 51–61, 2009.
Stein, M., Torfstein, A., Gavrieli, I., and Yechieli, Y.: Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection, Quaternary Sci. Rev., 29(3–4), 567–575, https://doi.org/10.1016/j.quascirev.2009.10.015, 2010.
Svenning, J.-C., Normand, S., and Kageyama, M.: Glacial refugia of temperate trees in Europe: insights from species distribution modeling, J. Ecol., 96, 1117–1127, https://doi.org/10.1111/j.1365-2745.2008.01422.x, 2008.
Tarasov, P. E., Peyron, O., Guiot, J., Brewer, S., Volkova, V. S., Bezusko, L. G., Dorofeyuk, N. I., Kvavadze, E. V., Osipova, I. M., and Panova, N. K.: Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data, Clim. Dynam., 15, 227–240, 1999.
Targarona, J.: Climatic and Oceanographic Evolution of the Mediterranean Region Over the Last Glacial-Interglacial Transition, A Palynological Approach, LPP Contribution Series, No. 7, Utrecht, The Netherlands, 1997.
Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., and Conedra, M.: Long-term forest fire ecology and dynamics in southern Switzerland, J. Ecol., 87, 273–289, 1999.
Tsereteli, L. D., Klopotovskaya, N. B., and Kurenkova, E. L.: Mnogosloinaya arheologicheskaya stoyanka Apiancha (Abkhazia), in: Chetvertichnaya sistema Gruzii, Metsniereba, Tbilisi, 198–212, 1982.
Turon, J.-L., Lézine, A.-M., and Denèfle, M.: Land-sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin, Quaternary Res., 59, 88–96, 2003.
Tzedakis, P. C.: Vegetation change through glacial-interglacial cycles; a long pollen sequence perspective, Philos. T. Roy. Soci. Lond. B, 345, 403–432, 1994.
Tzedakis, P. C.: The last climatic cycle at Kopais, central Greece, J. Geol. Soc. Lond., 155, 425–434, 1999.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Uzquiano, P.: L'Homme et le bois au Paléolithique en région Cantabrique, Espagne, Exemples d'Altamira et d'El Buxu, Bulletin de la Société Botanique de France, 139, 361–372, 1992.
Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., Valsecchi, V., Wessels, M., and Zanchetta G.: A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia), J. Paleolimnol., 41, 407–430, 2009.
Watts, W. A., Allen, J. R. M., Huntley, B., and Fritz, S. C.: Vegetation history and climate of the last 15,000 years at Lagho di Monticchio, southern Italy, Quaternary Sci. Rev., 15, 113–132, 1996.
Willis, K. J., Rudner, E., and Sümeg, P.: The Full-Glacial Forests of Central and Southeastern Europe, Quaternary Res., 53, 203–213, 2000.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the Last Glacial Maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling, Clim. Dynam., 29, 211–229, 2007.
Yokoyama, Y., Lambeck, K., de Dekhar, P., Johnston, P., and Fifield, L. K.: Timing of last glacial maximum from observed sea level minima, Nature, 406, 713–716, 2000.
Ziska, L. H. and Caulfield, F. A.: Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health, Aust. J. Plant Physiol., 27, 893–898, 2000.