Research article
11 Oct 2011
Research article | 11 Oct 2011
Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters
C. Berrittella and J. van Huissteden
Related subject area
Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-155,https://doi.org/10.5194/cp-2019-155, 2020
Revised manuscript accepted for CP
Short summary
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020,https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Understanding the Australian Monsoon change during the Last Glacial Maximum with a multi-model ensemble
Mi Yan, Bin Wang, Jian Liu, Axing Zhu, Liang Ning, and Jian Cao
Clim. Past, 14, 2037–2052, https://doi.org/10.5194/cp-14-2037-2018,https://doi.org/10.5194/cp-14-2037-2018, 2018
Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018,https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016,https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014,https://doi.org/10.5194/cp-10-345-2014, 2014
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013,https://doi.org/10.5194/cp-9-1697-2013, 2013
Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013,https://doi.org/10.5194/cp-9-1683-2013, 2013
Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM
H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner
Clim. Past, 8, 1801–1819, https://doi.org/10.5194/cp-8-1801-2012,https://doi.org/10.5194/cp-8-1801-2012, 2012
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
Clim. Past, 7, 1225–1246, https://doi.org/10.5194/cp-7-1225-2011,https://doi.org/10.5194/cp-7-1225-2011, 2011
Cited articles
Arnold, N. S., van Andel, T. H., and Valen, V.: Extent and Dynamics of the Scandinavian Ice-sheet during Oxygen Isotope Stage 3 (60,000–30,000 yr B.P.), Quaternary Res., 57, 38–48, 2002.
Bazhin, N. M.: Theoretical consideration of methane emission from sediments, Chemosphere, 50, 191–200, 2003.
Behre, K. E.: Biostratigraphy of the Last Glacial Period in Europe, Quaternary Sci. Rev., 8, 25–44, 1989.
Berestovskaya, Y., Rusanov, I. I., Vasil'eva, L. V., and Pimenov, N. V.: Microbiology, 74, 221–229, 2005, translated from Mikrobiologiya, 74, 261–270, 2005.
Berrittella, C. and van Huissteden, J.: Uncertainties in modelling CH
4 emissions from northern wetlands in glacial climates: effect of hydrological model and CH
4 model structure, Clim. Past, 5, 361–373, https://doi.org/10.5194/cp-5-361-2009, 2009.
Boone, D. R.: Biological formation and consumption of methane, in: Atmospheric Methane: Its Role in the Global Environment, edited by: Khalil, M. A. K., Springer-Verlag, Berlin, Heidelberg, 42–62, 2000.
Bos, J. A. A., Bohncke, S. J. P., Kasse, C., and Vandenberghe, J.: Vegetation and climate during the Weichselian Early Glacial and Pleniglacial in the Niederlausitz, eastern Germany - macrofossil and pollen evidence, J. Quaternary Sci., 16, 269–289, 2001.
Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J., and Sucher, C. M.: On the origin and timing of rapid changes in atmospheric methane during the last glacial period, Global Biogeochem. Cy., 14, 559–572, 2000.
Bush, J. and Lösch, R.: The Gas Exchange of
Carex Species from Eutrophic Wetlands and its Dependence on Microclimatic and Soil Wetness Conditions, Phys. Chem. Earth B, 24, 117–120, 1999.
Calhoun, A. and King, G. M.: Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes, Appl. Environ. Microbiol., 63, 3051–3058, 1997.
Chanton, J. P.: The effect of gas transport on the isotope signature of methane in wetlands, Org. Geochem., 36, 753–768, 2005.
Charman, D.: Peatlands and environmental change, Wiley, Chichester, 301 pp., 2002.
Christensen, T. R., Johansson, T., Akerman, H. J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett., 31, L04501, https://doi.org/10.1029/2003GL018680, 2004.
Couwenberg, J.: Methane emissions from peat soils (organic soils, histosols), Facts, MRV-ability, emission factors, Greifswald University, Wetlands International, Ede, August 2009, http://www.wetlands.org, Produced for the UN-FCCC meetings in Bonn, August 2009, 14 pp., 2009.
EPICA members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Frenzel, P. and Karofeld, E.: CH
4 emission from a hollow-ridge complex in a raised bog: The role of CH
4 production and oxidation, Biogeochemistry, 51, 91–112, 2000.
Guthrie, R. D.: Frozen Fauna of the Mammoth Steppe, University of Chicago Press, Chicago, p.23, 1990.
Harder, S. L., Shindell, D. T., Schmidt, G. A., and Brook, E. J.: A global climate model study of CH
4 emissions during the Holocene and glacial-interglacial transitions constrained by ice core data, Global Biogeochem. Cy., 21, GB1011, https://doi.org/10.1029/2005GB002680, 2007.
Heijmans, M. P. D., Mauquoy, D., van Geel, B., and Berendse, F.: Long-term effects of climate change on vegetation and carbon dynamics in peat bogs, J. Veg. Sci., 19, 307–320, 2005.
Heilman, M. A. and Carlton, R. G.: Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux, Biogeochemistry, 52, 207–224, 2001.
Helmens, K. F., Bos, J. A. A., Engels, S., van Meerbeeck, C. J., Bohncke, S. J. P., Renssen, H., Heiri, O., Brooks, S. J., Seppä, H., Birks, H. J. B., and Wohlfarth, B.: Present-day temperatures in northern Scandinavia during the last glaciation, Geology, 35, 987–990, https://doi.org/10.1130/G23995A.1, 2007.
Hornibrook, E. R. C.: The stable carbon isotope composition of methane produced and emitted from northern peatlands, in: Northern Peatlands and Carbon Cycling, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., American Geophysical Union, Geophysical Monograph Series, 184, 187–203, 2009.
Huntley, B., Alfano, M. J., Allen, J. R. M., Pollard, D., Tzedakis, P. C., De Beaulieu, J.-L., Grüger, E., and Watts, B.: European vegetation during Marine Oxygen Isotope Stage-3, Quaternary Res., 59, 195–212, 2003.
Hutchin, P. R., Press, M. C., Lee, J. A., and Ashenden, T. W.: Methane emission rates from an ombrotrophic mire show marked seasonality which is independent of nitrogen supply and soil temperature, Atmos. Environ., 30, 3011–3015, 1996.
Kaplan, J. O., Folberth, G., and Hauglustaine, D. A.: Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations, Global Biogeochem. Cy., 20, GB2016, https://doi.org/10.1029/2005GB002590, 2006.
King, J. Y. and Reeburgh, W. S.: A pulse-labelling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra, Soil Biol. Biochem., 34, 173–180, 2002.
Kip, N., van Winden, J. F., Pan, Y., Bodrossy, L., Reichart, G.-J., Smolders, A. J. P., Jetten, M. S. M., Damste, J. S., and Op den Camp, H. J. M.: Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems, Nat. Geosci., 3, 617–621, 2010.
Kutzbach, L., Wagner, D., and Pfeiffer, E.-M.: Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia, Biogeochemistry, 69, 341–362, 2004.
Laanbroek, H. J.: Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes, A mini-review, Ann. Bot., 105, 141–153, https://doi.org/10.1093/aob/mcp201, 2009.
Lai, D. Y. F.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19, 409–421, 2009.
Moore, T. R. and Dalva, M.: The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils, J. Soil Sci., 44, 651–664, 1993.
Moore, T. R. and Knowles, R.: The influence of water table levels on methane and carbon dioxide emissions from peatland soils, Can. J. Soil Sci./Rev. Can. Sci. Sol., 69, 33–38, 1989.
Oquist, M. G. and Svensson, B. H.: Vascular plants as regulators of methane emissions from a subarctic mire ecosystem, J. Geophys. Res., 107, 4580, https://doi.org/10.1029/2001JD001030, 2002.
Parmentier, F. J. W., van Huissteden, J., Kip, N., Op den Camp, H. J. M., Jetten, M. S. M., Maximov, T. C., and Dolman, A. J.: The role of endophytic methane-oxidizing bacteria in submerged
Sphagnum in determining methane emissions of Northeastern Siberian tundra, Biogeosciences, 8, 1267–1278, https://doi.org/10.5194/bg-8-1267-2011, 2011a.
Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K., Dolman, A. J., Schaepman-Strub, G., Karsanaev, S. A., and Maximov, T. C.: Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in Northeastern Siberia, J. Geophys. Res., 116, G03016, https://doi.org/10.1029/2010JG001637, 2011b.
Petrescu, A. M. R., van Huissteden, J., Jackowicz-Korczynski, M., Yurova, A., Christensen, T. R., Crill, P. M., Bäckstrand, K., and Maximov, T. C.: Modelling CH
4 emissions from arctic wetlands: effects of hydrological parameterization, Biogeosciences, 5, 111–121, https://doi.org/10.5194/bg-5-111-2008, 2008.
Petrescu, A. M. R., van Beek, L. P. H., van Huissteden, J., Prigent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J. W., and Dolman, A. J.: Modeling regional to global CH
4 emissions of boreal and arctic wetlands, Global Biogeochem. Cy., 24, GB4009, https://doi.org/10.1029/2009GB003610, 2010.
Popp, T. J., Chanton, J. P., Whiting, G. J., and Grant, N.: Evaluation of methane oxidation in the rhizophere of a
Carex dominated fen in north central Alberta, Canada, Biogeochemistry, 51, 259–281, 2000.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C., Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Sinninghe Damste, J. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J. M.,and Strous, M.: Methanotrophic symbionts provide carbon for photosynthesis in peat bogs, Nature, 436, 1153–1156, https://doi.org/10.1038/nature03802, 2005.
Ran, E. T. H.: Dynamics of vegetation and environment during the Middle Pleniglacial in the Dinkel Valley (The Netherlands), Mededelingen Rijks Geologische Dienst, 44-3, 141–205, 1990.
Ran, E. T. H., Bohncke, S. J. P., van Huissteden, J., and Vandenberghe, J.: Evidence of episodic permafrost conditions during the Weichselian Middle Pleniglacial in the Hengelo basin (The Netherlands), Geologie en Mijbouw, 44, 207–220, 1990.
Roulet, N., Moore, T., Bubier, J., and Lafleur, P.: Northern fens: methane flux and climatic change, Tellus B, 44, 100–105, 1992.
Ruddiman, W. F.: The early anthropogenic hypothesis: Challenges and responses, Rev. Geophys., 45, RG4001, https://doi.org/10.1029/2006RG000207, 2007.
Schaepman-Strub, G., Limpens, J., Menken, M., Bartholomeus, H. M., and Schaepman, M. E.: Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types, Biogeosciences, 6, 275–284, https://doi.org/10.5194/bg-6-275-2009, 2009.
Shaver, G. R., Laundre, J. A., Giblin, A. E., and Nadelhoffer, K. J.: Changes in live plant biomass, primary production, and species composition along a riverside toposequence in Arctic Alaska, U.S.A., Arct. Alpine Res., 28, 363–379, 1996.
Smialek, J., Bouchard, V., Lippmann, B., Quigley, M., Granata, T., Martin, J., and Brown, L.: Effect of a woody (
Salix nigra) and an herbaceous (
Juncus effusus) macrophyte species on methane dynamics and denitrification, Wetlands, 26, 509–517, 2006.
Strack, M., Kellner, E., and Waddington, J. M.: Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry, 2005, Global Biogeochem. Cy., 19, GB1003, https://doi.org/10.1029/2004GB002330, 2005.
Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., and Hatano, R.: Falling atmospheric pressure as a trigger for methane ebullition from peatland, Global Biogeochem. Cy., 21, GB2003, https://doi.org/10.1029/2006GB002790, 2007.
Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J., and Scott, K. D.: The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes, Global Change Biol., 13, 1922–1934, 2007.
Valdes, P. J., Beerling, D. J., and Johnson, C. E.: The ice age methane budget, Geophys. Res. Lett., 32, L02704, https://doi.org/10.1029/2004GL021004, 2005.
van Andel, T. H.: Climate and landscape of the middle part of the Weichselian glaciation in Europe: The Stage 3 Project, Quaternary Res., 57, 2–8, 2002.
van der Molen, M. K., van Huissteden, J., Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev, S. V., and Suzdalov, D. A.: The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia, Biogeosciences, 4, 985–1003, https://doi.org/10.5194/bg-4-985-2007, 2007.
van Huissteden, J.: Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands), Mededelingen Rijks Geologische Dienst, 44-3, 3–138, 1990.
van Huissteden, J.: Methane emission from northern wetlands in Europe during Oxygen Isotope Stage 3, Quaternary Sci. Rev., 23, 1989–2005, 2004.
van Huissteden, J., Maximov, T. C., Dolman, A. J.: High CH
4 flux from an arctic floodplain (Indigirka lowlands, Eastern Siberia), J. Geophys. Res., 110, G02002, https://doi.org/10.1029/2005JG000010, 2005.
van Huissteden, J., Petrescu, A. M. R., Hendriks, D. M. D., and Rebel, K. T.: Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites, Biogeosciences, 6, 3035–3051, https://doi.org/10.5194/bg-6-3035-2009, 2009.
Verville, J. H., Hobbie, S. E., Chapin III, F. S., and Hooper, D. U.: Response of tundra CH
4 and CO
2 flux to manipulation of temperature and vegetation, Biogeochemistry, 41, 215–235, 1998.
Wagner, D., Kobabe, S., Pfeiffer, E.-M., and Hubberten, H.-W.: Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia, Permafrost Periglac., 14, 173–185, 2003.
Wagner, D., Lipski, A., Embacher, A., and Gattinger, A.: Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality, Environ. Microbiol., 7, 1582–1592, 2005.
Walker, D. A., Jia, G. J., Epstein, H. E., Raynolds, M. K., Chapin III, F. S., Copass, C., Hinzman, L. D., Knudson, J. A., Maier, H. A., Michaelson, G. J., Nelson, F., Ping, C. L., Romanovsky, V. E., and Shiklomanov, N.: Vegetation-soil thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies, Permafrost Periglac., 14, 103–123, 2003.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to derive CH
4 emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Zazula, G. D., Frese, D. G., Schweger, C. E., Mathewes, R. W., Beaudoin, A. B., Telka, A. M., Harington, C. R., and Westgate, J. A.: Ice-age steppe vegetation in east Beringia, Nature, 423, 603, 2003.
Zimov, S. A.: Pleistocene park: Return of the mammoths ecosystem, Science, 308, 796–798, 2005.