Articles | Volume 21, issue 6
https://doi.org/10.5194/cp-21-973-2025
https://doi.org/10.5194/cp-21-973-2025
Research article
 | Highlight paper
 | 
03 Jun 2025
Research article | Highlight paper |  | 03 Jun 2025

Mean ocean temperature change and decomposition of the benthic δ18O record over the past 4.5 million years

Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Patrick J. Bartlein, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, and Daniel P. Schrag

Related authors

FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025,https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Modeling the impacts of climate trends and lake formation on the retreat of a tropical Andean glacier (1962–2020)
Tal Y. Shutkin, Bryan G. Mark, Nathan D. Stansell, Rolando Cruz Encarnación, Henry H. Brecher, Zhengyu Liu, Bidhyananda Yadav, and Forrest S. Schoessow
EGUsphere, https://doi.org/10.5194/egusphere-2024-3194,https://doi.org/10.5194/egusphere-2024-3194, 2025
Short summary
Closing the Plio-Pleistocene 13C cycle in the 405-kyr periodicity by isotopic signatures of geological sources
Peter Köhler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-63,https://doi.org/10.5194/cp-2024-63, 2024
Revised manuscript accepted for CP
Short summary
In situ Cosmogenic 10Be and 26Al in Deglacial Sediment Reveals Interglacial Exposure, Burial, and Limited Erosion Under the Quebec-Labrador Ice Dome
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233,https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Large-ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation–ice sheet model
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024,https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
The Eocene-Oligocene Transition in the Paratethys: Boreal Water Ingression and its Paleoceanographic Implications
Mustafa Yücel Kaya, Henk Brinkhuis, Chiara Fioroni, Serdar Görkem Atasoy, Alexis Licht, Dirk Nürnberg, and Taylan Vural
EGUsphere, https://doi.org/10.5194/egusphere-2025-479,https://doi.org/10.5194/egusphere-2025-479, 2025
Short summary
Impact of the Late Miocene Cooling on the loss of coral reefs in the Central Indo-Pacific
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025,https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024,https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023,https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023,https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary

Cited articles

Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, 1–16, 2017. 
Alder, J. R. and Hostetler, S. W.: Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model, Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, 2015. 
Baggenstos, D., Haberli, M., Schmitt, J., Shackleton, S. A., Birner, B., Severinghaus, J. P., Kellerhals, T., and Fischer, H.: Earth's radiative imbalance from the Last Glacial Maximum to the present, P. Natl. Acad. Sci. USA, 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116, 2019. 
Barrientos, N., Lear, C. H., Jakobsson, M., Stranne, C., O'Regan, M., Cronin, T. M., Gukov, A. Y., and Coxall, H. K.: Arctic Ocean benthic foraminifera Mg / Ca ratios and global Mg / Ca-temperature calibrations: New constraints at low temperatures, Geochim. Cosmochim. Ac., 236, 240–259, https://doi.org/10.1016/j.gca.2018.02.036, 2018. 
Bartlein, P.: pjbartlein/MOTvsSST: MOT vs SST regressions (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.14759006, 2025. 
Co-editor-in-chief
This Milankovic Medalist paper represents a tour de force, addressing a complex yet crucial question: the evolution of global climate over the past 4.5 million years. This paper makes a significant contribution to the geoscience community by providing a self-consistent decomposition of global mean benthic δ18O into its temperature and seawater (ice volume) components. This approach is consistent with independent estimates of global mean sea surface temperature (GMSST) and sea level constraints.The analysis incorporates numerous high-resolution records spanning this period and highlights two distinct climatic regimes: • Before 1.5 million years ago, a warm period characterized by smaller-amplitude ice sheet and sea level cycles, primarily driven by obliquity timescales. • Following the Mid-Pleistocene Transition (MPT), i.e. after 1 million years, a well-documented increase in the amplitude of glacial cycles became evident. The central finding of the study is that, during the MPT, there was a shift in ocean heat storage efficiency (HSE). Prior to this transition, HSE remained low and constant, whereas after the MPT, it doubled and stabilized at a higher value. This finding is supported by the observation of subtle differential changes in global mean SST and mean ocean temperature (MOT), which appear to be time-dependent. These observations suggest a potential fundamental shift in oceanic heat storage dynamics.
Short summary
We reconstruct changes in mean ocean temperature (ΔMOT) over the last 4.5 Myr. We find that the ratio of ΔMOT to changes in global mean sea surface temperature was around 0.5 before the Middle Pleistocene transition but was 1 thereafter. We subtract our ΔMOT reconstruction from the global δ18O record to derive the δ18O of seawater. Finally, we develop a theoretical understanding of why the ratio of ΔMOT / ΔGMSST changed over the Plio-Pleistocene.
Share