Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-261-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-261-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatio-temporal dynamics of speleothem growth and glaciation in the British Isles
Sina Panitz
CORRESPONDING AUTHOR
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
Michael Rogerson
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
Jack Longman
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
Nick Scroxton
Department of Geography, Irish Climate Analysis and Research Units, Maynooth University, Maynooth, Ireland
Tim J. Lawson
School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UE, UK
Tim C. Atkinson
Department of Earth Sciences, University College London, London, WC1E 6BS, UK
Vasile Ersek
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
James Baldini
Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
Lisa Baldini
School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
Stuart Umbo
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
Mahjoor A. Lone
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
Gideon M. Henderson
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Sebastian F. M. Breitenbach
Department of Geography and Environmental Sciences, Northumbria University, Newcastle, NE1 8ST, UK
Related authors
No articles found.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian F. M. Breitenbach
Clim. Past, 21, 1533–1551, https://doi.org/10.5194/cp-21-1533-2025, https://doi.org/10.5194/cp-21-1533-2025, 2025
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate in 8.68 ± 0.09 Ma. We show that when the global average temperature was about 4.5 °C warmer than today (similar to what is expected in the coming decades should carbon emissions continue unabated), the Siberian Arctic temperature increased by more than 18 °C.
Edward Christopher Grant Forman and James Ugo Lee Baldini
EGUsphere, https://doi.org/10.5194/egusphere-2025-3749, https://doi.org/10.5194/egusphere-2025-3749, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Many climate archives record annual cyclicity, which can be counted to yield a very precise chronology. This process is often time-consuming and subjective, but despite automatic counting software packages existing, many researchers still manually due to its technical simplicity. We present a new tool (CYCLIM) that combines the time saved from automation with the flexibility of expert judgement. We show CYCLIM accurately detects cyclicity and makes cycle counting ~14 times faster.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
Clim. Past, 21, 661–677, https://doi.org/10.5194/cp-21-661-2025, https://doi.org/10.5194/cp-21-661-2025, 2025
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends during the Last Interglacial (LIG) (124.1–118.8 ka) and the Holocene (10–0 ka). Wildfires were more prevalent during the LIG than the Holocene and were supported by fire-prone species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parris
EGUsphere, https://doi.org/10.5194/egusphere-2025-432, https://doi.org/10.5194/egusphere-2025-432, 2025
Short summary
Short summary
U-Pb dating of cave sediments has provided important new time constraints on the evolution of cave-dwelling organisms (including early humans), and of Earth's climate during the past 5 million years. This paper shows that the most common type of U-Pb dating, which uses 238U and 206Pb, can be inaccurate beyond 2 million years ago. It proposes an alternative type of U-Pb dating, using 235U and 207Pb, as a more accurate alternative.
Virgil Drăgușin, Nicolaie Alexandru, Mihai Caminschi, Florina Chitea, Vasile Ersek, Alina Floroiu, Liviu Giosan, Georgiana Alexandra Grigore, Diana Hanganu, Maria Ilie, Dumitru Ioane, Marius Mocuța, Adrian Iulian Pantia, Iulian Popa, Gabriela Sava, Tiberiu Sava, Răsvan Stochici, and Constantin Ungureanu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2385, https://doi.org/10.5194/egusphere-2024-2385, 2024
Preprint archived
Short summary
Short summary
We discovered marine sediments on the Black Sea coast in eastern Romania at an altitude of 10 m and reveal that a tectonic block quickly descended 4 m below sea level, allowed for the deposition of sediments, and was then suddenly raised by 10 m sometimes during the last 200–300 years. This type of displacement needs to be taken into account when calculating past sea levels, while their recent and strong character should be seen as hazardous for coastal settlements.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Jack Longman, Daniel Veres, Aritina Haliuc, Walter Finsinger, Vasile Ersek, Daniela Pascal, Tiberiu Sava, and Robert Begy
Clim. Past, 17, 2633–2652, https://doi.org/10.5194/cp-17-2633-2021, https://doi.org/10.5194/cp-17-2633-2021, 2021
Short summary
Short summary
Peatlands are some of the best environments for storing carbon; thus, comprehending how much carbon can be stored and how amounts have changed through time is important to understand carbon cycling. We analysed nine peatlands from central–eastern Europe to look at how carbon storage in mountain bogs has changed over the last 10 000 years. We conclude that human activity is the main driver of changes in storage levels over the past 4000 years; prior to this, climate was the primary driver.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-138, https://doi.org/10.5194/cp-2020-138, 2020
Revised manuscript not accepted
Short summary
Short summary
The end of the Harappan civilization in the Indus Valley around 4,200 years ago has been attributed to monsoon failure associated with a global megadrought. Using a suite of high resolution paleoclimate records from around the Indian Ocean basin we find that two consecutive droughts contributed to the end of the Harappa. A winter drought starting 4,200 years ago was followed by monsoon failure at 3,900 years ago. The double hit caused civilization decline first, and abandonment later.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-137, https://doi.org/10.5194/cp-2020-137, 2020
Revised manuscript not accepted
Short summary
Short summary
The 4.2 kyr climatic event caused drought in the Mediterranean and Middle East and the collapse of the Akkadian Civilization. Outside of this region the global footprint of this event, be it drought or flood conditions, is poorly understood. This study uses a stalagmite from Madagascar to determine how the 4.2 kyr event influenced the South-East African Monsoon. We find drought in Madagascar and around Lake Malawi but wet conditions elsewhere, a pattern that resembles modern climate variability.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Alexander, D., Shulmeister, J., and Davies, T.: High basal melting rates within high-precipitation temperate glaciers, J. Glaciol., 57, 789–795, https://doi.org/10.3189/002214311798043726, 2011.
Atkinson, T. C.: Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada, Arctic Alpine Res., 15, 523–536, https://doi.org/10.1080/00040851.1983.12004379, 1983.
Atkinson, T. C., Harmon, R. S., Smart, P. L., and Waltham, A. C.: Palaeoclimatic and geomorphic implications of dates on speleothems from Britain, Nature, 272, 24–28, https://doi.org/10.1038/272024a0, 1978.
Atkinson, T. C., Lawson, T. J., Smart, P. L., Harmon, R. S., and Hess, J. W.: New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years, J. Quaternary Sci., 1, 67–72, https://doi.org/10.1002/jqs.3390010108, 1986.
Ayliffe, L. K., Marianelli, P. C., Moriarty, K. C., Wells, R. T., McCulloch, M. T., Mortimer, G. E., and Hellstrom, J. C.: 500 ka precipitation record from southeastern Australia: Evidence for interglacial relative aridity, Geology, 26, 147–150, https://doi.org/10.1130/0091-7613(1998)026%3C0147:KPRFSA%3E2.3.CO;2, 1998.
Baker, A., Smart, P. L., and Ford, D. C.: Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits, Palaeogeogr. Palaeocl., 100, 291–301, https://doi.org/10.1016/0031-0182(93)90059-R, 1993.
Baldini, J. U. L., Lechleitner, F. A., Breitenbach, S. F. M., van Hunen, J., Baldini, L. M., Wynn, P. M., Jamieson, R. A., Ridley, H. E., Baker, A. J., Walczak, I. W., and Fohlmeister, J.: Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches, Quaternary Sci. Rev., 254, 106784, https://doi.org/10.1016/j.quascirev.2020.106784, 2021.
Biller-Celander, N., Shakun, J. D., McGee, D., Wong, C. I., Reyes, A. V., Hardt, B., Tal, I., Ford, D. C., and Lauriol, B.: Increasing Pleistocene permafrost persistence and carbon cycle conundrums inferred from Canadian speleothems, Sci. Adv., 7, 18, https://doi.org/10.1126/sciadv.abe5799, 2021.
Bradwell, T., Fabel, D., Clark, C. D., Chiverrell, R. C., Small, D., Smedley, R. K., Saher, M. H., Moreton, S. G., Dove, D., Callard, S. L., Duller, G. A. T., Medialdea, A., Bateman, M. D., Burke, M. J., McDonald, N., Gilgannon, S., Morgan, S., Roberts, D. H., and Cofaigh, C.: Pattern, style and timing of British–Irish Ice Sheet advance and retreat over the last 45 000 years: evidence from NW Scotland and the adjacent continental shelf, J. Quaternary Sci., 36, 871–933, https://doi.org/10.1002/jqs.3296, 2021.
Brown, E. J., Rose, J., Coope, R. G., and Lowe, J. J.: An MIS 3 age organic deposit from Balglass Burn, central Scotland: Palaeoenvironmental significance and implications for the timing of the onset of the LGM ice sheet in the vicinity of the British Isles, J. Quaternary Sci., 22, 295–308, https://doi.org/10.1002/jqs.1028, 2007.
Candy, I., White, T. S., and Elias, S.: How warm was Britain during the Last Interglacial? A critical review of Ipswichian (MIS 5e) palaeotemperature reconstructions, J. Quaternary Sci., 31, 857–868, https://doi.org/10.1002/jqs.2910, 2016.
Carr, S. J., Holmes, R., van der Meer, J. J. M., and Rose, J.: The Last Glacial Maximum in the North Sea Basin: Micromorphological evidence of extensive glaciation, J. Quaternary Sci., 21, 131–153, https://doi.org/10.1002/jqs.950, 2006.
Caseldine, C. J., McGarry, S. F., Baker, A., Hawkesworth, C., and Smart, P. L.: Late Quaternary speleothem pollen in the British Isles, J. Quaternary Sci., 23, 193–200, https://doi.org/10.1002/jqs.1121, 2008.
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.: The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe, Hydrogeol. J., 25, 771–785, https://doi.org/10.1007/s10040-016-1519-3, 2017.
Clark, C. D., Ely, J. C., Fabel, D., and Bradley, S.: BRITICE-CHRONO maps and GIS data of the last British-Irish Ice Sheet 31 to 15 ka, including model reconstruction, geochronometric age spreadsheet, palaeotopographies and coastline positions, https://doi.org/10.1594/PANGAEA.945729, 2022a.
Clark, C. D., Ely, J. C., Hindmarsh, R. C. A., Bradley, S., Ignéczi, A., Fabel, D., Ó Cofaigh, C., Chiverrell, R. C., Scourse, J., Benetti, S., Bradwell, T., Evans, D. J. A., Roberts, D. H., Burke, M., Callard, S. L., Medialdea, A., Saher, M., Small, D., Smedley, R. K., Gasson, E., Gregoire, L., Gandy, N., Hughes, A. L. C., Ballantyne, C., Bateman, M. D., Bigg, G. R., Doole, J., Dove, D., Duller, G. A. T., Jenkins, G. T. H., Livingstone, S. L., McCarron, S., Moreton, S., Pollard, D., Praeg, D., Sejrup, H. P., Van Landeghem, K. J. J., and Wilson, P.: Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction, Boreas, 51, 699–758, https://doi.org/10.1111/bor.12594, 2022b.
Dreybrodt, W.: A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide, Earth Planet. Sc. Lett., 58, 293–299, https://doi.org/10.1016/0012-821X(82)90202-3, 1982.
Fairchild, I. J. and Baker, A.: Speleothem Science, Wiley-Blackwell, ISBN 9781405196208, https://doi.org/10.1002/9781444361094, 2012.
Fankhauser, A., McDermott, F., and Fleitmann, D.: Episodic speleothem deposition tracks the terrestrial impact of millennial-scale last glacial climate variability in SW Ireland, Quaternary Sci. Rev., 152, 104–117, https://doi.org/10.1016/j.quascirev.2016.09.019, 2016.
Gibbard, P. L. and Clark, C. D.: Pleistocene Glaciation Limits in Great Britain, in: Developments in Quaternary Science, Elsevier, 75–93, https://doi.org/10.1016/B978-0-444-53447-7.00007-6, 2011.
Gordon, D., Smart, P. L., Ford, D. C., Andrews, J. N., Atkinson, T. C., Rowe, P. J., and Christopher, N. S. J.: Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothem growth frequency, Quaternary Res., 31, 14–26, https://doi.org/10.1016/0033-5894(89)90082-3, 1989.
Graham, A. G. C., Stoker, M. S., Lonergan, L., Bradwell, T., and Stewart, M. A.: The Pleistocene Glaciations of the North Sea Basin, Elsevier, 261–278, https://doi.org/10.1016/B978-0-444-53447-7.00021-0, 2011.
Helmens, K. F.: The last interglacial-glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe, Quaternary Sci. Rev., 86, 115–143, https://doi.org/10.1016/j.quascirev.2013.12.012, 2014.
Hibbert, F. D., Austin, W. E. N., Leng, M. J., and Gatliff, R. W.: British ice sheet dynamics inferred from North Atlantic ice-rafted debris records spanning the last 175 000 years, J. Quaternary Sci., 25, 461–482, https://doi.org/10.1002/jqs.1331, 2010.
Hughes, A. L. C., Clark, C. D., and Jordan, C. J.: Flow-pattern evolution of the last British Ice Sheet, Quaternary Sci. Rev., 89, 148–168, https://doi.org/10.1016/j.quascirev.2014.02.002, 2014.
Jo, K. N., Woo, K. S., Yi, S., Yang, D. Y., Lim, H. S., Wang, Y., Cheng, H., and Edwards, R. L.: Mid-latitude interhemispheric hydrologic seesaw over the past 550 000 years, Nature, 508, 378–382, https://doi.org/10.1038/nature13076, 2014.
Kashiwaya, K., Atkinson, T. C., and Smart, P. L.: Periodic variations in late pleistocene speleothem abundance in Britain, Quaternary Res., 35, 190–196, https://doi.org/10.1016/0033-5894(91)90066-E, 1991.
Lawson, T. J. and Atkinson, T. C.: Quaternary chronology, in: The Quaternary of Assynt and Coigach: field guide, edited by: Lawson, T. J., Quaternary Research Association, Cambridge, 12–18, ISBN 0 907780 17 2, 1995.
Lawson, T. J., Atkinson, T. C., Breitenbach, S. F. M., Couper, H., Smart, P. L., and Henderson, G. M.: Speleothem dates and the onset of Late Devensian ice-sheet glaciation in NW Scotland, Quat. Newsl., 159, 19–23, 2023.
Li, W.-X., Lundberg, J., Dickin, A. P., Ford, D. C., Schwarcz, H. P., McNutt, R., and Williams, D.: High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies, Nature, 339, 534–536, https://doi.org/10.1038/339534a0, 1989.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 1, https://doi.org/10.1029/2004PA001071, 2005.
Lundberg, J. and McFarlane, D. A.: Pleistocene depositional history in a periglacial terrane: A 500 k.y. record from Kents Cavern, Devon, United Kingdom, Geosphere, 3, 199–219, https://doi.org/10.1130/GES00085.1, 2007.
McDermott, F., Frisia, S., Huang, Y., Longinelli, A., Spiro, B., Heaton, T. H. E., Hawkesworth, C. J., Borsato, A., Keppens, E., Fairchild, I. J., Van der Borg, K., Verheyden, S., and Selmo, E.: Holocene climate variability in Europe: Evidence from δ18O, textural and extension-rate variations in three speleothems, Quaternary Sci. Rev., 18, 1021–1038, https://doi.org/10.1016/S0277-3791(98)00107-3, 1999.
Panitz, S.: Data File 1 – British Isles speleothem U-series datasetData File 2 – Probability Density Functions (PDFs) based on the speleothem U-series dataset for the British Isles for 300–5 ka, figshare [data set], https://doi.org/10.6084/m9.figshare.26084536.v1, 2024.
Ranner, P. H., Allen, J. R. M., and Huntley, B.: A new early Holocene cryptotephra from northwest Scotland, J. Quaternary Sci., 20, 201–208, https://doi.org/10.1002/jqs.910, 2005.
Scroxton, N., Gagan, M. K., Dunbar, G. B., Ayliffe, L. K., Hantoro, W. S., Shen, C. C., Hellstrom, J. C., Zhao, J. X., Cheng, H., Edwards, R. L., Sun, H., and Rifai, H.: Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530 000 years, Palaeogeogr. Palaeocl., 441, 823–833, https://doi.org/10.1016/j.palaeo.2015.10.030, 2016.
Skiba, V., Spötl, C., Trüssel, M., Schröder-Ritzrau, A., Schröder, B., Frank, N., Eichstädter, R., Tjallingii, R., Marwan, N., Zhang, X., and Fohlmeister, J.: Millennial-scale climate variability in the Northern Hemisphere influenced glacier dynamics in the Alps around 250 000 years ago, Commun. Earth Environ., 4, 426, https://doi.org/10.1038/s43247-023-01083-y, 2023.
Spötl, C., Baker, J. L., Skiba, V., Honiat, A., Fohlmeister, J., Luetscher, M., and Trüssel, M.: Speleothems in subglacial caves: An emerging archive of glacial climate history and mountain glacier dynamics, Quaternary Sci. Rev., 333, 108684, https://doi.org/10.1016/j.quascirev.2024.108684, 2024.
Vaks, A., Mason, A. J., Breitenbach, S. F. M., Kononov, A. M., Osinzev, A. V., Rosensaft, M., Borshevsky, A., Gutareva, O. S., and Henderson, G. M.: Palaeoclimate evidence of vulnerable permafrost during times of low sea ice, Nature, 577, 221–225, https://doi.org/10.1038/s41586-019-1880-1, 2020.
Weij, R., Woodhead, J., Hellstrom, J., and Sniderman, K.: An exploration of the utility of speleothem age distributions for palaeoclimate assessment, Quat. Geochronol., 60, 101112, https://doi.org/10.1016/j.quageo.2020.101112, 2020.
Wendt, K. A., Li, X., and Edwards, R. L.: Uranium-thorium dating of speleothems, Elements, 17, 87–92, https://doi.org/10.2138/gselements.17.2.87, 2021.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1388, https://doi.org/10.1126/science.aba6853, 2020.
Whittington, G. and Hall, A. M.: The Tolsta Interstadial, Scotland: correlation with D–O cycles GI-8 to GI-5?, Quaternary Sci. Rev., 21, 901–915, https://doi.org/10.1016/S0277-3791(01)00068-3, 2002.
Wong, C. I. and Breecker, D. O.: Advancements in the use of speleothems as climate archives, Quaternary Sci. Rev., 127, 1–18, https://doi.org/10.1016/j.quascirev.2015.07.019, 2015.
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g. stalagmites) in the British Isles to help constrain the extent of past glaciations in both time and space. Speleothems require liquid water to grow, and therefore their presence indicates the absence of ice above the cave. By dating these speleothems, we can improve existing reconstructions of past ice sheets.
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this...