Articles | Volume 21, issue 12
https://doi.org/10.5194/cp-21-2601-2025
https://doi.org/10.5194/cp-21-2601-2025
Research article
 | 
17 Dec 2025
Research article |  | 17 Dec 2025

Modelling the impact of palaeogeographical changes on weathering and CO2 during the Cretaceous–Eocene period

Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather Buss

Related authors

DeepMIP-Eocene-p2: Experimental design for Phase 2 of the early Eocene component of the the CMIP7/PMIP7 Deep-time Model Intercomparison Project (DeepMIP-Eocene)
Daniel J. Lunt, Nicky M. Wright, Bram Vaes, Ulrich Salzmann, James W. B. Rae, Thomas Hickler, David K. Hutchinson, Julia Brugger, Jiang Zhu, Sebastian Steinig, A. Nele Meckler, Gordon N. Inglis, David Evans, Agatha M. de Boer, Bette L. Otto-Bliesner, Natalie Burls, Yurui Zhang, Appy Sluijs, Tammo Reichgelt, Igor Niezgodzki, Katrin Meissner, Jean-Baptiste Ladant, Fanni D. Kelemen, Matthew Huber, David Greenwood, Mattias Green, Flavia Boscolo-Galazzo, Mauel Tobias Blau, and Michiel Baatsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-6135,https://doi.org/10.5194/egusphere-2025-6135, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Global climate system response to SOFIA Antarctic meltwater in HadCM3-M2.1
Amar Mistry, Dan Lunt, and Xin Ren
The Cryosphere, 19, 6989–7012, https://doi.org/10.5194/tc-19-6989-2025,https://doi.org/10.5194/tc-19-6989-2025, 2025
Short summary
An emulator-based modelling framework for studying astronomical controls on ocean anoxia with an application to the Devonian
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
Geosci. Model Dev., 18, 10095–10117, https://doi.org/10.5194/gmd-18-10095-2025,https://doi.org/10.5194/gmd-18-10095-2025, 2025
Short summary
Reviews and syntheses: Best practices for the application of marine GDGTs as proxy for paleotemperatures: sampling, processing, analyses, interpretation, and archiving protocols
Peter K. Bijl, Kasia K. Śliwińska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa A. Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond D. Eefting, Felix J. Elling, Pierrick Fenies, Gordon N. Inglis, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yi Ge Zhang
Biogeosciences, 22, 6465–6508, https://doi.org/10.5194/bg-22-6465-2025,https://doi.org/10.5194/bg-22-6465-2025, 2025
Short summary
GEOCLIM7, an Earth system model for multi-million-year evolution of the geochemical cycles and climate
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev., 18, 6367–6413, https://doi.org/10.5194/gmd-18-6367-2025,https://doi.org/10.5194/gmd-18-6367-2025, 2025
Short summary

Cited articles

Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. a, b, c
Barron, E. J., Hay, W. W., and Thompson, S.: The hydrologic cycle: A major variable during earth history, Palaeogeogr. Palaeocl., 75, 157–174, https://doi.org/10.1016/0031-0182(89)90175-2, 1989. a, b
Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D. Y., Cole, D., and Brantley, S. L.: Where fast weathering creates thin regolith and slow weathering creates thick regolith, Earth Surf. Proc. Land., 38, 847–858, https://doi.org/10.1002/esp.3369, 2013. a
Berner, R. A.: Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249, 1382–1386, 1990. a
Berner, R. A.: A Model for Atmospheric Co2 over Phanerozoic Time, Am. J. Sci., 291, 339–376, https://doi.org/10.2475/ajs.291.4.339, 1991. a
Download
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the Earth by sequestering atmospheric CO2. The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long-term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Share