Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the mechanisms of Devonian oceanic anoxia: impact of ocean dynamics, palaeogeography, and orbital forcing
Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Loïc Sablon
Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Jarno J. C. Huygh
Department of Geology, University of Liège, Sart Tilman, 4000 Liège, Belgium
Anne-Christine Da Silva
Department of Geology, University of Liège, Sart Tilman, 4000 Liège, Belgium
Alexandre Pohl
Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 21000 Dijon, France
Christian Vérard
Department of Earth Sciences, University of Geneva, 13 Rue des Maraîchers, 1205 Geneva, Switzerland
Michel Crucifix
Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Related authors
Justin Gérard, Alexandre Pohl, Loïc Sablon, Jarno Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-4238, https://doi.org/10.5194/egusphere-2025-4238, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We studied how changes in Earth’s orbit affected ocean oxygen during the Devonian, a time of repeated environmental crises and extinctions. Using computer simulations, we show that certain orbital cycles, especially eccentricity maxima, exacerbate oxygen loss in the oceans, while obliquity also played a key role at high latitudes. The results also help explain why records from different places show contrasting signals and provide new insight into how natural climate cycles can affect ocean life.
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-1696, https://doi.org/10.5194/egusphere-2025-1696, 2025
Short summary
Short summary
We propose an innovative climate modelling framework that combines statistical methods with climate simulations to study Earth's environmental systems. The model captures how orbital changes and carbon dioxide levels influence climate atmospheric dynamics, offering a detailed and efficient way to explore long-term processes. This tool provides new opportunities to investigate Earth's climate history and its implications for future changes.
Justin Gérard and Michel Crucifix
Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, https://doi.org/10.5194/esd-15-293-2024, 2024
Short summary
Short summary
We used cGENIE, a climate model, to investigate the Atlantic Meridional Overturning Circulation (AMOC) slowdown under a warming scenario. We apply a diagnostic that was used in a previous study (Levang and Schmitt, 2020) to separate the temperature from salinity contribution to this slowdown. We find that, in our model, the initial slowdown of the AMOC was driven by temperature and that salinity takes the lead for the termination of the circulation.
Justin Gérard, Alexandre Pohl, Loïc Sablon, Jarno Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-4238, https://doi.org/10.5194/egusphere-2025-4238, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We studied how changes in Earth’s orbit affected ocean oxygen during the Devonian, a time of repeated environmental crises and extinctions. Using computer simulations, we show that certain orbital cycles, especially eccentricity maxima, exacerbate oxygen loss in the oceans, while obliquity also played a key role at high latitudes. The results also help explain why records from different places show contrasting signals and provide new insight into how natural climate cycles can affect ocean life.
Laure Moinat, Florian Franziskakis, Christian Vérard, Daniel N. Goldberg, and Maura Brunetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2946, https://doi.org/10.5194/egusphere-2025-2946, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We describe a new tool, biogeodyn-MITgcmIS, that consistently reproduces the global-scale dynamics of the ocean, atmosphere, vegetation and ice on multimillennial timescales at low computational cost. Evaluated against observations and state-of-the-art Earth system models, it includes offline coupling to models of vegetation, hydrology and a newly developed global-scale ice sheet. Using arbitrary continental configurations, it enables studies of past and present climates on Earth or exoplanets.
Florian Franziskakis, Christian Vérard, Sébastien Castelltort, and Grégory Giuliani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W13-2025, 111–118, https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-111-2025, https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-111-2025, 2025
Lilian Vanderveken and Michel Crucifix
Nonlin. Processes Geophys., 32, 189–200, https://doi.org/10.5194/npg-32-189-2025, https://doi.org/10.5194/npg-32-189-2025, 2025
Short summary
Short summary
Vegetation patterns in semi-arid regions arise from interactions between plants and environmental factors. This study uses a numerical model to explore how vegetation responds to changes in rainfall and random disturbances. We identify key timescales that influence resilience, showing that ecosystems rely on both stable and unstable states to adapt. These findings offer insights into the resilience mechanisms that help ecosystems maintain stability under environmental stress.
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-1696, https://doi.org/10.5194/egusphere-2025-1696, 2025
Short summary
Short summary
We propose an innovative climate modelling framework that combines statistical methods with climate simulations to study Earth's environmental systems. The model captures how orbital changes and carbon dioxide levels influence climate atmospheric dynamics, offering a detailed and efficient way to explore long-term processes. This tool provides new opportunities to investigate Earth's climate history and its implications for future changes.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Takahito Mitsui, Peter Ditlevsen, Niklas Boers, and Michel Crucifix
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-39, https://doi.org/10.5194/esd-2024-39, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
The late Pleistocene glacial cycles are dominated by a 100-kyr periodicity, rather than other major astronomical periods like 19, 23, 41, or 400 kyr. Various models propose distinct mechanisms to explain this, but their diversity may obscure the key factor behind the 100-kyr periodicity. We propose a time-scale matching hypothesis, suggesting that the ice-sheet climate system responds to astronomical forcing at ~100 kyr because its intrinsic timescale is closer to 100 kyr than to other periods.
Justin Gérard and Michel Crucifix
Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, https://doi.org/10.5194/esd-15-293-2024, 2024
Short summary
Short summary
We used cGENIE, a climate model, to investigate the Atlantic Meridional Overturning Circulation (AMOC) slowdown under a warming scenario. We apply a diagnostic that was used in a previous study (Levang and Schmitt, 2020) to separate the temperature from salinity contribution to this slowdown. We find that, in our model, the initial slowdown of the AMOC was driven by temperature and that salinity takes the lead for the termination of the circulation.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Lilian Vanderveken, Marina Martínez Montero, and Michel Crucifix
Nonlin. Processes Geophys., 30, 585–599, https://doi.org/10.5194/npg-30-585-2023, https://doi.org/10.5194/npg-30-585-2023, 2023
Short summary
Short summary
In semi-arid regions, hydric stress affects plant growth. In these conditions, vegetation patterns develop and effectively allow for vegetation to persist under low water input. The formation of patterns and the transition between patterns can be studied with small models taking the form of dynamical systems. Our study produces a full map of stable and unstable solutions in a canonical vegetation model and shows how they determine the transitions between different patterns.
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023, https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Short summary
Are phenomenological dynamical paleoclimate models physically similar to Nature? We demonstrated that though they may be very accurate in reproducing empirical time series, this is not sufficient to claim physical similarity with Nature until similarity parameters are considered. We suggest that the diagnostics of physical similarity should become a standard procedure before a phenomenological model can be utilized for interpretations of historical records or future predictions.
Charline Ragon, Christian Vérard, Jérôme Kasparian, and Maura Brunetti
EGUsphere, https://doi.org/10.5194/egusphere-2023-1808, https://doi.org/10.5194/egusphere-2023-1808, 2023
Preprint archived
Short summary
Short summary
Deep-time climate simulations are challenging since sedimentary data are too sparse and uncertain to fully constrain initial and boundary conditions. By exploring a wide range of initial conditions, we find three alternative steady states with a temperature difference of around 10 °C in simulations using the Permian-Triassic paleogeography. This opens the possibility of explaining climatic variations in Early Triassic geological records through tipping mechanisms between steady states.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Cited articles
Algeo, T. J. and Scheckler, S. E.: Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events, Philos. T. Roy. Soc. B, 353, 113–130, https://doi.org/10.1098/rstb.1998.0195, 1998. a
Bond, D. P. and Wignall, P. B.: The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction, Palaeogeogr. Palaeocl., 263, 107–118, https://doi.org/10.1016/j.palaeo.2008.02.015, 2008. a
Boyer, D. L., Haddad, E. E., and Seeger, E. S.: The last gasp: trace fossils track deoxygenation leading into the Frasnian–Famennian extinction event, PALAIOS, 29, 646–651, https://doi.org/10.2110/palo.2014.049, 2014. a
Brugger, J., Hofmann, M., Petri, S., and Feulner, G.: On the Sensitivity of the Devonian Climate to Continental Configuration, Vegetation Cover, Orbital Configuration, CO2 Concentration, and Insolation, Paleoceanography and Paleoclimatology, 34, 1375–1398, https://doi.org/10.1029/2019PA003562, 2019. a, b
Brunetti, M., Kasparian, J., and Vérard, C.: Co-existing climate attractors in a coupled aquaplanet, Clim. Dynam., 53, 6293–6308, https://doi.org/10.1007/s00382-019-04926-7, 2019. a
Cannell, A., Blamey, N., Brand, U., Escapa, I., and Large, R.: A revised sedimentary pyrite proxy for atmospheric oxygen in the Paleozoic: Evaluation for the Silurian-Devonian-Carboniferous period and the relationship of the results to the observed biosphere record, Earth-Sci. Rev., 231, 104062, https://doi.org/10.1016/j.earscirev.2022.104062, 2022. a
Cao, L., Eby, M., Ridgwell, A., Caldeira, K., Archer, D., Ishida, A., Joos, F., Matsumoto, K., Mikolajewicz, U., Mouchet, A., Orr, J. C., Plattner, G.-K., Schlitzer, R., Tokos, K., Totterdell, I., Tschumi, T., Yamanaka, Y., and Yool, A.: The role of ocean transport in the uptake of anthropogenic CO2, Biogeosciences, 6, 375–390, https://doi.org/10.5194/bg-6-375-2009, 2009. a, b
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J., and Kido, E.: Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression, Global Planet. Change, 183, 102984, https://doi.org/10.1016/j.gloplacha.2019.102984, 2019. a
Cermeño, P., García-Comas, C., Pohl, A., Williams, S., Benton, M. J., Chaudhary, C., Le Gland, G., Müller, R. D., Ridgwell, A., and Vallina, S. M.: Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots, Nature, 607, 507–511, https://doi.org/10.1038/s41586-022-04932-6, 2022. a, b
Chen, D., Wang, J., Racki, G., Li, H., Wang, C., Ma, X., and Whalen, M. T.: Large sulphur isotopic perturbations and oceanic changes during the Frasnian–Famennian transition of the Late Devonian, J. Geol. Soc. London, 170, 465–476, https://doi.org/10.1144/jgs2012-037, 2013. a, b
Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, Clim. Dynam., 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002. a
Crichton, K. A., Ridgwell, A., Lunt, D. J., Farnsworth, A., and Pearson, P. N.: Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model, Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, 2021. a
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E.: Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish, P. Natl. Acad. Sci. USA, 107, 17911–17915, https://doi.org/10.1073/pnas.1011287107, 2010. a
Dahl, T. W., Harding, M. A., Brugger, J., Feulner, G., Norrman, K., Lomax, B. H., and Junium, C. K.: Low atmospheric CO2 levels before the rise of forested ecosystems, Nat. Commun., 13, 7616, https://doi.org/10.1038/s41467-022-35085-9, 2022. a
Da Silva, A.-C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., De Winter, N. J., Percival, L. M. E., Schaltegger, U., and De Vleeschouwer, D.: Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating, Sci. Rep., 10, 12940, https://doi.org/10.1038/s41598-020-69097-6, 2020. a, b
De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P., Sobień, K., and Claeys, P.: The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland), Earth Planet. Sc. Lett., 365, 25–37, https://doi.org/10.1016/j.epsl.2013.01.016, 2013. a
De Vleeschouwer, D., Crucifix, M., Bounceur, N., and Claeys, P.: The impact of astronomical forcing on the Late Devonian greenhouse climate, Global Planet. Change, 120, 65–80, https://doi.org/10.1016/j.gloplacha.2014.06.002, 2014. a
De Vleeschouwer, D., Boulvain, F., Da Silva, A.-C., Pas, D., Labaye, C., and Claeys, P.: The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium), Geological Society, London, Special Publications, 414, 245–256, https://doi.org/10.1144/SP414.3, 2015. a
De Vleeschouwer, D., Da Silva, A.-C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., Guo, Z., and Claeys, P.: Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity, Nat. Commun., 8, 2268, https://doi.org/10.1038/s41467-017-02407-1, 2017. a, b
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration, Nat. Commun., 7, 10316, https://doi.org/10.1038/ncomms10316, 2016. a
Dopieralska, J.: Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts, Geochem. Geophy. Geosy., 10, 2008GC002247, https://doi.org/10.1029/2008GC002247, 2009. a
Eberhard, J., Bevan, O. E., Feulner, G., Petri, S., van Hunen, J., and Baldini, J. U. L.: Sensitivity of Neoproterozoic snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism, Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, 2023. a
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005. a
Ferreira, D., Marshall, J., and Rose, B.: Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model, J. Climate, 24, 992–1012, https://doi.org/10.1175/2010JCLI3580.1, 2011. a
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a, b
Gérard, J. and Crucifix, M.: Diagnosing the causes of AMOC slowdown in a coupled model: a cautionary tale, Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, 2024. a, b
Gough, D.: Solar interior structure and luminosity variations, in: Physics of Solar Variations: Proceedings of the 14th ESLAB Symposium held in Scheveningen, the Netherlands, 16–19 September 1980, Springer, 21–34, https://doi.org/10.1007/978-94-010-9633-1_4, 1981. a
Haddad, E. E., Boyer, D. L., Droser, M. L., Lee, B. K., Lyons, T. W., and Love, G. D.: Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State, Palaeogeogr. Palaeocl., 490, 178–190, https://doi.org/10.1016/j.palaeo.2017.10.025, 2018. a
Hedhli, M., Grasby, S., Henderson, C., and Davis, B.: Multiple diachronous “Black Seas” mimic global ocean anoxia during the latest Devonian, Geology, 51, 973–977, https://doi.org/10.1130/G51394.1, 2023. a
Hibler, W. D.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979. a
Hughes, T. M. C. and Weaver, A. J.: Multiple Equilibria of an Asymmetric Two-Basin Ocean Model, J. Phys. Oceanogr., 24, 619–637, https://doi.org/10.1175/1520-0485(1994)024<0619:MEOAAT>2.0.CO;2, 1994. a
Hülse, D., Lau, K. V., Van De Velde, S. J., Arndt, S., Meyer, K. M., and Ridgwell, A.: End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia, Nat. Geosci., 14, 862–867, https://doi.org/10.1038/s41561-021-00829-7, 2021. a, b
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, 2009GC002788, https://doi.org/10.1029/2009GC002788, 2010. a
Joachimski, M., Breisig, S., Buggisch, W., Talent, J., Mawson, R., Gereke, M., Morrow, J., Day, J., and Weddige, K.: Devonian climate and reef evolution: Insights from oxygen isotopes in apatite, Earth Planet. Sc. Lett., 284, 599–609, https://doi.org/10.1016/j.epsl.2009.05.028, 2009. a, b
Kabanov, P., Hauck, T. E., Gouwy, S. A., Grasby, S. E., and Van Der Boon, A.: Oceanic anoxic events, photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian, Earth-Sci. Rev., 241, 104415, https://doi.org/10.1016/j.earscirev.2023.104415, 2023. a, b, c
Kaiser, S. I., Aretz, M., and Becker, R. T.: The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction, Geological Society, London, Special Publications, 423, 387–437, https://doi.org/10.1144/SP423.9, 2016. a
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89, https://doi.org/10.1051/0004-6361/201116836, 2011. a
Lawver, L. A. and Gahagan, L. M.: Evolution of Cenozoic seaways in the circum-Antarctic region, Palaeogeogr. Palaeocl., 198, 11–37, https://doi.org/10.1016/S0031-0182(03)00392-4, 2003. a
Li, Y. and Yang, H.: A Theory for Self-Sustained Multicentennial Oscillation of the Atlantic Meridional Overturning Circulation, J. Climate, 35, 5883–5896, https://doi.org/10.1175/JCLI-D-21-0685.1, 2022. a
Lohmann, J., Dijkstra, H. A., Jochum, M., Lucarini, V., and Ditlevsen, P. D.: Multistability and intermediate tipping of the Atlantic Ocean circulation, Science Advances, 10, eadi4253, https://doi.org/10.1126/sciadv.adi4253, 2024. a
Lunt, D. J., Williamson, M. S., Valdes, P. J., Lenton, T. M., and Marsh, R.: Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model, Clim. Past, 2, 221–235, https://doi.org/10.5194/cp-2-221-2006, 2006. a
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677, https://doi.org/10.1029/93GB01355, 1993. a
Marcilly, C. M.-., Maffre, P., Le Hir, G., Pohl, A., Fluteau, F., Goddéris, Y., Donnadieu, Y., H. Heimdal, T., and Torsvik, T. H.: Understanding the early Paleozoic carbon cycle balance and climate change from modelling, Earth Planet. Sc. Lett., 594, 117717, https://doi.org/10.1016/j.epsl.2022.117717, 2022. a
Margazoglou, G., Grafke, T., Laio, A., and Lucarini, V.: Dynamical landscape and multistability of a climate model, P. R. Soc. A, 477, 20210019, https://doi.org/10.1098/rspa.2021.0019, 2021. a
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011. a, b
Marsh, R., Sóbester, A., Hart, E. E., Oliver, K. I. C., Edwards, N. R., and Cox, S. J.: An optimally tuned ensemble of the “eb_go_gs” configuration of GENIE: parameter sensitivity and bifurcations in the Atlantic overturning circulation, Geosci. Model Dev., 6, 1729–1744, https://doi.org/10.5194/gmd-6-1729-2013, 2013. a
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., and Müller, R. D.: Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth-Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021. a
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography, 27, 2012PA002286, https://doi.org/10.1029/2012PA002286, 2012. a
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison, Paleoceanography, 27, 2012PA002351, https://doi.org/10.1029/2012PA002351, 2012. a
Paschall, O., Carmichael, S. K., Königshof, P., Waters, J. A., Ta, P. H., Komatsu, T., and Dombrowski, A.: The Devonian-Carboniferous boundary in Vietnam: Sustained ocean anoxia with a volcanic trigger for the Hangenberg Crisis?, Global Planet. Change, 175, 64–81, https://doi.org/10.1016/j.gloplacha.2019.01.021, 2019. a
Peltier, W. R. and Vettoretti, G.: Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic, Geophys. Res. Lett., 41, 7306–7313, https://doi.org/10.1002/2014GL061413, 2014. a
Percival, L., Bond, D., Rakociński, M., Marynowski, L., Hood, A., Adatte, T., Spangenberg, J., and Föllmi, K.: Phosphorus-cycle disturbances during the Late Devonian anoxic events, Global Planet. Change, 184, 103070, https://doi.org/10.1016/j.gloplacha.2019.103070, 2020. a, b
Percival, L. M., Marynowski, L., Baudin, F., Goderis, S., De Vleeschouwer, D., Rakociński, M., Narkiewicz, K., Corradini, C., Da Silva, A.-C., and Claeys, P.: Combined nitrogen-isotope and cyclostratigraphy evidence for temporal and spatial variability in Frasnian–Famennian Environmental Change, Geochem. Geophy. Geosy., 23, e2021GC010308, https://doi.org/10.1029/2021GC010308, 2022. a
Pohl, A., Lu, Z., Lu, W., Stockey, R. G., Elrick, M., Li, M., Desrochers, A., Shen, Y., He, R., Finnegan, S., and Ridgwell, A.: Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation, Nat. Geosci., 14, 868–873, https://doi.org/10.1038/s41561-021-00843-9, 2021. a, b
Pohl, A., Stockey, R. G., Dai, X., Yohler, R., Le Hir, G., Hülse, D., Brayard, A., Finnegan, S., and Ridgwell, A.: Why the Early Paleozoic was intrinsically prone to marine extinction, Science Advances, 9, eadg7679, https://doi.org/10.1126/sciadv.adg7679, 2023. a
Rae, J. W. B., Gray, W. R., Wills, R. C. J., Eisenman, I., Fitzhugh, B., Fotheringham, M., Littley, E. F. M., Rafter, P. A., Rees-Owen, R., Ridgwell, A., Taylor, B., and Burke, A.: Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific, Science Advances, 6, eabd1654, https://doi.org/10.1126/sciadv.abd1654, 2020. a
Rahmstorf, S.: Multiple Convection Patterns and Thermohaline Flow in an Idealized OGCM, J. Climate, 8, 3028–3039, https://doi.org/10.1175/1520-0442(1995)008<3028:MCPATF>2.0.CO;2, 1995. a
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., and Weaver, A. J.: Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 32, 2005GL023655, https://doi.org/10.1029/2005GL023655, 2005. a
Reinhard, C. T., Olson, S. L., Kirtland Turner, S., Pälike, C., Kanzaki, Y., and Ridgwell, A.: Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14, Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, 2020. a
Ridgwell, A.: derpycode/muffingen: v0.9.24 (v0.9.24), Zenodo [code], https://doi.org/10.5281/zenodo.7545809, 2023. a
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007. a, b, c, d
Ridgwell, A., Hülse, D., Peterson, C., Ward, B., Ted, evansmn, and Jones, R.: derpycode/muffindoc: v0.24-574-NSF (v0.24-574-NSF), Zenodo [code], https://doi.org/10.5281/zenodo.13377225, 2024. a
Ridgwell, A., Reinhard, C., van de Velde, S., Adloff, M., Monteiro, F., Camillalxy98, Vervoort, P., Kanzaki, Y., Ward, B., Hülse, D., Wilson, J., Li, M., InkyANB, and Kirtland Turner, S.: derpycode/cgenie.muffin: v0.9.59 (v0.9.59), Zenodo [code], https://doi.org/10.5281/zenodo.14680971, 2025. a
Sakai, K. and Peltier, W. R.: Dansgaard–Oeschger Oscillations in a Coupled Atmosphere–Ocean Climate Model, J. Climate, 10, 949–970, https://doi.org/10.1175/1520-0442(1997)010<0949:DOOIAC>2.0.CO;2, 1997. a
Sarr, A., Donnadieu, Y., Laugié, M., Ladant, J., Suchéras-Marx, B., and Raisson, F.: Ventilation Changes Drive Orbital-Scale Deoxygenation Trends in the Late Cretaceous Ocean, Geophys. Res. Lett., 49, e2022GL099830, https://doi.org/10.1029/2022GL099830, 2022. a, b, c, d
Scotese, C. R. and Wright, N.: PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic, Paleomap Proj, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 20 January 2025), 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai
Semtner Jr., A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976. a
Sévellec, F. and Fedorov, A. V.: Millennial Variability in an Idealized Ocean Model: Predicting the AMOC Regime Shifts, J. Climate, 27, 3551–3564, https://doi.org/10.1175/JCLI-D-13-00450.1, 2014. a
Song, H., Song, H., Algeo, T. J., Tong, J., Romaniello, S. J., Zhu, Y., Chu, D., Gong, Y., and Anbar, A. D.: Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction, Geology, 45, 887–890, https://doi.org/10.1130/G39393.1, 2017. a
Stein, W. E., Berry, C. M., Morris, J. L., Hernick, L. V., Mannolini, F., Ver Straeten, C., Landing, E., Marshall, J. E., Wellman, C. H., Beerling, D. J., and Leake, J. R.: Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests, Curr. Biol., 30, 421–431.e2, https://doi.org/10.1016/j.cub.2019.11.067, 2020. a
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic, Nature, 457, 711–714, https://doi.org/10.1038/nature07717, 2009. a
Turner, B. W. and Slatt, R. M.: Assessing bottom water anoxia within the Late Devonian Woodford Shale in the Arkoma Basin, southern Oklahoma, Mar. Petrol. Geol., 78, 536–546, https://doi.org/10.1016/j.marpetgeo.2016.10.009, 2016. a
Valdes, P. J., Scotese, C. R., and Lunt, D. J.: Deep ocean temperatures through time, Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, 2021. a
Vandenbroucke, T. R. A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K., Quijada, M., Paris, F., Servais, T., and Kiessling, W.: Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction, Nat. Commun., 6, 7966, https://doi.org/10.1038/ncomms8966, 2015. a
Vérard, C.: Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models, Geol. Mag., 156, 320–330, https://doi.org/10.1017/S0016756817001042, 2019a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah
Vérard, C.: Plate tectonic modelling: review and perspectives, Geol. Mag., 156, 208–241, https://doi.org/10.1017/S0016756817001030, 2019b. a
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., and Liu, M.: 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography, 4, 64–84, https://doi.org/10.3724/SP.J.1261.2015.00068, 2015. a
Vervoort, P., Kirtland Turner, S., Rochholz, F., and Ridgwell, A.: Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks, Paleoceanography and Paleoclimatology, 39, e2023PA004826, https://doi.org/10.1029/2023PA004826, 2024. a
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations, Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022. a
Von Der Heydt, A. and Dijkstra, H. A.: Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene, Paleoceanography, 21, 2005PA001149, https://doi.org/10.1029/2005PA001149, 2006. a
Ward, B. A., Wilson, J. D., Death, R. M., Monteiro, F. M., Yool, A., and Ridgwell, A.: EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model, Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, 2018. a, b
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmos. Ocean, 39, 361–428, https://doi.org/10.1080/07055900.2001.9649686, 2001. a
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis, J. Geophys. Res.-Oceans, 124, 5336–5375, https://doi.org/10.1029/2019jc015083, 2019. a
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, R. T., Kaskes, P., Claeys, P., and De Vleeschouwer, D.: Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis, Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, 2024. a
Wong Hearing, T. W., Pohl, A., Williams, M., Donnadieu, Y., Harvey, T. H. P., Scotese, C. R., Sepulchre, P., Franc, A., and Vandenbroucke, T. R. A.: Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate, Nat. Commun., 12, 3868, https://doi.org/10.1038/s41467-021-24141-5, 2021. a
Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the Drake Passage and the Panama Seaway, Clim. Dynam., 43, 37–52, https://doi.org/10.1007/s00382-013-1809-6, 2014. a
Zhang, F., Dahl, T. W., Lenton, T. M., Luo, G., Shen, S.-z., Algeo, T. J., Planavsky, N., Liu, J., Cui, Y., Qie, W., Romaniello, S. J., and Anbar, A. D.: Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis, Earth Planet. Sc. Lett., 533, 115976, https://doi.org/10.1016/j.epsl.2019.115976, 2020a. a
Zhang, L., Chen, D., Kuang, G., Guo, Z., Zhang, G., and Wang, X.: Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China, Global Planet. Change, 195, 103350, https://doi.org/10.1016/j.gloplacha.2020.103350, 2020b. a
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affected ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2...