Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A sub-fossil coral Sr∕Ca record documents northward shifts of the Tropical Convergence Zone in the eastern Indian Ocean
Miriam Pfeiffer
CORRESPONDING AUTHOR
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Hideko Takayanagi
Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Sendai, 980-8578, Japan
Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Tohoku University, Sendai, 980-8578, Japan
Lars Reuning
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Takaaki K. Watanabe
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
KIKAI Institute for Coral Reef Sciences, Kikai Town, Kagoshima, 891-6151, Japan
Saori Ito
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Dieter Garbe-Schönberg
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Tsuyoshi Watanabe
KIKAI Institute for Coral Reef Sciences, Kikai Town, Kagoshima, 891-6151, Japan
Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
Research Institute for Humanity and Nature (RIHN), Kyoto, 603-8047, Japan
Chung-Che Wu
College of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, 210023, China
Chuan-Chou Shen
Department of Geosciences, High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), National Taiwan University, Taipei, 10617, Taiwan
Research Center for Future Earth, National Taiwan University, Taipei, 10617, Taiwan
Jens Zinke
School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
Geert-Jan A. Brummer
Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), and Utrecht University, 1790 AB Den Burg, the Netherlands
Sri Yudawati Cahyarini
Res. Group of Paleoclimate & Paleoenvironment, Res. Centr. for Climate and Atmosphere, National Research and Innovations Agency (BRIN), Bandung, Republic of Indonesia
Related authors
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025, https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Short summary
It is known that coral reefs were absent in the central Indo-Pacific during the Early Pliocene. This study uses a new temperature record based on TEX86H biomarkers from the Coral Sea between 11–2 Ma to show a 2 °C cooling in the central Indo-Pacific during the Late Miocene Cooling (7–5.4 Ma). This cooling triggered changes in terrestrial input, ocean circulation, and temperature. These multiple stressors could have caused reef collapses across the central Indo-Pacific.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Saori Ito, Takaaki K. Watanabe, Atsuko Yamazaki, Chuan-Chou Shen, Taro Komagoe, and Tsuyoshi Watanabe
EGUsphere, https://doi.org/10.21203/rs.3.rs-3861020/v3, https://doi.org/10.21203/rs.3.rs-3861020/v3, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents the first coral-based reconstruction of North Pacific Gyre Oscillation (NPGO)/Victoria Mode (VM)-related temperature variability from the Northwestern Pacific, extending back to 1798 Common Era. This new record identifies both historical and recent phases of NPGO/VM-related temperature changes. Our statistical analysis confirms a strong linkage between surface temperature anomalies in the Central Pacific and interannual to decadal NPGO/VM variability over the past 200 years.
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025, https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Short summary
It is known that coral reefs were absent in the central Indo-Pacific during the Early Pliocene. This study uses a new temperature record based on TEX86H biomarkers from the Coral Sea between 11–2 Ma to show a 2 °C cooling in the central Indo-Pacific during the Late Miocene Cooling (7–5.4 Ma). This cooling triggered changes in terrestrial input, ocean circulation, and temperature. These multiple stressors could have caused reef collapses across the central Indo-Pacific.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Cited articles
Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J., and Hantoro, W. S.: Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires, Science, 301, 952–955, https://doi.org/10.1126/science.1083841, 2003.
Abram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T., and Suwargadi, B. W.: Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch, Nature, 445, 299–302, https://doi.org/10.1038/nature05477, 2007.
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.: Recent intensification of tropical climate variability in the Indian Ocean, Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abram, N. J., Dixon, B. C., Rosevear, M. G., Plunkett, B., Gagan, M. K., Hantoro, W. S., and Phipps, S. J.: Optimized coral reconstructions of the Indian Ocean Dipole: An assessment of location and length considerations, Paleoceanography, 30, 1391–1405, https://doi.org/10.1002/2015PA002810, 2015.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific climate variability over the last millennium, Nature, 579, 385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020.
Allison, N., Finch, A. A., Webster, J. M., and Clague, D. A.: Palaeoenvironmental records from fossil corals: The effects of submarine diagenesis on temperature and climate estimates, Geochim. Cosmochim. Ac., 71, 4693–4703, https://doi.org/10.1016/j.gca.2007.07.026, 2007.
Ashok, K., Guan, Z., and Yamagata, T.: Influence of the Indian Ocean Dipole on the Australian winter rainfall, Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926, 2003.
Behera, S. K., Luo, J.-J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A., and Yamagata, T.: Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study, J. Climate, 18, 4514–4530, https://doi.org/10.1175/JCLI3541.1, 2005.
Cahyarini, S. Y., Pfeiffer, M., Dullo, W.-C., Zinke, J., Hetzinger, S., Kasper, S., Grove, C., and Garbe-Schönberg, D.: Comment on “A snapshot of climate variability at Tahiti at 9.5 ka using a fossil coral from IODP Expedition 310” by Kristine L. DeLong, Terrence M. Quinn, Chuan-Chou Shen, and Ke Lin, Geochem. Geoph. Geosy., 12, Q03012, https://doi.org/10.1029/2010GC003377, 2011.
Cahyarini, S. Y., Pfeiffer, M., Nurhati, I. S., Aldrian, E., Dullo, W.-C., and Hetzinger, S.: Twentieth century sea surface temperature and salinity variations at Timor inferred from paired coral δ18O and measurements, J. Geophys. Res.-Oceans, 119, 4593–4604, https://doi.org/10.1002/2013jc009594, 2014.
Cahyarini, S. Y., Pfeiffer, M., Reuning, L., Liebetrau, V., Dullo, W.-C., Takayanagi, H., Anwar, I. P., Utami, D. A., Garbe-Schönberg, D., Hendrizan, M., and Eisenhauer, A.: Modern and sub-fossil corals suggest reduced temperature variability in the eastern pole of the Indian Ocean Dipole during the medieval climate anomaly, Sci. Rep., 11, 14952, https://doi.org/10.1038/s41598-021-94465-1, 2021.
Cai, W., Zheng, X.-T., Weller, E., Collins, M., Cowan, T., Lengaigne, M., Yu, W., and Yamagata, T.: Projected response of the Indian Ocean Dipole to greenhouse warming, Nat. Geosci., 6, 999–1007, https://doi.org/10.1038/ngeo2009, 2013.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction Between the ENSO and the Asian Monsoon in a Coral Record of Tropical Climate, Science, 277, 925–928, https://doi.org/10.1126/science.277.5328.925, 1997.
Charles, C. D., Cobb, K., Moore, M. D., and Fairbanks, R. G.: Monsoon–tropical ocean interaction in a network of coral records spanning the 20th century, Mar. Geol., 201, 207–222, https://doi.org/10.1016/S0025-3227(03)00217-2, 2003.
Chaudhuri, P. and Marron, J. S.: SiZer for Exploration of Structures in Curves, J. Am. Stat. Assoc., 94, 807–823, https://doi.org/10.1080/01621459.1999.10474186, 1999.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Calvin Alexander, E.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Chiang, H.-W., Philibosian, B., Meltzner, A. J., Wu, C.-C., Shen, C.-C., Edwards, R. L., Chuang, C.-K., Suwargadi, B. W., and Natawidjaja, D. H.: Investigating spatio-temporal variability of initial 230Th/232Th in intertidal corals, Quaternary Sci. Rev., 307, 108005, https://doi.org/10.1016/j.quascirev.2023.108005, 2023.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R. L., and Charles, C. D.: Highly variable El Niño-Southern Oscillation throughout the Holocene, Science, 339, 67–70, https://doi.org/10.1126/science.1228246, 2013.
Corrège, T.: Sea surface temperature and salinity reconstruction from coral geochemical tracers, Palaeogeogr. Palaeocl. Palaeoecol., 232, 408–428, https://doi.org/10.1016/j.palaeo.2005.10.014, 2006.
D'Arrigo, R., Wilson, R., Palmer, J., Krusic, P., Curtis, A., Sakulich, J., Bijaksana, S., Zulaikah, S., La Ngkoimani, O., and Tudhope, A.: The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: Linkages to Asian monsoon drought and El Niño–Southern Oscillation, Paleoceanography, 21, PA3005, https://doi.org/10.1029/2005PA001256, 2006.
Davis, M.: Late Victorian holocausts: El Niño famines and the making of the third world, ACLS Humanities E-Book, Verso, London, 464 pp., ISBN 10:1859843824, ISBN 13:978-1859843826, 2002.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.: Improving coral-base paleoclimate reconstructions by replicating 350 years of coral variations, Palaeogeogr. Palaeocl. Palaeoecol., 373, 6–24, https://doi.org/10.1016/j.palaeo.2012.08.019, 2013.
de Villiers, S., Shen, G. T., and Nelson, B. K.: The SrCA–temperature relationship in coralline aragonite: Influence of variability in (SrCa)seawater and skeletal growth parameters, Geochim. Cosmochim. Ac., 58, 197–208, https://doi.org/10.1016/0016-7037(94)90457-x, 1994.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio calibration method for the accurate determination of and of marine carbonates by ICP-AES, Geochem. Geophy. Geosys., 3, 2001GC000169, https://doi.org/10.1029/2001GC000169, 2002.
Domínguez-Villar, D., Baker, A., Fairchild, I. J., and Edwards, R. L.: A method to anchor floating chronologies in annually laminated speleothems with U–Th dates, Quatern. Geochronol., 14, 57–66, https://doi.org/10.1016/j.quageo.2012.04.019, 2012.
Enmar, R., Stein, M., Bar-Matthews, M., Sass, E., Katz, A., and Lazar, B.: Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers, Geochim. Cosmochim. Ac., 64, 3123–3132, https://doi.org/10.1016/S0016-7037(00)00417-8, 2000.
Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., and Delecluse, P.: Two Independent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM, J. Climate, 18, 3428–3449, https://doi.org/10.1175/JCLI3478.1, 2005.
Geen, R., Bordoni, S., Battisti, D. S., and Hui, K.: Monsoons, ITCZs, and the Concept of the Global Monsoon, Rev. Geophys., 58, e2020RG000700, https://doi.org/10.1029/2020RG000700, 2020.
Gopika, S., Izumo, T., Vialard, J., Lengaigne, M., Suresh, I., and Kumar, M. R. R.: Aliasing of the Indian Ocean externally-forced warming spatial pattern by internal climate variability, Clim. Dynam., 54, 1093–1111, https://doi.org/10.1007/s00382-019-05049-9, 2020.
Hammer, O., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological Statistics Software Package for Education and Data Analysis, http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 7 September 2024), 2001.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D., Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer, A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue, M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor, H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier, H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W., Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for coral and other element Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Hendy, E. J., Gagan, M. K., Lough, J. M., McCulloch, M., and deMenocal, P. B.: Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals, Paleoceanography, 22, PA4101, https://doi.org/10.1029/2007PA001462, 2007.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U/235U Systematics in terrestrial uranium-bearing minerals, Science, 335, 1610–1614, https://doi.org/10.1126/science.1215507, 2012.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Jiang, J., Liu, Y., Mao, J., Li, J., Zhao, S., and Yu, Y.: Three Types of Positive Indian Ocean Dipoles and Their Relationships with the South Asian Summer Monsoon, J. Climate, 35, 405–424, https://doi.org/10.1175/JCLI-D-21-0089.1, 2022.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., and Zyss, D.: Improvements in the GISTEMP Uncertainty Model, J. Geophys. Res.-Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522, 2019.
Leupold, M., Pfeiffer, M., Garbe-Schönberg, D., and Sheppard, C.: Reef-Scale-Dependent Response of Massive Porites Corals From the Central Indian Ocean to Prolonged Thermal Stress: Evidence From Coral Measurements, Geochem. Geophy. Geosy., 20, 1468–1484, https://doi.org/10.1029/2018gc007796, 2019.
Leupold, M., Pfeiffer, M., Watanabe, T. K., Reuning, L., Garbe-Schönberg, D., Shen, C.-C., and Brummer, G.-J. A.: El Niño–Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675, Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, 2021.
Linsley, B. K., Wellington, G. M., and Schrag, D. P.: Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D., Science, 290, 1145–1148, https://doi.org/10.1126/science.290.5494.1145, 2000.
McGregor, H. V. and Abram, N. J.: Images of diagenetic textures in Porites corals from Papua New Guinea and Indonesia, Geochem. Geophy. Geosy., 9, Q10013, https://doi.org/10.1029/2008GC002093, 2008.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set, J. Geophys. Res.-Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021.
Murphy, R. J., Webster, J. M., Nothdurft, L., Dechnik, B., McGregor, H. V., Patterson, M. A., Sanborn, K. L., Webb, G. E., Kearney, L. I., Rintoul, L., and Erler, D. V.: High-resolution hyperspectral imaging of diagenesis and clays in fossil coral reef material: a nondestructive tool for improving environmental and climate reconstructions, Geochem. Geophy. Geosy., 18, 3209–3230, https://doi.org/10.1002/2017GC006949, 2017.
Newcomb, K. R. and McCann, W. R.: Seismic history and seismotectonics of the Sunda Arc, J. Geophys. Res., 92, 421–439, https://doi.org/10.1029/JB092iB01p00421, 1987.
Ng, B., Cai, W., Walsh, K., and Santoso, A.: Nonlinear processes reinforce extreme Indian Ocean Dipole events, Sci. Rep., 5, 11697, https://doi.org/10.1038/srep11697, 2015.
Nothdurft, L. D. and Webb, G. E.: Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives, Facies, 55, 161–201, https://doi.org/10.1007/s10347-008-0167-z, 2009.
Pfeiffer, M. and Dullo, W.-C.: Monsoon-induced cooling of the western equatorial Indian Ocean as recorded in coral oxygen isotope records from the Seychelles covering the period of 1840–1994 AD, Quaternary Sci. Rev., 25, 993–1009, https://doi.org/10.1016/j.quascirev.2005.11.005, 2006.
Pfeiffer, M., Zinke, J., Dullo, W.-C., Garbe-Schönberg, D., Latif, M., and Weber, M. E.: Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates, Sci. Rep., 7, 14434, https://doi.org/10.1038/s41598-017-14352-6, 2017.
Pfeiffer, M., Watanabe, T. K., Takayanagi, H., Cahyarini, S. Y., Garbe-Schönberg, D., and Watanabe, T.: Coral records provide realistic representation of eastern Indian Ocean cooling during extreme positive Indian Ocean Dipole events, Sci. Rep., 12, 10642, https://doi.org/10.1038/s41598-022-14617-9, 2022.
Pfeiffer, M., Takayanagi, H., Reuning, L., Watanabe, T. K., Ito, S., Garbe-Schönberg, D., Watanabe, T., Wu, C. C., Shen, C. C., Zinke, J., Brummer, J. A., and Cahyarini, S. Y.: Sub-fossil, monthly resolved coral Sr/Ca data from Enggano Island (Sumatra, Indonesia), spanning 1824–1862 and 1869–1918, National Centers for Environmental Information (NCEI) [data set], https://www.ncei.noaa.gov/access/paleo-search/study/40661 (last access: 27 January 2025), 2025.
Quinn, T. M. and Taylor, F. W.: SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea, Geophys. Res. Lett., 33, L04601, https://doi.org/10.1029/2005GL024972, 2006.
R core team: R: A language and environment for statistical computing, https://www.r-project.org/ (last access: 7 September 2024), 2023.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Ross, C. L., DeCarlo, T. M., and McCulloch, M. T.: Calibration of , Li/Mg and Sr-U Paleothermometry in Branching and Foliose Corals, Paleoceanogr. Paleoclimatol., 34, 1271–1291, https://doi.org/10.1029/2018pa003426, 2019.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The Curious Case of Indian Ocean Warming, J. Climate, 27, 8501–8509, https://doi.org/10.1175/JCLI-D-14-00471.1, 2014.
Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean Dipole mode events on global climate, Clim. Res., 25, 151–169, https://doi.org/10.3354/cr025151, 2003.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854, 1999.
Sanchez, S. C., Westphal, N., Haug, G. H., Cheng, H., Edwards, R. L., Schneider, T., Cobb, K. M., and Charles, C. D.: A Continuous Record of Central Tropical Pacific Climate Since the Midnineteenth Century Reconstructed From Fanning and Palmyra Island Corals: A Case Study in Coral Data Reanalysis, Paleoceanogr. Paleoclimato., 35, e2020PA003848, https://doi.org/10.1029/2020PA003848, 2020.
Sayani, H. R., Cobb, K. M., Cohen, A. L., Elliott, W. C., Nurhati, I. S., Dunbar, R. B., Rose, K. A., and Zaunbrecher, L. K.: Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals, Geochim. Cosmochim. Ac., 75, 6361–6373, https://doi.org/10.1016/j.gca.2011.08.026, 2011.
Sayani, H. R., Cobb, K. M., Monteleone, B., and Bridges, H.: Accuracy and Reproducibility of Coral SIMS Timeseries in Modern and Fossil Corals, Geochem. Geophy. Geosy., 23, e2021GC010068, https://doi.org/10.1029/2021GC010068, 2022.
Schott, F. A., Xie, S.-P., and McCreary, J. P.: Indian Ocean circulation and climate variability, Rev. Geophys., 47, e2007RG000245, https://doi.org/10.1029/2007RG000245, 2009.
Schrag, D. P.: Rapid analysis of high-precision ratios in corals and other marine carbonates, Paleoceanography, 14, 97–102, https://doi.org/10.1029/1998PA900025, 1999.
Schreck, C., Lee, H.-T., and Knapp, K.: HIRS Outgoing Longwave Radiation – Daily Climate Data Record: Application toward Identifying Tropical Subseasonal Variability, Remote Sens., 10, 1325, https://doi.org/10.3390/rs10091325, 2018.
Shen, C.-C., Wu, C.-C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C.: High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86, https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Smodej, J., Reuning, L., Wollenberg, U., Zinke, J., Pfeiffer, M., and Kukla, P. A.: Two-dimensional X-ray diffraction as a tool for the rapid, nondestructive detection of low calcite quantities in aragonitic corals, Geochem. Geophy. Geosy., 16, 3778–3788, https://doi.org/10.1002/2015GC006009, 2015.
Steinke, S., Mohtadi, M., Prange, M., Varma, V., Pittauerova, D., and Fischer, H. W.: Mid- to Late-Holocene Australian–Indonesian summer monsoon variability, Quaternary Sci. Rev., 93, 142–154, https://doi.org/10.1016/j.quascirev.2014.04.006, 2014a.
Steinke, S., Prange, M., Feist, C., Groeneveld, J., and Mohtadi, M.: Upwelling variability off southern Indonesia over the past two millennia, Geophys. Res. Lett., 41, 7684–7693, https://doi.org/10.1002/2014GL061450, 2014b.
Susanto, R. D., Gordon, A. L., and Zheng, Q.: Upwelling along the coasts of Java and Sumatra and its relation to ENSO, Geophys. Res. Lett., 28, 1599–1602, https://doi.org/10.1029/2000GL011844, 2001.
Toms, J. D. and Lesperance, M. L.: Piecewise regression: a tool for identifying ecological thresholds, Ecology, 84, 2034–2041, https://doi.org/10.1890/02-0472, 2003.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., and Taschetto, A. S.: What causes southeast Australia's worst droughts?, Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801, 2009a.
Ummenhofer, C. C., Sen Gupta, A., England, M. H., and Reason, C. J. C.: Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall, J. Climate, 22, 993–1013, https://doi.org/10.1175/2008JCLI2493.1, 2009b.
Watanabe, T. K. and Pfeiffer, M.: A Simple Monte Carlo Approach to Estimate the Uncertainties of SST and δ18Osw Inferred From Coral Proxies, Geochem. Geophy. Geosy., 23, e2021GC009813, https://doi.org/10.1029/2021GC009813, 2022.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98, Nature, 401, 356–360, https://doi.org/10.1038/43848, 1999.
Weller, E. and Cai, W.: Meridional variability of atmospheric convection associated with the Indian Ocean Dipole Mode, Sci. Rep., 4, 3590, https://doi.org/10.1038/srep03590, 2014.
Weller, E., Cai, W., Min, S.-K., Wu, L., Ashok, K., and Yamagata, T.: More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming, Sci. Rep., 4, 6087, https://doi.org/10.1038/srep06087, 2014.
Yang, K., Cai, W., Huang, G., Wang, G., Ng, B., and Li, S.: Oceanic Processes in Ocean Temperature Products Key to a Realistic Presentation of Positive Indian Ocean Dipole Nonlinearity, Geophys. Res. Lett., 47, e2020GL089396, https://doi.org/10.1029/2020GL089396, 2020.
Zhang, H.: Diagnosing Australia-Asian monsoon onset/retreat using large-scale wind and moisture indices, Clim. Dynam., 35, 601–618, https://doi.org/10.1007/s00382-009-0620-x, 2010.
Zinke, J., Dullo, W.-C., Heiss, G. A., and Eisenhauer, A.: ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995, Earth Planet. Sc. Lett., 228, 177–194, https://doi.org/10.1016/j.epsl.2004.09.028, 2004.
Zinke, J., Reuning, L., Pfeiffer, M., Wassenburg, J. A., Hardman, E., Jhangeer-Khan, R., Davies, G. R., Ng, C. K. C., and Kroon, D.: A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19° S, 63° E), Biogeosciences, 13, 5827–5847, https://doi.org/10.5194/bg-13-5827-2016, 2016.
Zinke, J., Watanabe, T. K., Rühs, S., Pfeiffer, M., Grab, S., Garbe-Schönberg, D., and Biastoch, A.: A 334-year coral record of surface temperature and salinity variability in the greater Agulhas Current region, Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, 2022.
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the south-eastern tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1856–1918. We explain this with greater warming in the north-eastern Indian Ocean relative to the south-east, which strengthens surface winds and coastal upwelling in the eastern Indian Ocean, leading to greater cooling south of the Equator.
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface...