Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-2031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-21-2031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene land cover change in North America: continental trends, regional drivers, and implications for vegetation–atmosphere feedbacks
Andria Dawson
CORRESPONDING AUTHOR
Department of Mathematics and Computing, Calgary, AB, T3E6K6, Canada
Department of Biology, Mount Royal University, Calgary, AB, T3E6K6, Canada
John W. Williams
Department of Geography and Center for Climatic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
Marie-José Gaillard
Department of Biology and Environmental Science, Linnaeus University, E 39231 Kalmar, Sweden
Simon J. Goring
Department of Geography and Center for Climatic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
Behnaz Pirzamanbein
Department of Statistics, School of Economics and Management, Lund University, 220 07 Lund, Sweden
Johan Lindstrom
Division of Mathematical Statistics, Centre for Mathematical Sciences, Lund University, 221 00 Lund, Sweden
R. Scott Anderson
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
Andrea Brunelle
Geography Department, University of Utah, Salt Lake City, UT 84112, USA
David Foster
Harvard Forest, Harvard University, Petersham, MA 01366, USA
Konrad Gajewski
Département de Géographie, Environnement et Géomatique, Université d'Ottawa, Ottawa, ON K1N 6N50, Canada
Daniel G. Gavin
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Terri Lacourse
Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
Thomas A. Minckley
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Wyatt Oswald
Marlboro Institute for Liberal Arts and Interdisciplinary Studies, Emerson College, Boston, MA 02116 , USA
Bryan Shuman
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Cathy Whitlock
Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
Related authors
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
Biogeosciences, 22, 4061–4086, https://doi.org/10.5194/bg-22-4061-2025, https://doi.org/10.5194/bg-22-4061-2025, 2025
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites, we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Ann E. Morey, Mark D. Shapley, Daniel G. Gavin, Alan R. Nelson, and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4523–4561, https://doi.org/10.5194/nhess-24-4523-2024, https://doi.org/10.5194/nhess-24-4523-2024, 2024
Short summary
Short summary
Disturbance events from historical sediments from a small lake in Oregon were evaluated to determine if Cascadia megathrust earthquakes are uniquely identifiable. Geochemical provenance data identify two likely Cascadia earthquakes, one from 1700 CE and the other from 1873 CE. A crustal earthquake deposit and flood deposits were also uniquely identified, suggesting that small Cascadia lakes are good recorders of megathrust earthquakes and other disturbances.
Annika V. Herbert, Simon G. Haberle, Suzette G. A. Flantua, Ondrej Mottl, Jessica L. Blois, John W. Williams, Adrian George, and Geoff S. Hope
Clim. Past, 20, 2473–2485, https://doi.org/10.5194/cp-20-2473-2024, https://doi.org/10.5194/cp-20-2473-2024, 2024
Short summary
Short summary
The Indo-Pacific Pollen Database is a large collection of pollen samples from across the Indo-Pacific region, with most samples coming from Australia. This is a valuable collection that can be used to analyse vegetation dynamics going back thousands of years. It is now being fully shared via Neotoma for the first time, opening up many exciting new avenues of research. This paper presents key aspects of this database, including geographical distribution, age control and deposition times.
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-373, https://doi.org/10.5194/egusphere-2024-373, 2024
Preprint archived
Short summary
Short summary
Our study employs an Adaptive MCMC algorithm (GRaB-AM) to constrain process parameters in the wetlands emission module of the LPJ-GUESS model, using CH4 EC flux observations from 14 diverse wetlands. We aim to derive a single set of parameters capable of representing the diversity of northern wetlands. By reducing uncertainties in model parameters and improving simulation accuracy, our research contributes to more reliable projections of future wetland CH4 emissions and their climate impact.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
David T. Liefert and Bryan N. Shuman
Clim. Past, 18, 1109–1124, https://doi.org/10.5194/cp-18-1109-2022, https://doi.org/10.5194/cp-18-1109-2022, 2022
Short summary
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Cited articles
Abraham, V., Oušková, V., and Kuneš, P.: Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic, PLoS One, 9, e100117, https://doi.org/10.1371/journal.pone.0100117, 2014.
Alder, J. R. and Hostetler, S. W.: Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model, Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, 2015.
Alessandri, A., Catalano, F., De Felice, M., Van den Hurk, B., and Balsamo, G.: Varying snow and vegetation signatures of surface-albedo feedback on the Northern Hemisphere land warming, Environ. Res. Lett., 16, 034023, https://doi.org/10.1088/1748-9326/abd65f, 2021.
Allison, T. D., Moeller, R. E., and Davis, M. B.: Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak, Ecology, 67, 1101–1105, https://doi.org/10.2307/1939835, 1986.
Alt, M., McWethy, D. B., Everett, R., and Whitlock, C.: Millennial scale climate-fire-vegetation interactions in a mid-elevation mixed coniferous forest, Mission Range, northwestern Montana, USA, Quaternary Res., 90, 66–82, https://doi.org/10.1017/qua.2018.25, 2018.
Anderson, L. L., Hu, F. S., Nelson, D. M., Petit, R. J., and Paige, K. N.: Ice-age endurance: DNA evidence of a white spruce refugium in Alaska, P. Natl. Acad. Sci. USA, 103, 12447–12450, https://doi.org/10.1073/pnas.0605310103, 2006.
Anderson, P. M. and Brubaker, L. B.: Vegetation history of northcentral Alaska: A mapped summary of late-Quaternary pollen data, Quaternary Sci. Rev., 13, 71–92, https://doi.org/10.1016/0277-3791(94)90125-2, 1994.
Anderson, R. S.: Postglacial biogeography of Sierra lodgepole pine (Pinus contorta var. murrayana) in California, Écoscience, 3, 343–351, https://doi.org/10.1080/11956860.1996.11682352, 1996.
Anderson, R. S. and Carpenter, S. L.: Vegetation change in Yosemite Valley, Yosemite National Park, California, during the protohistoric period, Madroño, 38, 1–13, https://www.jstor.org/stable/41424832 (last access: 10 October 2025), 1991.
Anderson, R. S., Davis, R. B., Miller, N. G., and Stuckenrath, Jr., R.: History of late- and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine, Can. J. Bot., 64, 1977–1986, https://doi.org/10.1139/b86-262, 1986.
Anderson, R. S., Allen, C. D., Toney, J. L., Jass, R. B., and Bair, A. N.: Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA, Int. J. Wildland Fire, 17, 96–114, https://doi.org/10.1071/WF07028, 2008.
Anderson, R. S., Kaufman, D. S., Berg, E., Schiff, C., and Daigle, T.: Holocene biogeography of Tsuga mertensiana and other conifers in the Kenai Mountains and Prince William Sound, south-central Alaska, Holocene, 27, 485–495, https://doi.org/10.1177/0959683616670217, 2017.
Anderson, R. S., Berg, E., Williams, C., and Clark, T.: Postglacial vegetation community change over an elevational gradient on the western Kenai Peninsula, Alaska: pollen records from Sunken Island and Choquette Lakes, J. Quaternary Sci., 34, 309–322, https://doi.org/10.1002/jqs.3102, 2019.
Azuara, J., Mazier, F., Lebreton, V., Sugita, S., Viovy, N., and Combourieu-Nebout, N.: Extending the applicability of the REVEALS model for pollen-based vegetation reconstructions to coastal lagoons, Holocene, 29, 1109–1112, https://doi.org/10.1177/0959683619838024, 2019.
Bartlein, P. J., Hostletler, S. W., and Alder, J. R.: Paleoclimate, in: Climate Change in North America, Springer International Publishing, 1–51, https://doi.org/10.1007/978-3-319-03768-4_1, 2014.
Bhiry, N. and Filion, L.: Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity, Quaternary Res., 45, 312–320, https://doi.org/10.1006/qres.1996.0032, 1996.
Black, B. A., Ruffner, C. M., and Abrams, M. D.: Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania, Can. J. Forest Res., 36, 1266–1275, https://doi.org/10.1139/x06-027, 2006.
Blarquez, O. and Aleman, J. C.: Tree biomass reconstruction shows no lag in postglacial afforestation of eastern Canada, Can. J. Forest Res., 46, 485–498, https://doi.org/10.1139/cjfr-2015-0201, 2015.
Blinnikov, M., Busacca, A., and Whitlock, C.: Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess, Palaeogeogr. Palaeocl., 177, 77–101, https://doi.org/10.1016/S0031-0182(01)00353-4, 2002.
Bodmer, H.: Über den windpollen, Nat. Tech., 3, 294–298, 1922.
Bonan, G.: Ecological climatology: concepts and applications, Cambridge University Press, https://doi.org/10.1017/CBO9781107339200, 2015.
Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models, Science, 359, eaam8328, https://doi.org/10.1126/science.aam8328, 2018.
Booth, R. K., Brewer, S., Blaauw, M., Minckley, T. A., and Jackson, S. T.: Decomposing the mid-Holocene Tsuga decline in eastern North America, Ecology, 93, 1841–1852, https://doi.org/10.1890/11-2062.1, 2012.
Bothe, O., Jungclaus, J. H., Zanchettin, D., and Zorita, E.: Climate of the last millennium: ensemble consistency of simulations and reconstructions, Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, 2013.
Bradshaw, R. H. W. and Webb, I., T.: Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA, Ecology, 66, 721–737, https://doi.org/10.2307/1940533, 1985.
Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Cowling, R. M., Karkanas, P., Fisher, E. C., Dyez, K., Zilberman, T., and Marean, C. W.: Late Pleistocene records of speleothem stable isotopic compositions from Pinnacle Point on the South African south coast, Quaternary Res., 91, 265–288, https://doi.org/10.1017/qua.2018.61, 2019.
Briles, C. E., Whitlock, C., Bartlein, P. J., and Higuera, P.: Regional and local controls on postglacial vegetation and fire in the Siskiyou Mountains, northern California, USA, Palaeogeogr. Palaeocl., 265, 159–169, https://doi.org/10.1016/j.palaeo.2008.05.007, 2008.
Broström, A., Nielsen, A. B., Gaillard, M.-J., Hjelle, K., Mazier, F., Binney, H., Bunting, J., Fyfe, R., Meltsov, V., and Poska, A.: Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review, Veg. Hist. Archaeobot., 17, 461–478, https://doi.org/10.1007/s00334-008-0148-8, 2008.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global biogeophysical interactions between forest and climate, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL037543, 2009.
Brovkin, V., Lorenz, S., Raddatz, T., Ilyina, T., Stemmler, I., Toohey, M., and Claussen, M.: What was the source of the atmospheric CO2 increase during the Holocene?, Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, 2019.
Brugam, R. B. and Swain, P.: Diatom indicators of peatland development at Pogonia Bog Pond, Minnesota, USA, Holocene, 10, 453–464, https://doi.org/10.1191/095968300668251084, 2000.
Brugger, S. O. and Rhode, D.: Impact of Pleistocene–Holocene climate shifts on vegetation and fire dynamics and its implications for Prearchaic humans in the central Great Basin, USA, J. Quaternary Sci., 35, 987–993, https://doi.org/10.1002/jqs.3248, 2020.
Calder, W. J. and Shuman, B. N.: Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado, Ecology, 98, 2585–2600, https://doi.org/10.1002/ecy.1959, 2017.
Chandan, D. and Peltier, W. R.: African Humid Period precipitation sustained by robust vegetation, soil, and lake feedbacks, Geophys. Res. Lett., 47, e2020GL088728, https://doi.org/10.1029/2020GL088728, 2020.
Chaput, M. A. and Gajewski, K.: Relative pollen productivity estimates and changes in Holocene vegetation cover in the deciduous forest of southeastern Quebec, Canada, Botany, 96, 299–317, https://doi.org/10.1139/cjb-2017-0193, 2018.
Chen, J., Zhang, Q., Huang, W., Lu, Z., Zhang, Z., and Chen, F.: Northwestward shift of the northern boundary of the East Asian summer monsoon during the mid-Holocene caused by orbital forcing and vegetation feedbacks, Quaternary Sci. Rev., 268, 107136, https://doi.org/10.1016/j.quascirev.2021.107136, 2021.
Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling, Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002, 2016.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Clark, J. S., Hussey, T., and Royall, P. D.: Presettlement analogs for Quaternary fire regimes in eastern North America, J. Paleolimnol., 16, 79–96, https://doi.org/10.1007/BF00173273, 1996.
Cruz-Silva, E., Harrison, S. P., Marinova, E., and Prentice, I. C.: A new method based on surface-sample pollen data for reconstructing palaeovegetation patterns, J. Biogeogr., 49, 1381–1396, https://doi.org/10.1111/jbi.14448, 2022.
Cwynar, L. C. and Spear, R. W.: Paleovegetation and paleoclimatic changes in the Yukon at 6 ka BP, Geogr. Phys. Quatern., 49, 29–35, https://doi.org/10.7202/033027ar, 1995.
Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., and Herzschuh, U.: The deglacial forest conundrum, Nat. Commun., 13, 6035, https://doi.org/10.1038/s41467-022-33646-6, 2022.
Dallmeyer, A., Poska, A., Marquer, L., Seim, A., and Gaillard, M.-J.: The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective, Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, 2023.
Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams, R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P. J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W., Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A. E., Clague, J. J., Curry, B. B., Daigneault, R.-A., Dubé-Loubert, H., Easterbrook, D. J., Franzi, D. A., Friedrich, H. G., Funder, S., Gauthier, M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer, T. S., Jennings, C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D., King, E. L., Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R., Lamothe, M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi, B. A., Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper, D. J. W., Pronk, A. G., Richard, P. J. H., Ridge, J. C., Ross, M., Roy, M., Seaman, A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B., Thorleifson, L. H., Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T. K., and Wright, H. E.: An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex, Quaternary Sci. Rev., 234, 106223, https://doi.org/10.1016/j.quascirev.2020.106223, 2020.
Davis, M. B.: Pollen evidence of changing land use around the shores of Lake Washington, Northwest Sci., 47, 133–148, https://hdl.handle.net/11299/178248, 1973.
Davis, M. B.: Outbreaks of forest pathogens in Quaternary history, in: Proceedings of the Fourth International Palynological Conference, Lucknow, India, 216–227, https://hdl.handle.net/11299/178237, 1981.
Davis, M. B.: Palynology after Y2K–understanding the source area of pollen in sediments, Annu. Rev. Earth Pl. Sc., 28, 1–18, https://doi.org/10.1146/annurev.earth.28.1.1, 2000.
Dawson, A.: andydawson/REVEALS-NA: REVEALS-NA-CP (Version v1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.17309166, 2025.
Dawson, A., Paciorek, C. J., McLachlan, J. S., Goring, S., Williams, J. W., and Jackson, S. T.: Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data, Quaternary Sci. Rev., 137, 156–175, https://doi.org/10.1016/j.quascirev.2016.01.012, 2016.
Dawson, A., Cao, X., Chaput, M., Hopla, E., Li, F., Edwards, M., Fyfe, R., Gajewski, K., Goring, S., Herzschuh, U., and others: Finding the magnitude of human-induced Northern Hemisphere land-cover transformation between 6 and 0.2 ka BP, PAGES Mag., 26, 34–35, https://doi.org/10.22498/pages.26.1.34, 2018.
Dawson, A., Paciorek, C. J., Goring, S., Jackson, S., McLachlan, J., and Williams, J. W.: Quantifying trends and uncertainty in prehistoric forest composition in the upper Midwestern United States, Ecology, 100, e02856, https://doi.org/10.1002/ecy.2856, 2019.
Dawson, A., Williams, J., Goring, S., Gaillard, M.-J., Pirzamanbein, B., Lindstrom, J., Anderson, R. S., Brunelle, A., Foster, D., Gajewski, K., Gavin, D. G., Lacourse, T., Minckley, T. A., Oswald, W., Shuman, B., and Whitlock, C.: North America Holocene land cover: REVEALS-GMRF, Dryad [data set], https://doi.org/10.5061/dryad.c2fqz61m5, 2025.
Dean, W. E., Bradbury, J. P., Anderson, R. Y., and Barnosky, C. W.: The variability of Holocene climate change: Evidence from varved lake sediments, Science, 226, 1191–1194, https://doi.org/10.1126/science.226.4679.1191, 1984.
Delcourt, H. R. and Delcourt, P. A.: Postglacial rise and decline of Ostrya virginiana (Mill) K Koch and Carpinus caroliniana Walt in eastern North-America: Predictable responses of forest species to cyclic changes in seasonality of climates, J. Biogeogr., 21, 137–150, https://doi.org/10.2307/2845468, 1994.
Delcourt, P. A., Delcourt, H. R., Cridlebaugh, P. A., and Chapman, J.: Holocene ethnobotanical and paleoecological record of human impact on vegetation in the Little Tennessee River Valley, Tennessee, Quaternary Res., 25, 330–349, https://doi.org/10.1016/0033-5894(86)90005-0, 1986.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
Dyke, A. and Prest, V.: Late Wisconsinan and Holocene History of the Laurentide Ice Sheet, Geogr. Phys. Quatern., 41, 237–263, https://doi.org/10.7202/032681ar, 1987.
Edwards, M. E., Brubaker, L. B., Lozhkin, A. V., and Anderson, P. M.: Structurally novel biomes: a response to past warming in Beringia, Ecology, 86, 1696–1703, https://doi.org/10.1890/03-0787, 2005.
Ellis, E. C.: Land use and ecological change: A 12,000-Year History, Annu. Rev. Environ. Resour., 46, 1–33, https://doi.org/10.1146/annurev-environ-012220-010822, 2021.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Evett, R. R. and Bartolome, J. W.: Phytolith evidence for the extent and nature of prehistoric Californian grasslands, Holocene, 23, 1644–1649, https://doi.org/10.1177/0959683613499056, 2013.
Faison, E. K., Foster, D. R., Oswald, W. W., Hansen, B. C. S., and Doughty, E.: Early Holocene openlands in southern New England, Ecology, 87, 2537–2547, https://doi.org/10.1890/0012-9658(2006)87[2537:EHOISN]2.0.CO;2, 2006.
Finkelstein, S. A., Gajewski, K., and Viau, A. E.: Improved resolution of pollen taxonomy allows better biogeographical interpretation of post-glacial forest development: analyses from the North American Pollen Database, J. Ecol., 94, 415–430, https://doi.org/10.1111/j.1365-2745.2005.01087.x, 2006.
Flantua, S. G. A., Mottl, O., Felde, V. A., Bhatta, K. P., Birks, H. H., Grytnes, J.-A., Seddon, A. W. R., and Birks, H. J. B.: A guide to the processing and standardization of global palaeoecological data for large-scale syntheses using fossil pollen, Global Ecol. Biogeogr., 32, 1377–1394, https://doi.org/10.1111/geb.13693, 2023.
Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M., Brandtstätter, S., Jacobson, M. J., and Oster, J. L.: Main controls on the stable carbon isotope composition of speleothems, Geochim. Cosmochim. Ac., 279, 67–87, https://doi.org/10.1016/j.gca.2020.03.042, 2020.
Foley, J. A., Kutzbach, J. E., Coe, M. T., and Levis, S.: Feedbacks between climate and boreal forests during the Holocene epoch, Nature, 371, 52–54, https://doi.org/10.1038/371052a0, 1994.
Foster, D. R. and Aber, J. D.: Forests in Time: The Environmental Consequences of 1000 Years of Change in New England, Yale University Press, https://doi.org/10.1017/S0022050704313124, 2004.
Foster, D. R., Oswald, W. W., Faison, E. K., Doughty, E. D., and Hansen, B. C. S.: A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England, Ecology, 87, 2959–2966, https://doi.org/10.1890/0012-9658(2006)87[2959:ACDFAM]2.0.CO;2, 2006.
Fréchette, B., Richard, P. J. H., Grondin, P., Lavoie, M., and Larouche, A. C.: Histoire postglaciaire de la végétation et du climat des pessières et des sapinières de l'ouest du Québec, Mém. Rech. For., 179, https://mrnf.gouv.qc.ca//documents/forets/recherche/Memoire179.pdf (last access: 22 October 2025), 2018.
Fréchette, B., Richard, P. J. H., Lavoie, M., Grondin, P., and Larouche, A. C.: Histoire postglaciaire de la végétation et du climat des pessières et des sapinières de l'est du Québec et du Labrador méridional, Mém. Rech. For., 186, 170 pp., https://mrnf.gouv.qc.ca//documents/forets/recherche/MRF186.pdf (last access: 22 October 2025), 2021.
Fyfe, R., Roberts, N., and Woodbridge, J.: A pollen-based pseudobiomisation approach to anthropogenic land-cover change, Holocene, 20, 1165–1171, https://doi.org/10.1177/0959683610369509, 2010.
Gaillard, M., Whitehouse, N., Madella, M., Morrison, K., and von Gunten, L.: Past land use and land cover, PAGES Mag., 26, 1–44, https://doi.org/10.22498/pages.26.1, 2018.
Gaillard, M. J. and LandCover6k Steering Group: LandCover6k: Global anthropogenic land-cover change and its role in past climate, PAGES Mag., 23, 38–39, https://doi.org/10.22498/pages.23.1.38, 2015.
Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Broström, A., Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T., Hjelle, K., Kalnina, L., Kangur, M., van der Knaap, W. O., Koff, T., Lagerås, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., von Stedingk, H., and Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks, Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010.
Gajewski, K.: Environmental history of the northwestern Québec Treeline, Quaternary Sci. Rev., 206, 29–43, https://doi.org/10.1016/j.quascirev.2018.12.025, 2019.
Gajewski, K., Kriesche, B., Chaput, M. A., Kulik, R., and Schmidt, V.: Human–vegetation interactions during the Holocene in North America, Veg. Hist. Archaeobot., 28, 635–647, https://doi.org/10.1007/s00334-019-00721-w, 2019.
Gajewski, K., Grenier, A., and Payette, S.: Climate, fire and vegetation history at treeline east of Hudson Bay, northern Québec, Quaternary Sci. Rev., 254, 106794, https://doi.org/10.1016/j.quascirev.2021.106794, 2021.
Gavin, D. G. and Brubaker, L. B.: Late Pleistocene and Holocene Environmental Change on the Olympic Peninsula, Washington, Springer, https://doi.org/10.1007/978-3-319-11014-1, 2014.
Gavin, D. G., Brubaker, L. B., and Greenwald, D. N.: Postglacial climate and fire-mediated vegetation change on the western Olympic Peninsula, Washington (USA), Ecol. Monogr., 83, 471–489, https://doi.org/10.1890/12-1742.1, 2013.
Gavin, D. G., White, A., Sanborn, P. T., and Hebda, R. J.: Deglacial landforms and Holocene vegetation trajectories in the northern interior cedar-hemlock forests of British Columbia, in: Untangling the Quaternary Period—A Legacy of Stephen C. Porter, vol. 548, edited by: Waitt, R. B., Thackray, G. D., and Gillespie, A. R., Geological Society of America, https://doi.org/10.1130/2020.2548(05), 2021.
George, A., Widell, S., Goring, S. J., Roth, R. E., and Williams, J. W.: Range Mapper: An adaptable process for making and using interactive, animated web maps of late-Quaternary open paleoecological data, Open Quat., 9, 15, https://doi.org/10.5334/oq.114, 2023.
Githumbi, E., Fyfe, R., Gaillard, M.-J., Trondman, A.-K., Mazier, F., Nielsen, A.-B., Poska, A., Sugita, S., Woodbridge, J., Azuara, J., Feurdean, A., Grindean, R., Lebreton, V., Marquer, L., Nebout-Combourieu, N., Stančikaitė, M., Tanţău, I., Tonkov, S., Shumilovskikh, L., and LandClimII data contributors: European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials, Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, 2022a.
Githumbi, E., Pirzamanbein, B., Lindström, J., Poska, A., Fyfe, R., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A.-K., Woodbridge, J., and others: Pollen-based maps of past regional vegetation cover in Europe over 12 Millennia–evaluation and potential, Front. Ecol. Evol., 10, 795794, https://doi.org/10.3389/fevo.2022.795794, 2022b.
Giuliano, C. and Lacourse, T.: Holocene fire regimes, fire-related plant functional types, and climate in south-coastal British Columbia forests, Ecosphere, 14, e4416, https://doi.org/10.1002/ecs2.4416, 2023.
Goring, S.: Neotoma Lakes Assignment (Version 0.1), Zenodo [software], https://doi.org/10.5281/zenodo.10535435, 2024.
Grimm, E. C., Bradshaw, R. H. W., Giesecke, T., Lézine, A.-M., Takahara, H., and Williams, J. W.: Pollen databases and their application, in: Encyclopaedia of Quaternary Sciences, edited by: Elias, S. A., https://hal.science/hal-01491073 (last access: 22 October 2025), 2013.
Gugger, P. F. and Sugita, S.: Glacial populations and postglacial migration of Douglas-fir based on fossil pollen and macrofossil evidence, Quaternary Sci. Rev., 29, 2052–2070, https://doi.org/10.1016/j.quascirev.2010.04.022, 2010.
Guo, Z., Zhou, X., and Wu, H.: Glacial-interglacial water cycle, global monsoon and atmospheric methane changes, Clim. Dynam., 39, 1073–1092, https://doi.org/10.1007/s00382-011-1147-5, 2012.
Haas, J. N. and McAndrews, J. H.: The summer drought related hemlock (Tsuga canadensis) decline in eastern North America 5,700 to 5,100 years ago, Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America, Durham, New Hampshire, USA, 22–24 June 1999, 81–88, https://research.fs.usda.gov/treesearch/4141 (last access: 22 October 2025), 1999.
Hansen, B. C. S. and Engstrom, D. R.: Vegetation history of Pleasant Island, southeastern Alaska, since 13,000 yr B.P., Quaternary Res., 46, 161–175, https://doi.org/10.1006/qres.1996.0056, 1996.
Harrison, S. P., Gaillard, M.-J., Stocker, B. D., Vander Linden, M., Klein Goldewijk, K., Boles, O., Braconnot, P., Dawson, A., Fluet-Chouinard, E., Kaplan, J. O., Kastner, T., Pausata, F. S. R., Robinson, E., Whitehouse, N. J., Madella, M., and Morrison, K. D.: Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments, Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, 2020.
Haslett, J., Parnell, A. C., Hinde, and de Andrade Moral: Modelling Excess Zeros in Count Data: A New Perspective on Modelling Approaches – Haslett – 2022 – International Statistical Review – Wiley Online Library, 90, 216–236, https://doi.org/10.1111/insr.12479, 2021.
Hayashi, R., Sasaki, N., Takahara, H., Sugita, S., and Saito, H.: Estimation of absolute pollen productivity based on the flower counting approach: A review, Quatern. Int., 641, 122–137, https://doi.org/10.1016/j.quaint.2022.04.015, 2022.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden, J. Quaternary Sci., 23, 21–42, https://doi.org/10.1002/jqs.1126, 2008a.
Hellman, S. E., Gaillard, M., Broström, A., and Sugita, S.: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model, Veg. Hist. Archaeobot., 17, 445–459, https://doi.org/10.1007/s00334-008-0149-7, 2008b.
Herzschuh, U.: Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests, Glob. Ecol. Biogeogr., 29, 198–206, https://doi.org/10.1111/geb.13018, 2020.
Herzschuh, U., Böhmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N. H., Nazarova, L., Novenko, E. Y., Park, J., Peyron, O., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.: LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond, Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, 2023.
Hoevers, R., Broothaerts, N., and Verstraeten, G.: The potential of REVEALS-based vegetation reconstructions using pollen records from alluvial floodplains, Veg. Hist. Archaeobot., 31, 525–540, https://doi.org/10.1007/s00334-022-00866-1, 2022.
Hollinger, D. Y., Ollinger, S. V., Richardson, A. D., Meyers, T. P., Dail, D. B., Martin, M. E., Scott, N. A., Arkebauer, T. J., Baldocchi, D. D., and Clark, K. L.: Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration, Glob. Change Biol., 16, 696–710, https://doi.org/10.1111/j.1365-2486.2009.02028.x, 2010.
Huybers, P.: Early Pleistocene glacial cycles and the integrated summer insolation forcing, Science, 313, 508–511, https://doi.org/10.1126/science.1125249, 2006.
Iglesias, V. and Whitlock, C.: If the trees burn, is the forest lost? Past dynamics in temperate forests help inform management strategies, Philos. T. Roy. Soc. B, 375, 20190115, https://doi.org/10.1098/rstb.2019.0115, 2020.
Iglesias, V., Whitlock, C., Krause, T. R., and Baker, R. G.: Past vegetation dynamics in the Yellowstone region highlight the vulnerability of mountain systems to climate change, J. Biogeogr., 45, 1768–1780, https://doi.org/10.1111/jbi.13364, 2018.
Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121–126, https://doi.org/10.1038/18158, 1999.
Ireland, A. W. and Booth, R. K.: Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American kettlehole basin, Ecology, 92, 11–18, https://doi.org/10.1890/10-0770.1, 2010.
Islebe, G. A., Hooghiemstra, H., Brenner, M., Curtis, J. H., and Hodell, D. A.: A Holocene vegetation history from lowland Guatemala, Holocene, 6, 265–271, https://doi.org/10.1177/095968369600600302, 1996.
Jackson, S. T.: Pollen source area and representation in small lakes of the northeastern United States, Rev. Palaeobot. Palynol., 63, 53–76, https://doi.org/10.1016/0034-6667(90)90006-5, 1990.
Jackson, S. T. and Lyford, M. E.: Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions, Bot. Rev., 65, 39–75, https://doi.org/10.1007/BF02856557, 1999.
Jackson, S. T. and Whitehead, D. R.: Holocene vegetation patterns in the Adirondack Mountains, Ecology, 72, 641–654, https://doi.org/10.2307/2937204, 1991.
Jackson, S. T., Overpeck, J. T., Webb, I., T., Keattch, S. E., and Anderson, K. H.: Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in eastern North America, Quaternary Sci. Rev., 16, 1–70, https://doi.org/10.1016/S0277-3791(96)00047-9, 1997.
Jackson, S. T., Betancourt, J. L., Booth, R. K., and Gray, S. T.: Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions, P. Natl. Acad. Sci. USA, 106, 19685–19692, https://doi.org/10.1073/pnas.0901644106, 2009.
Jensen, A. M., Fastovich, D., Watson, B. I., Gill, J. L., Jackson, S. T., Russell, J. M., Bevington, J., Hayes, K., Lininger, K., Rubbelke, C., Schellinger, G. C., and Williams, J. W.: More than one way to kill a spruce forest: The role of fire and climate in the late-glacial termination of spruce woodlands across the southern Great Lakes, J. Ecol., 109, 459–477, https://doi.org/10.1111/1365-2745.13517, 2021.
Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The prehistoric and preindustrial deforestation of Europe, Quaternary Sci. Rev., 28, 3016–3034, https://doi.org/Doi 10.1016/J.Quascirev.2009.09.028, 2009.
Kaplan, J. O., Krumhardt, K. M., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Fyfe, R., Marquer, L., Mazier, F., and Nielsen, A. B.: Constraining the deforestation history of Europe: Evaluation of historical land use scenarios with pollen-based land cover reconstructions, Land, 6, 91, https://doi.org/10.3390/land6040091, 2017.
Kaufman, D. S. and Broadman, E.: Revisiting the Holocene global temperature conundrum, Nature, 614, 425–435, https://doi.org/10.1038/s41586-022-05536-w, 2023.
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., and Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, P. Natl. Acad. Sci. USA, 110, 13055–13060, https://doi.org/10.1073/pnas.1305069110, 2013.
Klein Goldewijk, K., Beusen, A., and Janssen, P.: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1, Holocene, 20, 565–573, https://doi.org/10.1177/0959683609356587, 2010.
Klein Goldewijk, K., Beusen, A., van Drecht, G., and de Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years, Global Ecol. Biogeogr., 20, 73–86, https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2011.
Knight, C. A., Anderson, L., Bunting, M. J., Champagne, M., Clayburn, R. M., Crawford, J. N., Klimaszewski-Patterson, A., Knapp, E. E., Lake, F. K., Mensing, S. A., Wahl, D., Wanket, J., Watts-Tobin, A., Potts, M. D., and Battles, J. J.: Land management explains major trends in forest structure and composition over the last millennium in California's Klamath Mountains, P. Natl. Acad. Sci. USA, 119, e2116264119, https://doi.org/10.1073/pnas.2116264119, 2022.
Kuparinen, A., Markkanen, T., Riikonen, H., and Vesala, T.: Modeling air-mediated dispersal of spores, pollen and seeds in forested areas, Ecol. Model., 208, 177–188, https://doi.org/10.1016/j.ecolmodel.2007.05.023, 2007.
Kutzbach, Bartlein, P. J., Foley, J. A., Harrison, S. P., Hostetler, S. W., Liu, Z., Prentice, I. C., and Webb III, T.: Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years B.P., Global Biogeochem. Cy., 10, 727–736, https://doi.org/10.1029/96GB02690, 1996.
Lacourse, T.: Environmental change controls postglacial forest dynamics through interspecific differences in life-history traits, Ecology, 90, 2149–2160, https://doi.org/10.1890/08-1136.1, 2009.
Lacourse, T. and Adeleye, M. A.: Climate and species traits drive changes in Holocene forest composition along an elevation gradient in Pacific Canada, Front. Ecol. Evol., 10, 838545, https://doi.org/10.3389/fevo.2022.838545, 2022.
Lacourse, T. and Gajewski, K.: Current practices in building and reporting age-depth models, Quaternary Res., 96, 28–38, https://doi.org/10.1017/qua.2020.47, 2020.
Lacourse, T., Mathewes, R. W., and Hebda, R. J.: Paleoecological analyses of lake sediments reveal prehistoric human impact on forests at Anthony Island UNESCO World Heritage Site, Queen Charlotte Islands (Haida Gwaii), Canada, Quaternary Res., 68, 177–183, https://doi.org/10.1016/j.yqres.2007.04.005, 2007.
Lacourse, T., Delepine, J. M., Hoffman, E. H., and Mathewes, R. W.: A 14,000 year vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata, Quaternary Res., 78, 572–582, https://doi.org/10.1016/j.yqres.2012.08.008, 2012.
Leopold, E. B. and Boyd, R.: An ecological history of old prairie areas, southwestern Washington, in: Indians, Fire and the Land, edited by: Boyd, R., Oregon State University Press, https://doi.org/10.1353/book94487, 139–166, 1999.
Lewis, S. L. and Maslin, M. A.: Defining the Anthropocene, Nature, 519, 171–180, https://doi.org/10.1038/nature14258, 2015.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P. E., Wagner, M., Xu, Q., Ni, J., and Wang, W.: Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover, Earth-Sci. Rev., 203, 103119, https://doi.org/10.1016/j.earscirev.2020.103119, 2020.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Ni, J., Zhao, Y., An, C., Huang, X., Li, Y., Liu, H., Sun, A., and Yao, Y.: Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling, Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, 2023.
Liefert, D. T. and Shuman, B. N.: Pervasive desiccation of North American lakes during the late Quaternary, Geophys. Res. Lett., 47, e2019GL086412, https://doi.org/10.1029/2019GL086412, 2020.
Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. Roy. Stat. Soc. B, 73, 423–498, https://doi.org/10.1111/j.1467-9868.2011.00777.x, 2011.
Liu, Y., Ogle, K., Lichstein, J. W., and Jackson, S. T.: Estimation of pollen productivity and dispersal: How pollen assemblages in small lakes represent vegetation, Ecol. Monogr., 92, e1513, https://doi.org/10.1002/ecm.1513, 2022.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.: The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111, 2014.
Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran, D., Yu, Z., Nichols, J., and Holmquist, J.: Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum, Earth-Sci. Rev., 165, 59–80, https://doi.org/10.1016/j.earscirev.2016.12.001, 2017.
Long, C. J., Whitlock, C., Bartlein, P. J., and Millspaugh, S. H.: A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study, Can. J. Forest Res., 28, 774–787, https://doi.org/10.1139/x98-051, 1998.
Long, C. J., Whitlock, C., and Bartlein, P. J.: Holocene vegetation and fire history of the Coast Range, western Oregon, USA, Holocene, 17, 917–926, https://doi.org/10.1177/0959683607082408, 2007.
Loranty, M. M., Berner, L. T., Goetz, S. J., Jin, Y., and Randerson, J. T.: Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP 5 model simulations, Glob. Change Biol., 20, 594–606, https://doi.org/10.1111/gcb.12391, 2014.
MacDonald, G. M.: Postglacial palaeoecology of the subalpine forest-grassland ecotone of southwestern Alberta: new insights on vegetation and climate change in the Canadian Rocky Mountains and adjacent foothills, Palaeogeogr. Palaeocl., 73, 155–173, https://doi.org/10.1016/0031-0182(89)90001-1, 1989.
MacDonald, G. M. and Cwynar, L. C.: Post-glacial population growth rates of Pinus contorta ssp. latifolia in western Canada, J. Ecol., 79, 417–429, https://doi.org/10.2307/2260723, 1991.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years, Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., and Power, M. J.: Long-term perspective on wildfires in the western USA, P. Natl. Acad. Sci. USA, 109, E535–E543, https://doi.org/10.1073/pnas.1112839109, 2012.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.: Reconciling divergent trends and millennial variations in Holocene temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
McAndrews, J. H. and Turton, C. L.: Canada geese dispersed cultigen pollen grains from prehistoric Iroquoian fields to Crawford Lake, Ontario, Canada, Palynology, 31, 9–18, https://doi.org/10.2113/gspalynol.31.1.9, 2007.
McKay, N. P., Emile-Geay, J., and Khider, D.: geoChronR – an R package to model, analyze, and visualize age-uncertain data, Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, 2021.
McMichael, C. N. H.: Ecological legacies of past human activities in Amazonian forests, New Phytol., 229, 2492–2496, https://doi.org/10.1111/nph.16888, 2020.
Mensing, S., Smith, J., Burkle Norman, K., and Allan, M.: Extended drought in the Great Basin of western North America in the last two millennia reconstructed from pollen records, 22nd Pac. Clim. Workshop, 188, 79–89, https://doi.org/10.1016/j.quaint.2007.06.009, 2008.
Minckley, T. A., Whitlock, C., and Bartlein, P. J.: Vegetation, fire, and climate history of the northwestern Great Basin during the last 14,000 years, Quaternary Sci. Rev., 26, 2167–2184, https://doi.org/10.1016/j.quascirev.2007.04.009, 2007.
Mottl, O., Flantua, S. G. A., Bhatta, K. P., Felde, V. A., Giesecke, T., Goring, S., Grimm, E. C., Haberle, S., Hooghiemstra, H., Ivory, S., Kuneš, P., Wolters, S., Seddon, A. W. R., and Williams, J. W.: Global acceleration in rates of vegetation change over the last 18,000 years, Science, 321, 860–864, https://doi.org/10.1126/science.abg1685, 2021.
Munoz, S. E. and Gajewski, K.: Distinguishing prehistoric human influence on late-Holocene forests in southern Ontario, Canada, Holocene, 20, 967–981, https://doi.org/10.1177/0959683610362815, 2010.
Munoz, S. E., Schroeder, S., Fike, D. A., and Williams, J. W.: A record of sustained prehistoric and historic land use from the Cahokia region, Illinois, USA, Geology, 42, 499–502, https://doi.org/10.1130/G35541.1, 2014.
Naimi, B. and Araújo, M. B.: sdm: a reproducible and extensible R platform for species distribution modelling, Ecography, 39, 368–375, 2016.
Napier, J. D. and Chipman, M. L.: Emerging palaeoecological frameworks for elucidating plant dynamics in response to fire and other disturbance, Global Ecol. Biogeogr., 31, 138–154, https://doi.org/10.1111/geb.13416, 2021.
Natural Resources Canada: National Hydro Network, Natural Resources Canada [data set], https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977 (last access: 22 October 2025), 2022.
Nelson, D. M., Hu, F. S., Grimm, E. C., Curry, B. B., and Slate, J. E.: The influence of aridity and fire on Holocene prairie communities in the eastern Prairie Peninsula, Ecology, 87, 2523–2536, https://doi.org/10.1890/0012-9658(2006)87[2523:TIOAAF]2.0.CO;2, 2006.
Niklas, K. J.: The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination, Am. J. Bot., 71, 356–374, https://doi.org/10.1002/j.1537-2197.1984.tb12523.x, 1984.
Nordt, L., von Fischer, J., and Tieszen, L.: Late Quaternary temperature record from buried soils of the North American Great Plains, Geology, 35, 159–162, https://doi.org/10.1130/G23345A.1, 2007.
Oswald, W. W. and Foster, D. R.: Middle-Holocene dynamics of Tsuga canadensis (eastern hemlock) in northern New England, USA, Holocene, 22, 71–78, https://doi.org/10.1177/0959683611409774, 2012.
Oswald, W. W., Doughty, E. D., Foster, D. R., Shuman, B. N., and Wagner, D. L.: Evaluating the role of insects in the middle-Holocene Tsuga decline, J. Torrey Bot. Soc., 144, 35–39, https://doi.org/10.3159/TORREY-D-15-00074.1, 2017.
Oswald, W. W., Foster, D., Shuman, B., Doughty, E., Faison, E. K., Hall, B., Hansen, B. C. S., Lindbladh, M., Marroquin, A., and Truebe, S.: Subregional variability in the response of New England vegetation to postglacial climate change, J. Biogeogr., 45, 2375–2388, https://doi.org/10.1111/jbi.13407, 2018.
Oswald, W. W., Foster, D. R., Shuman, B. N., Chilton, E. S., Doucette, D. L., and Duranleau, D. L.: Conservation implications of limited Native American impacts in pre-contact New England, Nat. Sustain., 3, 241–246, https://doi.org/10.1038/s41893-019-0466-0, 2020.
Otto, J., Raddatz, T., and Claussen, M.: Strength of forest-albedo feedback in mid-Holocene climate simulations, Clim. Past, 7, 1027–1039, https://doi.org/10.5194/cp-7-1027-2011, 2011.
Paciorek, C. J., Goring, S. J., Thurman, A., Cogbill, C. V., Williams, J. W., Mladenoff, D. J., Peters, J. A., Zhu, J., and McLachlan, J. S.: Statistically-estimated tree composition for the northeastern United States at the time of Euro-American settlement, PLoS One, 11, e0150087, https://doi.org/10.1371/journal.pone.0150087, 2016.
PALSEA (PALeo SEA level working group): The sea-level conundrum: case studies from palaeo-archives, J. Quaternary Sci., 25 19–25, https://doi.org/10.1002/jqs.1270, 2010.
Parnell, A. C., Haslett, J., Allen, J. R., Buck, C. E., and Huntley, B.: A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history, Quaternary Sci. Rev., 27, 1872–1885, https://doi.org/10.1016/j.quascirev.2008.07.009, 2008.
Payette, S.: A paleo-perspective on ecosystem collapse in boreal North America, edited by: Canadell, J. G. and Jackson, R. B., Ecosyst. Collapse Clim. Change, 101–129, https://doi.org/10.1007/978-3-030-71330-0_5, 2021.
Payette, S., Filion, L., and Delwaide, A.: Spatially explicit fire-climate history of the boreal forest-tundra (eastern Canada) over the last 2000 years, Philos. Trans. Biol. Sci., 363, 2301–2316, https://doi.org/10.1098/rstb.2007.2201, 2008.
Payette, S., Couillard, P.-L., Frégeau, M., Laflamme, J., and Lavoie, M.: The velocity of postglacial migration of fire-adapted boreal tree species in eastern North America, P. Natl. Acad. Sci. USA, 119, e2210496119, https://doi.org/10.1073/pnas.2210496119, 2022.
Peltier, W. R.: Ice Age Paleotopography, Science, 265, 195–201, https://doi.org/10.1126/science.265.5169.195, 1994.
Peros, M. C., Gajewski, K., and Viau, A. E.: Continental-scale tree population response to rapid climate change, competition and disturbance, Global Ecol. Biogeogr., 17, 658–669, https://doi.org/10.1111/j.1466-8238.2008.00406.x, 2008.
Peros, M. C., Munoz, S. E., Gajewski, K., and Viau, A. E.: Prehistoric demography of North America inferred from radiocarbon data, J. Archaeol. Sci., 37, 656–664, https://doi.org/10.1016/j.jas.2009.10.029, 2010.
Perrotti, A. G., Ramiadantsoa, T., O'Keefe, J., and Nuñez Otaño, N.: Uncertainty in coprophilous fungal spore concentration estimates, Front. Ecol. Evol., 10, https://doi.org/10.3389/fevo.2022.1086109, 2022.
Pirzamanbein, B., Lindström, J., Poska, A., Sugita, S., Trondman, A.-K., Fyfe, R., Mazier, F., Nielsen, A. B., Kaplan, J. O., Bjune, A., Birks, H. J. B., Giesecke, T., Kangur, M., Latałowa, M., Marquer, L., Smith, B., and Gaillard, M.-J.: Creating spatially continuous maps of past land cover from point estimates: A new statistical approach applied to pollen data, Ecol. Complex., 20, 127–141, https://doi.org/10.1016/j.ecocom.2014.09.005, 2014.
Pirzamanbein, B., Lindström, J., Poska, A., and Gaillard, M.-J.: Modelling spatial compositional data: Reconstructions of past land cover and uncertainties, Spat. Stat., 24, 14–31, https://doi.org/10.1016/j.spasta.2018.03.005, 2018.
Pirzamanbein, B., Poska, A., and Lindström, J.: Bayesian reconstruction of past land cover from pollen data: Model robustness and sensitivity to auxiliary variables, Earth Space Sci., 7, e2018EA00057, https://doi.org/10.1029/2018EA000547, 2020.
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change, Geophys. Res. Lett., 37, L08702, https://doi.org/10.1029/2010GL043010, 2010.
Prentice, I. C.: Pollen representation, source area, and basin size: toward a unified theory of pollen analysis, Quaternary Res., 23, 76–86, https://doi.org/10.1016/0033-5894(85)90073-0, 1985.
Prentice, I. C., Jolly, D., and BIOME 6000 participants: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, https://doi.org/10.1046/j.1365-2699.2000.00425.x, 2000.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and terrestrial carbon cycle changes after the last ice age, New Phytol., 189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Raiho, A., Paciorek, C. J., Dawson, A., Jackson, S. T., Mladenoff, D. J., Williams, J. W., and McLachlan, J. S.: 8000-year doubling of Midwestern forest biomass driven by population- and biome-scale processes, Science, 376, 1491–1495, https://doi.org/10.1126/science.abk3126, 2022.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., and Friedrich, M.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Richard, P., Fréchette, B., Grondin, P., and Lavoie, M.: Histoire postglaciaire de la végétation de la forêt boréale du Québec et du Labrador, Nat. Can., 144, 63–76, https://doi.org/10.7202/1070086ar, 2020.
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M. J., Davis, B. A. S., Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A. K., and Leydet, M.: Europe's lost forests: a pollen-based synthesis for the last 11,000 years, Sci. Rep., 8, 716, https://doi.org/10.1038/s41598-017-18646-7, 2018.
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean temperature increase below 1.5 ° C, Nat. Clim. Change, 8, 325–332, https://doi.org/10.1038/s41558-018-0091-3, 2018.
Roos, C. I.: Scale in the study of Indigenous burning, Nat. Sustain., 3, 898–899, https://doi.org/10.1038/s41893-020-0579-5, 2020.
Roos, C. I., Zedeño, M. N., Hollenback, K. L., and Erlick, M. M. H.: Indigenous impacts on North American Great Plains fire regimes of the past millennium, P. Natl. Acad. Sci. USA, 115, 8143–8148, https://doi.org/10.1073/pnas.1805259115, 2018.
Rosenberg, S. M., Walker, I. R., and Mathewes, R. W.: Postglacial spread of hemlock (Tsuga) and vegetation history in Mount Revelstoke National Park, British Columbia, Canada, Can. J. Bot., 81, 139–151, https://doi.org/10.1139/b03-015, 2003.
Ruddiman, W. F.: The anthropogenic greenhouse era began thousands of years ago, Clim. Change, 61, 261–293, https://doi.org/10.1023/B:CLIM.0000004577.17928.fa, 2003.
Ruddiman, W. F.: The Anthropocene, Annu. Rev. Earth Pl. Sc., 41, 4.1–4.24, https://doi.org/10.1146/annurev-earth-050212-123944, 2013.
Serge, M.-A., Mazier, F., Fyfe, R., Gaillard, M.-J., Klein, T., Lagnoux, A., Galop, D., Githumbi, E., Mindrescu, M., and Nielsen, A. B.: Testing the effect of relative pollen productivity on the REVEALS model: a validated reconstruction of Europe-wide holocene vegetation, Land, 12, 986, https://doi.org/10.3390/land12050986, 2023.
Shuman, B., Webb, T., III, Bartlein, P., and Williams, J. W.: The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone, Quaternary Sci. Rev., 21, 1777–1791, https://doi.org/10.1016/S0277-3791(02)00030-6, 2002.
Shuman, B. N. and Marsicek, J.: The structure of Holocene climate change in mid-latitude North America, Quaternary Sci. Rev., 141, 38–51, https://doi.org/10.1016/j.quascirev.2016.03.009, 2016.
Shuman, B. N., Newby, P. C., Huang, Y., and Webb, I., T.: Evidence for the close climatic control of New England vegetation history, Ecology, 85, 1297–1310, https://doi.org/10.1890/02-0286, 2004.
Shuman, B. N., Marsicek, J., Oswald, W. W., and Foster, D. R.: Predictable hydrological and ecological responses to Holocene North Atlantic variability, P. Natl. Acad. Sci. USA, 116, 5985–5990, https://doi.org/10.1073/pnas.1814307116, 2019.
Shuman, B. N., Stefanescu, I. C., Grigg, L. D., Foster, D. R., and Oswald, W. W.: A millennial-scale oscillation in latitudinal temperature gradients along the western North Atlantic during the mid-Holocene, Geophys. Res. Lett., 50, e2022GL102556, https://doi.org/10.1029/2022GL102556, 2023.
Sjögren, P., van der Knaap, W. O., Huusko, A., and van Leeuwen, J. F. N.: Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results, Rev. Palaeobot. Palyno., 152, 200–210, https://doi.org/10.1016/j.revpalbo.2008.05.003, 2008.
Snitker, G., Roos, C. I., Sullivan, A. P., Maezumi, S. Y., Bird, D. W., Coughlan, M. R., Derr, K. M., Gassaway, L., Klimaszewski-Patterson, A., and Loehman, R. A.: A collaborative agenda for archaeology and fire science, Nat. Ecol. Evol., 6, 835–839, https://doi.org/10.1038/s41559-022-01759-2, 2022.
Spear, R. W., Davis, M. B., and Shane, L. C. K.: Late Quaternary history of low- and mid-elevation vegetation in the White Mountains of New Hampshire, Ecol. Monogr., 64, 85–109, https://doi.org/10.2307/2937056, 1994.
Stegner, M. A. and Spanbauer, T. L.: North American pollen records provide evidence for macroscale ecological changes in the Anthropocene, P. Natl. Acad. Sci. USA, 120, e2306815120, https://doi.org/10.1073/pnas.2306815120, 2023.
Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, M.-J., Trondman, A.-K., Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, U., Kuneš, P., Latałowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppä, H., and Sugita, S.: Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation, Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, 2014.
Strandberg, G., Lindström, J., Poska, A., Zhang, Q., Fyfe, R., Githumbi, E., Kjellström, E., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A.-K., Woodbridge, J., and Gaillard, M.-J.: Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land-cover, Quaternary Sci. Rev., 281, 107431, https://doi.org/10.1016/j.quascirev.2022.107431, 2022.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, Holocene, 17, 229–241, https://doi.org/10.1177/0959683607075837, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, Holocene, 17, 243–257, https://doi.org/10.1177/0959683607075838, 2007b.
Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin, Quaternary Res., 74, 289–300, https://doi.org/10.1016/j.yqres.2010.07.008, 2010.
Sutton, O. G.: Micrometeorology: A Study of Physical Processes in the Lowest Layers of the Earth's Atmosphere, McGraw-Hill, 333 pp., 1953.
Theuerkauf, M. and Couwenberg, J.: ROPES reveals past land cover and PPEs From single pollen records, Front. Earth Sci., 6, https://doi.org/10.3389/feart.2018.00014, 2018.
Theuerkauf, M., Kuparinen, A., and Joosten, H.: Pollen productivity estimates strongly depend on assumed pollen dispersal, Holocene, 23, 14–24, https://doi.org/10.1177/0959683612450194, 2012.
Theuerkauf, M., Couwenberg, J., Kuparinen, A., and Liebscher, V.: A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction, Veg. Hist. Archaeobot., 25, 541–553, https://doi.org/10.1007/s00334-016-0572-0, 2016.
Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E., and Skinner, C. B.: Northern Hemisphere vegetation change drives a Holocene thermal maximum, Sci. Adv., 8, eabj6535, https://doi.org/10.1126/sciadv.abj6535, 2022.
Thompson, J. R., Carpenter, D. N., Cogbill, C. V., and Foster, D. R.: Four centuries of change in northeastern United States forests, PLoS One, 8, e72540, https://doi.org/10.1371/journal.pone.0072540, 2013.
Thompson, R. S.: Late Quaternary environments in Ruby Valley, Nevada, Quaternary Res., 37, 1–15, https://doi.org/10.1016/0033-5894(92)90002-Z, 1992.
Thompson, R. S., Anderson, K. H., and Bartlein, P. J.: Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America–Introduction and Conifers, U.S. Department of the Interior, U.S. Geological Survey, https://doi.org/10.3133/pp1650AB, 1999.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – A platform for ensemble forecasting of species distributions, Ecography, 32, 369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
Trachsel, M. and Telford, R. J.: All age–depth models are wrong, but are getting better, Holocene, 27, 860–869, https://doi.org/10.1177/0959683616675939, 2017.
Trachsel, M., Dawson, A., Paciorek, C. J., Williams, J. W., McLachlan, J. S., Cogbill, C. V., Foster, D. R., Goring, S. J., Jackson, S. T., Oswald, W. W., and Shuman, B. M.: Comparison of settlement-era vegetation reconstructions for STEPPS and REVEALS pollen–vegetation models in the northeastern United States, Quaternary Res., 95, 23–42, https://doi.org/10.1017/qua.2019.81, 2020.
Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and Wick, L.: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling, Glob. Change Biol., 21, 676–697, https://doi.org/10.1111/gcb.12737, 2015.
Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisman, A., Hultberg, T., Lagerås, P., Lindbladh, M., and Mazier, F.: Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden, Veg. Hist. Archaeobot., 25, 131–151, https://doi.org/10.1007/s00334-015-0536-9, 2016.
Umbanhowar Jr., C. E., Camill, P., Geiss, C. E., and Teed, R.: Asymmetric vegetation responses to mid-Holocene aridity at the prairie-forest ecotone in south-central Minnesota, Quaternary Res., 66, 53–66, https://doi.org/10.1016/j.yqres.2006.03.005, 2006.
United States Geological Survey: National Hydrography Dataset (NHD Model v2.3.1), United States Geological Survey [data set], https://www.usgs.gov/national-hydrography/national-hydrography-dataset (last access: 22 October 2025), 2022.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change, 42, 237–250, https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
Walsh, M. K., Whitlock, C., and Bartlein, P. J.: A 14,300-year-long record of fire–vegetation–climate linkages at Battle Ground Lake, southwestern Washington, Quaternary Res., 70, 251–264, https://doi.org/10.1016/j.yqres.2008.05.002, 2008.
Walsh, M. K., Pearl, C. A., Whitlock, C., Bartlein, P. J., and Worona, M. A.: An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley, Quaternary Sci. Rev., 29, 1093–1106, https://doi.org/10.1016/j.quascirev.2010.02.011, 2010.
Walsh, M. K., Marlon, J. R., Goring, S. J., Brown, K. J., and Gavin, D. G.: A regional perspective on Holocene fire–climate–human interactions in the Pacific Northwest of North America, Ann. Assoc. Am. Geogr., 105, 1135–1157, https://doi.org/10.1080/00045608.2015.1064457, 2015.
Whitlock, C.: Vegetational and climatic history of the Pacific Northwest during the last 20,000 years: Implications for understanding present-day biodiversity, Northwest Environ. J., 8, 5–28, 1992.
Whitlock, C., Colombaroli, D., Conedera, M., and Tinner, W.: Land-use history as a guide for forest conservation and management, Conserv. Biol., 32, 84–97, https://doi.org/10.1111/cobi.12960, 2018.
Whitmore, J., Gajewski, K., Sawada, M., Williams, J., Shuman, B., Bartlein, P., Minckley, T., Viau, A., Webb, T., Shafer, S.,Anderson, P., and Brubaker, L.: Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications, Quaternary Sci. Rev., 24, 1828–1848, https://doi.org/10.1016/j.quascirev.2005.03.005, 2005.
Wieczorek, M. and Herzschuh, U.: Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics, Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, 2020.
Williams, J. W. and Jackson, S. T.: Novel climates, no-analog communities, and ecological surprises, Front. Ecol. Environ., 5, 475–482, https://doi.org/10.1890/070037, 2007.
Williams, J. W., Shuman, B. N., and Webb, I., T.: Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America, Ecology, 82, 3346–3362, https://doi.org/10.1890/0012-9658(2001)082[3346:DAOLQV]2.0.CO;2, 2001.
Williams, J. W., Shuman, B. N., Webb, T., III, Bartlein, P. J., and Luduc, P. L.: Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes, Ecol. Monogr., 74, 309–334, https://doi.org/10.1890/02-4045, 2004.
Williams, J. W., Shuman, B., and Bartlein, P. J.: Rapid responses of the Midwestern prairie-forest ecotone to early Holocene aridity, Global Planet. Change, 66, 195–207, https://doi.org/10.1016/j.gloplacha.2008.10.012, 2009a.
Williams, J. W., Shuman, B., and Bartlein, P. J.: Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America, Global Planet. Change, 66, 195–207, https://doi.org/10.1016/j.gloplacha.2008.10.012, 2009b.
Williams, J. W., Tarasov, P., Brewer, S., and Notaro, M.: Late Quaternary variations in tree cover at the northern forest-tundra ecotone, J. Geophys. Res.-Biogeo., 116, G01017, https://doi.org/10.1029/2010JG001458, 2011a.
Williams, J. W., Tarasov, P. A., Brewer, S., and Notaro, M.: Late-Quaternary variations in tree cover at the northern forest-tundra ecotone, J. Geophys. Res.-Biogeo., 116, G01017, https://doi.org/10.1029/2010JG001458, 2011b.
Williams, J. W., Grimm, E. G., Blois, J., Charles, D. F., Davis, E., Goring, S. J., Graham, R., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P., Curry, B., Giesecke, T., Hausmann, S., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma Paleoecology Database: A multi-proxy, international community-curated data resource, Quaternary Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018.
Worona, M. A. and Whitlock, C.: Late Quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon, Geol. Soc. Am. Bull., 107, 867–876, https://doi.org/10.1130/0016-7606(1995)107<0867:LQVACH>2.3.CO;2, 1995.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zapolska, A., Serge, M. A., Mazier, F., Quiquet, A., Renssen, H., Vrac, M., Fyfe, R., and Roche, D. M.: More than agriculture: Analysing time-cumulative human impact on European land-cover of second half of the Holocene, Quaternary Sci. Rev., 314, 108227, https://doi.org/10.1016/j.quascirev.2023.108227, 2023.
Co-editor-in-chief
The paper presents a state-of-the-are Holocene reconstruction of North American vegetation shifts, including a discussion of drivers and potential feedbacks on climate.
The paper presents a state-of-the-are Holocene reconstruction of North American vegetation...
Short summary
Holocene vegetation–atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum: a mismatch between data- and model-inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth system models.
Holocene vegetation–atmosphere interactions provide insight into intensifying land use impacts...