Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-1917-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1917-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The colors of proxy noise
Mara Y. McPartland
CORRESPONDING AUTHOR
Research Unit Potsdam, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
Thomas Münch
Research Unit Potsdam, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
Andrew M. Dolman
Research Unit Potsdam, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
Raphaël Hébert
Research Unit Potsdam, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
Thomas Laepple
Research Unit Potsdam, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Related authors
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Jannis Viola, Lars Woermer, Kai-Uwe Hinrichs, and Thomas Laepple
EGUsphere, https://doi.org/10.5194/egusphere-2025-5089, https://doi.org/10.5194/egusphere-2025-5089, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study used mass spectrometry imaging to detect spatial patterns of biomarkers used for sea surface temperature (SST) reconstructions. The observed proxy heterogeneity was bigger than expected within layered marine sediments. The data was used to estimate the climate signal content of individual MSI based reconstructions. The results can be used to inform sampling decisions or to derive uncertainty estimates for high-resolution SST reconstructions and climate variability estimates.
Fyntan Shaw, Thomas Münch, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 19, 4913–4928, https://doi.org/10.5194/tc-19-4913-2025, https://doi.org/10.5194/tc-19-4913-2025, 2025
Short summary
Short summary
Diffusion in combination with measurement noise erase high-frequency water isotope variability in ice cores, linking measurement precision to recoverable resolution. We derive expressions for this relationship, finding a resolution improvement of 1.5 times for a 10-fold measurement noise reduction. Based on the current age-depth model, our method predicts 10 000-year cycles will be recoverable in the 1.5 Myr old ice from the Oldest Ice Core δ18O record if a noise level of 0.01 ‰ is achieved.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data, 17, 2007–2033, https://doi.org/10.5194/essd-17-2007-2025, https://doi.org/10.5194/essd-17-2007-2025, 2025
Short summary
Short summary
This study reconstructed vegetation and tree cover in the Northern Hemisphere from a harmonized dataset of pollen counts from sediment and peat cores for the past 14 000 years. A model was applied to correct for differences in pollen production between different plants, and modern remote-sensing forest cover was used to validate the reconstructed tree cover. Accurate data on past vegetation are invaluable for the investigation of vegetation–climate dynamics and the validation of vegetation models.
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
The Cryosphere, 19, 1067–1083, https://doi.org/10.5194/tc-19-1067-2025, https://doi.org/10.5194/tc-19-1067-2025, 2025
Short summary
Short summary
Recent studies showed that a large number of independent vertical profiles allow for inferring a common local climate signal from the stacked stable water isotope record. Through investigating instrumental limitation and the effect of percolation of such porous samples, this study assesses the continuous flow analysis (CFA) technique in order to analyze the significant number of snow surface profiles within a reasonable time and with high quality.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
Clim. Past, 21, 381–403, https://doi.org/10.5194/cp-21-381-2025, https://doi.org/10.5194/cp-21-381-2025, 2025
Short summary
Short summary
Earth's past temperature reconstructions are critical for understanding climate change. We test the ability of these reconstructions using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhance accuracy for long-term trends, high-quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Kshema Shaju, Thomas Laepple, Nora Hirsch, and Peter Zaspel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3755, https://doi.org/10.5194/egusphere-2024-3755, 2025
Short summary
Short summary
We present a method to optimize the number and placement of temperature sensors in the borehole for borehole thermometry. Based on heat transfer model simulations, a greedy algorithm chooses sensor locations that minimize sampling errors. Applications in Antarctic and Greenland boreholes show this method outperforms traditional linear and exponential spacing, reducing errors up to tenfold. This approach offers an efficient, cost-effective solution to improve subsurface temperature monitoring.
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
Short summary
Fast variability of water isotopes in ice cores is attenuated by diffusion but can be restored if the diffusion length is accurately estimated. Current estimation methods are inadequate for deep ice, mischaracterising millennial-scale climate variability. We address this using variability estimates from shallower ice. The estimated diffusion length of 31 cm for the bottom of the Dome C ice core is 20 cm less than the old method, enabling signal recovery on timescales previously considered lost.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022, https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
Thomas Münch, Martin Werner, and Thomas Laepple
Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021, https://doi.org/10.5194/cp-17-1587-2021, 2021
Short summary
Short summary
We analyse Holocene climate model simulation data to find the locations of Antarctic ice cores which are best suited to reconstruct local- to regional-scale temperatures. We find that the spatial decorrelation scales of the temperature variations and of the noise from precipitation intermittency set an effective sampling length scale. Following this, a single core should be located at the
target site for the temperature reconstruction, and a second one optimally lies more than 500 km away.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Cited articles
Ammann, C. M. and Wahl, E. R.: The importance of the geophysical context in statistical evaluations of climate reconstruction procedures, Climatic Change, 85, 71–88, https://doi.org/10.1007/s10584-007-9276-x, 2007.
Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., St. George, S., Otto-Bliesner, B., Woodhouse, C. A., and Deser, C.: The Continuum of Hydroclimate Variability in Western North America during the Last Millennium, J. Climate, 26, 5863–5878, https://doi.org/10.1175/JCLI-D-11-00732.1, 2013.
Berger, W. H., Johnson, R. F., and Killingley, J. S.: “Unmixing” of the deep-sea record and the deglacial meltwater spike, Nature, 269, 661–663, https://doi.org/10.1038/269661a0, 1977.
Berkelmans, R. and van Oppen, M. J. H.: The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change, Proceedings of the Royal Society B: Biological Sciences, 273, 2305–2312, https://doi.org/10.1098/rspb.2006.3567, 2006.
Bothe, O., Wagner, S., and Zorita, E.: Simple noise estimates and pseudoproxies for the last 21 000 years, Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, 2019.
Briffa, K. R. and Melvin, T. M.: A Closer Look at Regional Curve Standardization of Tree-Ring Records: Justification of the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its Application, in: Dendroclimatology, Springer, Dordrecht, 113–145, https://doi.org/10.1007/978-1-4020-5725-0_5, 2011.
Casado, M., Münch, T., and Laepple, T.: Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica, Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, 2020.
Cheung, A. H., Mann, M. E., Steinman, B. A., Frankcombe, L. M., England, M. H., and Miller, S. K.: Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations, J. Climate, 30, 4763–4776, https://doi.org/10.1175/JCLI-D-16-0712.1, 2017.
Cohen, A. L.: The Effect of Algal Symbionts on the Accuracy of Sr Ca Paleotemperatures from Coral, Science, 296, 331–333, https://doi.org/10.1126/science.1069330, 2002.
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, 2014.
Cook, E. R.: The decomposition of tree-ring series for environmental studies, Tree-Ring Bulletin (USA), 47, 37–59 http://hdl.handle.net/10150/261788 (last access: 4 February 2019), 1987.
Cook, E. R. and Kairiukstis, L. A.: Methods of Dendrochronology: Applications in the Environmental Sciences, Springer Science & Business Media, 403 pp., ISBN: 978-94-015-7879-0, 1990.
Cook, E. R. and Peters, K.: Calculating unbiased tree-ring indices for the study of climatic and environmental change, The Holocene, 7, 361–370, https://doi.org/10.1177/095968369700700314, 1997.
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., and Funkhouser, G.: The “segment length curse” in long tree-ring chronology development for palaeoclimatic studies, The Holocene, 5, 229–237, https://doi.org/10.1177/095968369500500211, 1995.
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D. M.: PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems, Journal of Advances in Modeling Earth Systems, 7, 1220–1247, https://doi.org/10.1002/2015MS000447, 2015.
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility of proxy system models for estimating climate states over the common era, J. Adv. Model. Earth Syst., 8, 1164–1179, https://doi.org/10.1002/2016MS000677, 2016.
Dee, S. G., Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., and Emile-Geay, J.: Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability, Earth and Planetary Science Letters, 476, 34–46, https://doi.org/10.1016/j.epsl.2017.07.036, 2017.
Dee, S. G., Russell, J. M., Morrill, C., Chen, Z., and Neary, A.: PRYSM v2.0: A Proxy System Model for Lacustrine Archives, Paleoceanography and Paleoclimatology, 33, 1250–1269, https://doi.org/10.1029/2018PA003413, 2018.
D'Olivo, J. P. and McCulloch, M. T.: Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress, Sci. Rep., 7, 2207, https://doi.org/10.1038/s41598-017-02306-x, 2017.
D'Olivo, J. P., Georgiou, L., Falter, J., DeCarlo, T. M., Irigoien, X., Voolstra, C. R., Roder, C., Trotter, J., and McCulloch, M. T.: Long-Term Impacts of the 1997–1998 Bleaching Event on the Growth and Resilience of Massive Porites Corals From the Central Red Sea, Geochemistry, Geophysics, Geosystems, 20, 2936–2954, https://doi.org/10.1029/2019GC008312, 2019.
Dolman, A.: EarthSystemDiagnostics/Dolman-et-al-2024-corals-exaggerate: Code for second submission of paper, Zenodo [code], https://doi.org/10.5281/zenodo.14025394, 2024.
Dolman, A., McPartland, M., Felis, T., and Laepple, T.: Coral records exaggerate past decadal tropical climate variability, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-3924954/v1, 9 January 2025.
Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for sediment-archived climate proxies, Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, 2018.
Dolman, A. M., Kunz, T., Groeneveld, J., and Laepple, T.: A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 2: Application and interpretation, Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, 2021a.
Dolman, A. M., Groeneveld, J., Mollenhauer, G., Ho, S. L., and Laepple, T.: Estimating Bioturbation From Replicated Small-Sample Radiocarbon Ages, Paleoceanography and Paleoclimatology, 36, e2020PA004142, https://doi.org/10.1029/2020PA004142, 2021b.
Emile-Geay, J., McKay, N. P., Kaufman, D. S., von Gunten, L., Wang, J., Anchukaitis, K. J., Abram, N. J., Addison, J. A., Curran, M. A. J., Evans, M. N., Henley, B. J., Hao, Z., Martrat, B., McGregor, H. V., Neukom, R., Pederson, G. T., Stenni, B., Thirumalai, K., Werner, J. P., Xu, C., Divine, D. V., Dixon, B., Gergis, J., Mundo, I. A., Nakatsuka, T., Phipps, S. J., Routson, C., Steig, E. J., Tierney, J. E., Tyler, J. J., Allen, K. J., Bertler, N. A. N., Björklund, J., Chase, B. M., Chen, M.-T., Cook, E. R., de Jong, R., DeLong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek, V., Filipsson, H. L., Francus, P., Freund, M. B., Frezzotti, M., Gaire, N. P., Gajewski, K. J., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, K., Kawamura, K., Kilbourne, K. H., Koç, N., Leduc, G., Linderholm, H. W., Lorrey, A., Mikhalenko, V. N., Mortyn, P. G., Motoyama, H., Moy, A. D., Mulvaney, R., Munz, P. M., Nash, D. J., Oerter, H., Opel, T., Orsi, A. J., Ovchinnikov, D. V., Porter, T. J., Roop, H. A., Saenger, C. P., Sano, M., Sauchyn, D. J., Saunders, K. M., Seidenkrantz, M.-S., Severi, M., Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., St. George, S., St. Jacques, J.-M., Meloth, T., Thapa, U. K., Thomas, E. R., Turney, C. S. M., Uemura, R., Viau, A. E., Vladimirova, D. O., Wahl, E. R., White, J. W. C., Yu, Z., and Zinke, J.: NOAA/WDS Paleoclimatology – PAGES2k Global 2,000 Year Multiproxy Database, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/YCR3-7588, 2017.
EPICA community members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, https://doi.org/10.1038/nature05301, 2006.
Esper, J. and Frank, D.: Divergence pitfalls in tree-ring research, Climatic Change, 94, 261–266, https://doi.org/10.1007/s10584-009-9594-2, 2009.
Esper, J., Cook, E. R., Krusic, P. J., Peters, K., and Schweingruber, F. H.: Tests of the RCS Method for Preserving Low-Frequency Variability in Long Tree-Ring Chronologies, Tree Ring Res., 59, 81–98, https://repository.arizona.edu/handle/10150/262573 (last access: 12 July 2023), 2003.
Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., and Büntgen, U.: Signals and memory in tree-ring width and density data, Dendrochronologia, 35, 62–70, https://doi.org/10.1016/j.dendro.2015.07.001, 2015.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Science Reviews, 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., and González-Rouco, J. F.: Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors, Geophysical Research Letters, 41, 9127–9134, https://doi.org/10.1002/2014GL062063, 2014.
Fisher, D. A., Reeh, N., and Clausen, H. B.: Stratigraphic Noise in Time Series Derived from Ice Cores, Annals of Glaciology, 7, 76–83, https://doi.org/10.3189/S0260305500005942, 1985.
Fraedrich, K. and Blender, R.: Scaling of Atmosphere and Ocean Temperature Correlations in Observations and Climate Models, Phys. Rev. Lett., 90, 108501, https://doi.org/10.1103/PhysRevLett.90.108501, 2003.
Franke, J., Frank, D., Raible, C. C., Esper, J., and Brönnimann, S.: Spectral biases in tree-ring climate proxies, Nature Clim. Change, 3, 360–364, https://doi.org/10.1038/nclimate1816, 2013.
Fritts, H.: Tree Rings and Climate, Elsevier, 583 pp., ISBN: 978-0-323-14528-2, 1976.
Gómez-Navarro, J. J., Zorita, E., Raible, C. C., and Neukom, R.: Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era, Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, 2017.
Goodkin, N. F., Hughen, K. A., Cohen, A. L., and Smith, S. R.: Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr Ca, Paleoceanography, 20, https://doi.org/10.1029/2005PA001140, 2005.
Goosse, H., Crespin, E., de Montety, A., Mann, M. E., Renssen, H., and Timmermann, A.: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation, Journal of Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD012737, 2010.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H., and Mulvaney, R.: Stable-isotope records from Dronning Maud Land, Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.728240, 2002.
Haam, E. and Huybers, P.: A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records, Paleoceanography, 25, 14 pp., https://doi.org/10.1029/2008PA001713, 2010.
Hasselmann, K.: Stochastic climate models Part I. Theory, Tellus, 28, 473–485, https://doi.org/10.3402/tellusa.v28i6.11316, 1976.
Hayashi, E., Suzuki, A., Nakamura, T., Iwase, A., Ishimura, T., Iguchi, A., Sakai, K., Okai, T., Inoue, M., Araoka, D., Murayama, S., and Kawahata, H.: Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment, Earth and Planetary Science Letters, 362, 198–206, https://doi.org/10.1016/j.epsl.2012.11.046, 2013.
Hébert, R., Rehfeld, K., and Laepple, T.: Comparing estimation techniques for temporal scaling in palaeoclimate time series, Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, 2021.
Hirsch, N., Zuhr, A., Münch, T., Hörhold, M., Freitag, J., Dallmayr, R., and Laepple, T.: Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica, The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, 2023.
Hollyman, P. R., Laptikhovsky, V. V., and Richardson, C. A.: Techniques for Estimating the Age and Growth of Molluscs: Gastropoda, SHRE, 37, 773–782, https://doi.org/10.2983/035.037.0408, 2018.
Holmes, R. L., Adams, R. K., and Fritts, H. C.: Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer Programs COFECHA and ARSTAN, Laboratory of Tree-Ring Research Archives, The University of Arizona, https://repository.arizona.edu/handle/10150/304672 (last access: 22 May 2025), 1986.
Hörhold, M., Münch, T., Weißbach, S., Kipfstuhl, S., Freitag, J., Sasgen, I., Lohmann, G., Vinther, B., and Laepple, T.: Modern temperatures in central–north Greenland warmest in past millennium, Nature, 613, 503–507, https://doi.org/10.1038/s41586-022-05517-z, 2023.
Hughes, M. K. and Ammann, C. M.: The future of the past – an earth system framework for high resolution paleoclimatology: editorial essay, Climatic Change, 94, 247–259, https://doi.org/10.1007/s10584-009-9588-0, 2009.
Hutson, W. H.: Bioturbation of deep-sea sediments: Oxygen isotopes and stratigraphic uncertainty, Geology, 8, 127–130, https://doi.org/10.1130/0091-7613(1980)8<127:BODSOI>2.0.CO;2, 1980.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745, 2006.
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion, in: Physics of Ice Core Records, vol. 159, edited by: Hondoh, T., Hokkaido University Press, Sapporo, Japan, 121–140, http://hdl.handle.net/2115/32465 (last access: 17 December 2019), 2000.
Jones, D. S.: Sclerochronology: Reading the Record of the Molluscan Shell: Annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity, American Scientist, 71, 384–391, 1983.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects, The Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009.
King, J. M., Anchukaitis, K. J., Tierney, J. E., Hakim, G. J., Emile-Geay, J., Zhu, F., and Wilson, R.: A Data Assimilation Approach to Last Millennium Temperature Field Reconstruction Using a Limited High-Sensitivity Proxy Network, Journal of Climate, https://doi.org/10.1175/JCLI-D-20-0661.1, 2021.
Kunz, T., Dolman, A. M., and Laepple, T.: A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept, Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, 2020.
Laepple, T. and Huybers, P.: Reconciling discrepancies between Uk37 and Mg Ca reconstructions of Holocene marine temperature variability, Earth and Planetary Science Letters, 375, 418–429, https://doi.org/10.1016/j.epsl.2013.06.006, 2013.
Laepple, T., Münch, T., Casado, M., Hoerhold, M., Landais, A., and Kipfstuhl, S.: On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits, The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, 2018.
Lee, T. C. K., Zwiers, F. W., and Tsao, M.: Evaluation of proxy-based millennial reconstruction methods, Clim. Dyn., 31, 263–281, https://doi.org/10.1007/s00382-007-0351-9, 2008.
Little, A. F., van Oppen, M. J. H., and Willis, B. L.: Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals, Science, 304, 1492–1494, https://doi.org/10.1126/science.1095733, 2004.
Lough, J. M.: A strategy to improve the contribution of coral data to high-resolution paleoclimatology, Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 115–143, https://doi.org/10.1016/S0031-0182(03)00727-2, 2004.
Lücke, L. J., Hegerl, G. C., Schurer, A. P., and Wilson, R.: Effects of Memory Biases on Variability of Temperature Reconstructions, Journal of Climate, 32, 8713–8731, https://doi.org/10.1175/JCLI-D-19-0184.1, 2019.
Maier, C., Felis, T., Pätzold, J., and Bak, R. P. M.: Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites, Marine Geology, 207, 193–208, https://doi.org/10.1016/j.margeo.2004.03.008, 2004.
Mann, M. E. and Rutherford, S.: Climate reconstruction using “Pseudoproxies”, Geophysical Research Letters, 29, 139-1–139-4, https://doi.org/10.1029/2001GL014554, 2002.
Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate, Journal of Climate, 18, 4097–4107, https://doi.org/10.1175/JCLI3564.1, 2005.
Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Robustness of proxy-based climate field reconstruction methods, Journal of Geophysical Research: Atmospheres, 112, https://doi.org/10.1029/2006JD008272, 2007.
Matalas, N. C.: Statistical Properties of Tree Ring Data, International Association of Scientific Hydrology, Bulletin, 7, 39–47, https://doi.org/10.1080/02626666209493254, 1962.
McCulloch, M. T., Winter, A., Sherman, C. E., and Trotter, J. A.: 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C, Nat. Clim. Chang., 14, 171–177, https://doi.org/10.1038/s41558-023-01919-7, 2024.
McPartland, M. Y. and Dolman, A.: EarthSystemDiagnostics/McPartland_etal_2024_DendroSNR: v1.1 (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.10822165, 2024.
McPartland, M. Y., St. George, S., Pederson, G. T., and Anchukaitis, K. J.: Does signal-free detrending increase chronology coherence in large tree-ring networks?, Dendrochronologia, 125755, https://doi.org/10.1016/j.dendro.2020.125755, 2020.
McPartland, M. Y., Dolman, A. M., and Laepple, T.: Separating Common Signal From Proxy Noise in Tree Rings, Geophysical Research Letters, 51, e2024GL109282, https://doi.org/10.1029/2024GL109282, 2024.
Meko, D. M.: Applications of Box-Jenkins methods of time series analysis to the reconstruction of drought from tree rings, PhD thesis, University of Arizona, Tucson, Arizona, USA. 149 pp., https://repository.arizona.edu/handle/10150/191062 (last access: 19 April 2019), 1981.
Melvin, T. M. and Briffa, K. R.: A “signal-free” approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, https://doi.org/10.1016/j.dendro.2007.12.001, 2008.
Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of Regional Chronology Standardisation: Part 1. Signal-Free RCS, Dendrochronologia, 32, 7–20, https://doi.org/10.1016/j.dendro.2013.06.002, 2014a.
Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of Regional Chronology Standardisation: Part 2. Further RCS options and recommendations, Dendrochronologia, 32, 343–356, https://doi.org/10.1016/j.dendro.2014.07.008, 2014b.
Münch, T., McPartland M. Y., Dolman, A., and Laepple, T.: proxysnr: An R package to separate the common signal from local noise in climate proxy records using spectral analyses, Zenodo [code], https://doi.org/10.5281/zenodo.17098991, 2025.
Münch, T.: proxysnr: An R package to separate the common signal from local noise in climate proxy records using spectral analyses (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.17098991, 2025a.
Münch, T.: ice-colors-of-noise: R software to perform signal-to-noise ratio analyses for Greenland and Antarctic ice-core data (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.17102273, 2025b.
Münch, T. and Laepple, T.: What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores?, Clim. Past, 14, 2053–2070, https://doi.org/10.5194/cp-14-2053-2018, 2018.
Münch, T., Werner, M., and Laepple, T.: How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores, Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021, 2021.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P.: No evidence for globally coherent warm and cold periods over the preindustrial Common Era, Nature, 571, 550–554, https://doi.org/10.1038/s41586-019-1401-2, 2019.
PAGES 2k Consortium, Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., Büntgen, U., Chase, B. M., Christie, D. A., Cook, E. R., Curran, M. A. J., Diaz, H. F., Esper, J., Fan, Z.-X., Gaire, N. P., Ge, Q., Gergis, J., González-Rouco, J. F., Goosse, H., Grab, S. W., Graham, N., Graham, R., Grosjean, M., Hanhijärvi, S. T., Kaufman, D. S., Kiefer, T., Kimura, K., Korhola, A. A., Krusic, P. J., Lara, A., Lézine, A.-M., Ljungqvist, F. C., Lorrey, A. M., Luterbacher, J., Masson-Delmotte, V., McCarroll, D., McConnell, J. R., McKay, N. P., Morales, M. S., Moy, A. D., Mulvaney, R., Mundo, I. A., Nakatsuka, T., Nash, D. J., Neukom, R., Nicholson, S. E., Oerter, H., Palmer, J. G., Phipps, S. J., Prieto, M. R., Rivera, A., Sano, M., Severi, M., Shanahan, T. M., Shao, X., Shi, F., Sigl, M., Smerdon, J. E., Solomina, O. N., Steig, E. J., Stenni, B., Thamban, M., Trouet, V., Turney, C. S. M., Umer, M., Ommen, T. van, Verschuren, D., Viau, A. E., Villalba, R., Vinther, B. M., Gunten, L. von, Wagner, S., Wahl, E. R., Wanner, H., Werner, J. P., White, J. W. C., Yasue, K., and Zorita, E.: Continental-scale temperature variability during the past two millennia, Nature Geoscience, 6, 339–-346, https://doi.org/10.1038/ngeo1797, 2013.
Pelletier, J. D.: The power spectral density of atmospheric temperature from time scales of 10−2 to 106 yr, Earth and Planetary Science Letters, 158, 157–164, https://doi.org/10.1016/S0012-821X(98)00051-X, 1998.
Peng, T.-H. and Broecker, W. S.: The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 5, 346–352, https://doi.org/10.1016/0168-583X(84)90540-8, 1984.
Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications, Cambridge University Press, 616 pp., ISBN: 978-0-521-43541-3, 1993.
Reschke, M., Rehfeld, K., and Laepple, T.: Empirical estimate of the signal content of Holocene temperature proxy records, Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, 2019.
Rhines, A. and Huybers, P.: Estimation of spectral power laws in time uncertain series of data with application to the Greenland Ice Sheet Project 2 δ18O record, Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD014764, 2011.
Riedwyl, N., Küttel, M., Luterbacher, J., and Wanner, H.: Comparison of climate field reconstruction techniques: application to Europe, Clim. Dyn., 32, 381–395, https://doi.org/10.1007/s00382-008-0395-5, 2009.
Ruddiman, W. F., Jones, G. A., Peng, T.-H., Glover, L. K., Glass, B. P., and Liebertz, P. J.: Tests for size and shape dependency in deep-sea mixing, Sedimentary Geology, 25, 257–276, https://doi.org/10.1016/0037-0738(80)90064-0, 1980.
Rypel, A. L., Haag, W. R., and Findlay, R. H.: Validation of annual growth rings in freshwater mussel shells using cross dating, Can. J. Fish. Aquat. Sci., 65, 2224–2232, https://doi.org/10.1139/F08-129, 2008.
Saenger, C., Cohen, A. L., Oppo, D. W., and Hubbard, D.: Interpreting sea surface temperature from strontium/calcium ratios in Montastrea corals: Link with growth rate and implications for proxy reconstructions, Paleoceanography, 23, https://doi.org/10.1029/2007PA001572, 2008.
Schiffelbein, P.: Calculation of error measures for deconvolved deep-sea stratigraphic records, Marine Geology, 65, 333–342, https://doi.org/10.1016/0025-3227(85)90063-5, 1985.
Schiffelbein, P. and Hills, S.: Direct assessment of stable isotope variability in planktonic foraminifera populations, Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 197–213, https://doi.org/10.1016/0031-0182(84)90044-0, 1984.
Scott, R. B., Holland, C. L., and Quinn, T. M.: Multidecadal Trends in Instrumental SST and Coral Proxy Sr Ca Records, Journal of Climate, 23, 1017–1033, https://doi.org/10.1175/2009JCLI2386.1, 2010.
Shaw, F., Dolman, A. M., Kunz, T., Gkinis, V., and Laepple, T.: Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C ice core, The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, 2024.
Smerdon, J. E.: Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments, WIREs Climate Change, 3, 63–77, https://doi.org/10.1002/wcc.149, 2012.
Smerdon, J. E., Kaplan, A., Chang, D., and Evans, M. N.: A Pseudoproxy Evaluation of the CCA and RegEM Methods for Reconstructing Climate Fields of the Last Millennium, Journal of Climate, https://doi.org/10.1175/2010JCLI3328.1, 2010.
Speer, J. H.: Fundamentals of Tree-ring Research, University of Arizona Press, 370 pp., ISBN: 978-0-8165-2684-0, 2010.
Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S., Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van Ommen, T., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson, E., Ekaykin, A., Werner, M., and Frezzotti, M.: Antarctic climate variability on regional and continental scales over the last 2000 years, Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, 2017.
Suzuki, A., Hibino, K., Iwase, A., and Kawahata, H.: Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments, Geochimica et Cosmochimica Acta, 69, 4453–4462, https://doi.org/10.1016/j.gca.2005.05.018, 2005.
Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An efficient forward model of the climate controls on interannual variation in tree-ring width, Clim. Dyn., 36, 2419–2439, https://doi.org/10.1007/s00382-010-0945-5, 2011.
Vaganov, E. A., Anchukaitis, K. J., and Evans, M. N.: How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics, in: Dendroclimatology: Progress and Prospects, edited by: Hughes, M. K., Swetnam, T. W., and Diaz, H. F., Springer Netherlands, Dordrecht, 37–75, https://doi.org/10.1007/978-1-4020-5725-0_3, 2011.
Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D: Nonlinear Phenomena, 35, 395–424, https://doi.org/10.1016/0167-2789(89)90077-8, 1989.
von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco, F., and Tett, S. F. B.: Reconstructing Past Climate from Noisy Data, Science, 306, 679–682, https://doi.org/10.1126/science.1096109, 2004.
von Storch, H., Zorita, E., and González-Rouco, F.: Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation, Int. J. Earth Sci. (Geol. Rundsch.), 98, 67–82, https://doi.org/10.1007/s00531-008-0349-5, 2009.
Walter, R. M., Sayani, H. R., Felis, T., Cobb, K. M., Abram, N. J., Arzey, A. K., Atwood, A. R., Brenner, L. D., Dassié, É. P., DeLong, K. L., Ellis, B., Emile-Geay, J., Fischer, M. J., Goodkin, N. F., Hargreaves, J. A., Kilbourne, K. H., Krawczyk, H., McKay, N. P., Moore, A. L., Murty, S. A., Ong, M. R., Ramos, R. D., Reed, E. V., Samanta, D., Sanchez, S. C., Zinke, J., and the PAGES CoralHydro2k Project Members: The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr Ca proxy records of tropical ocean hydrology and temperature for the Common Era, Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, 2023.
Weißbach, S., Wegner, A., Opel, T., Oerter, H., Vinther, B. M., and Kipfstuhl, S.: Spatial and temporal oxygen isotope variability in northern Greenland – implications for a new climate record over the past millennium, Clim. Past, 12, 171–188, https://doi.org/10.5194/cp-12-171-2016, 2016.
Whillans, I. M. and Grootes, P. M.: Isotopic diffusion in cold snow and firn, Journal of Geophysical Research: Atmospheres, 90, 3910–3918, https://doi.org/10.1029/JD090iD02p03910, 1985.
Zhang, H., Yuan, N., Esper, J., Werner, J. P., Xoplaki, E., Büntgen, U., Treydte, K., and Luterbacher, J.: Modified climate with long term memory in tree ring proxies, Environ. Res. Lett., 10, 084020, https://doi.org/10.1088/1748-9326/10/8/084020, 2015.
Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R., Steig, E. J., Dee, S., and Kirchner, J. W.: Climate models can correctly simulate the continuum of global-average temperature variability, Proceedings of the National Academy of Sciences, 116, 8728–8733, https://doi.org/10.1073/pnas.1809959116, 2019.
Zhu, F., Emile-Geay, J., McKay, N. P., Stevenson, S., and Meng, Z.: A pseudoproxy emulation of the PAGES 2k database using a hierarchy of proxy system models, Sci. Data, 10, 624, https://doi.org/10.1038/s41597-023-02489-1, 2023.
Zuhr, A. M., Wahl, S., Steen-Larsen, H. C., Hörhold, M., Meyer, H., and Laepple, T.: A Snapshot on the Buildup of the Stable Water Isotopic Signal in the Upper Snowpack at EastGRIP on the Greenland Ice Sheet, Journal of Geophysical Research: Earth Surface, 128, e2022JF006767, https://doi.org/10.1029/2022JF006767, 2023.
Short summary
Paleoclimate proxy records contain a combination of climate signals and non-climatic noise. This noise can affect year-to-year variations, or introduce uncertainty on medium and long timescales. Proxies contain different types, or "colors" of noise stemming from the diverse physical and biological processes that go into their creation. We show how non-climatic noise affects tree rings, corals and ice cores. We aim to improve representations of noise in paleoclimate research activities.
Paleoclimate proxy records contain a combination of climate signals and non-climatic noise. This...